Polyspace® Code Prover™
User's Guide

<

MATLAB&SIMULINK?

R2018a >) MathWorks’

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover ™ User's Guide
© COPYRIGHT 2013-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks . com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018

Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only

Release 2013b)
Release 2014a)
Release 2014b)
Release 2015a)
Release 2015b)
Release 2016a)
Release 2016b)
Release 2017a)
Release 2017b)
Release 2018a)

Revised for Version 9.0
Revised for Version 9.1
Revised for Version 9.2
Revised for Version 9.3
Revised for Version 9.4
Revised for Version 9.5
Revised for Version 9.6
Revised for Version 9.7
Revised for Version 9.8
Revised for Version 9.9

o~~~ o~ o~~~ —~

Contents

Introduction to Polyspace Products

1]

Polyspace Verification 1-2
Polyspace Verification 1-2
Value of Polyspace Verification 1-2

How Polyspace Verification Works 1-5
What is Static Verification 1-5
Exhaustivenesst 1-6

Related Products 1-7
Polyspace Bug Finder 1-7
Polyspace Products for Verifying AdaCode 1-7
Tool Qualification and Certification 1-7

How to Use Polyspace Software

2|

Polyspace Verification and the Software
Development Cycle 2-2
Software Quality and Productivity 2-2
Best Practices for Verification Workflow 2-3

Implement Process for Verification 2
Overview of the Polyspace Process 2
Define Process to Meet Your Goals 2-4
Apply Process to Assess Code Quality 2

2

Improve Your Verification Process -5
Sample Workflows for Polyspace Verification 2-6
Overview of Verification Workflows 2-6

vi

Contents

Software Developers and Testers - Standard Development
Process
Software Developers and Testers - Rigorous Development
Process
Quality Engineers - Code Acceptance Criteria
Quality Engineers - Certification/Qualification
Model-Based Design Users — Verifying Generated Code
Project Managers — Integrating Polyspace Verification with
Configuration Management Tools

Define Your Requirements
Define Broad Requirements for Verification
Define Specific Requirements for Verification

2-12
2-14
2-15
2-18
-1

-2

Run Polyspace Analysis on Desktop

3|

Add Source Files for Analysis in Polyspace User Interface . . .
Add Sources from Build Command
Add SourcesManually

Run Polyspace Analysison Desktop
Arrange Layout of Windows for Project Setup
Set Product and Result Location
Start and Monitor Analysis
Fix Compilation Errors
OpenResults

Project and Results Folder Contents
Filesin the Results Folder

Storage of Temporary Files

Create Project Using Visual Studio Information

Create Project Using Configuration Template
Why Use Templatesiiiiiiinn...

Use Predefined Template
Create Your Own Template

3-16

3-19
3-19
3-19
3-20

Update Polyspace Project 3-24

Change Folder Path 3-25
Refresh Source List, 3-26
Refresh Project Created from Build Command 3-26
Add Source and Include Folders 3-26
Manage Include File Sequence 3-27
Organize Layout of Polyspace User Interface 3-29
Create YourOwn Layout 3-29
Saveand Reset Layout 3-30
Customize Polyspace User Interface 3-32
Possible Customizations 3-33
Storage of Polyspace User Interface Customizations 3-34

Run Polyspace Analysis with Windows or Linux

4

Scripts

Run Polyspace Analysis from Command Line 4-2
Specify Sources and Analysis Options Directly 4-2
Specify Sources and Analysis Options in Text File 4-3
Create Options File from Build System 4-3
polyspace-configure Source Files Selection Syntax 4-5
Create Command-Line Script from Project File 4-8
Generate Scripting Files 4-8
RunanAnalysis 4-9

Run Polyspace Analysis with MATLAB Scripts

S|

Run Polyspace Analysis by Using MATLAB Scripts 5-2
Specify Multiple Source Files 5-2
Check for MISRA C:2012 Violations 5-3
Check for Specific Defects or Coding Rule Violations 5-4

viii

Contents

Find Files That Do Not Compile 5-4

Run Analysison Cluster 5-5
Generate MATLAB Scripts from Polyspace User Interface . . . 5-6
Troubleshoot Polyspace Analysis from MATLAB 5-9

Run Polyspace Analysis on Remote Clusters

6/

Run Polyspace Analysis on Remote Clusters 6-2
Run Polyspace Analysis on Remote Clusters Using Scripts . . .

6-4
Run Remote Analysis 6-4
Manage Remote Analysis 6-6

Run Polyspace Analysis on Generated Code

7

Run Polyspace Analysis on Code Generated with Embedded
Coder e 7-2
Generate and Analyze Code, 7-2
Review AnalysisResults 7-4

Verify Generated Code Using Polyspace Code Prover 7-7
Analyze Code Generated from Simulink Subsystem 7-10
OpenModel e 7-10
Generate Code 7-11
Analyze Code i 7-12
Review AnalysisResults 7-12
Trace Errors Back to Model and Fix Them 7-13
Check for Coding Rule Violations 7-16
Annotate Blocks to Justify Results 7-16
Analyze S-FunctionCode 7-18
S-Function Analysis Workflow 7-18

Compile S-Functions to Be Compatible with Polyspace 7-18

Example S-Function Analysis 7-19
Recommended Model Configuration Parameters for Polyspace
Analysis e 7-20
Configure Advanced Polyspace Options in Simulink 7-23
Configure Optionscov i, 7-23
Share and Reuse Configuration 7-25
How Polyspace Analysis of Generated Code Works 7-28
Default Polyspace Options for Code Generated with Embedded
Coder 7-29
Default Options, 7-29
Constraint Specification 7-29
Recommended Polyspace options for Verifying Generated
Code ..o 7-30
Hardware Mapping Between Simulink and Polyspace 7-30
Run Polyspace Analysis on Code Generated with
TargetLink 7-32
Configure and Run Analysis 7-32
Review AnalysisResults 7-33
Default Polyspace Options for Code Generated with
TargetLink 7-34
TargetLink Support 7-34
Default Options i, 7-34
LookupTableso i, 7-35
Data Range Specification 7-35
Code Generation Options 7-36
Troubleshoot Navigation from Code to Model 7-37
Links from Code to Model Do Not Appear 7-38
Links from Code to Model Do Not Work 7-38
Your Model Already Uses Highlighting 7-38
Run Polyspace on C/C++ Code Generated from MATLAB
Code e 7-40
Prerequisites e 7-40
Run Polyspace Analysis, 7-40
Review AnalysisResults 7-42

ix

Run Analysis for Specific Design Range 7-44

Configure Advanced Polyspace Options in MATLAB

Coder App o e 7-47
Configure Options, 7-47
Share and Reuse Configuration 7-49

Run Polyspace Analysis in IDE Plugins

8

Run Polyspace Analysisin Eclipse 8-2
Configure and Run Analysis 8-4
Review AnalysisResults 8-6

Specify Polyspace Compiler Options Through Eclipse

Project e 8-8
Eclipse Refers Directly to Your Compilation Toolchain 8-8
Eclipse Uses Your Compilation Toolchain Through Build

Commandiiiiiii i 8-9

Running Polyspace on AUTOSAR Code

9

Using Polyspace in AUTOSAR Software Development 9-2
Check if Implementation of Software Components Follow

Specifications 9-2

Assess Impact of Edits to Specifications 9-3

Check Code Implementation for Run-time Errors and Mismatch

with Specifications, 9-4
Check Code Implementation Against Specification Updates . . 9-4
Benefits of Polyspace for AUTOSAR 9-6
Polyspace Modularizes Analysis Based on AUTOSAR
Componentsi i e 9-7
Polyspace Detects Mismatch Between Code and AUTOSAR XML
SPEC . e 9-10

Contents

Run Polyspace on AUTOSARCode 9-15

Run Polyspace in User Interface 9-15
Run Polyspace Using Scripts 9-19
Open Code Prover Results 9-20
Troubleshoot Polyspace Analysis of AUTOSAR Code 9-22
View Project Completion Status 9-22
View Errors in AUTOSAR XML Parsing 9-23
View Compilation ErrorsinCode 9-25

Run Polyspace on AUTOSAR Code with Conservative
Assumptions 9-28

Configure Polyspace Analysis

10|

Specify Polyspace Analysis Options 10-2
Polyspace User Interface 10-2
Windows or Linux Scripts 10-3
MATLAB Scriptso 10-3
Eclipse and Eclipse-based IDEs 10-4
Simulink 10-4
MATLAB Coder App . .. oot e e 10-4

Configure Target and Compiler Options

11

Specify Target Environment and Compiler Behavior 11-2
Extract Options from Build Command 11-3
Specify Options Explicitly 11-4

Provide Standard Library Headers for Polyspace Analysis ... 11-6

Requirements for Project Creation from Build Systems 11-8
Compiler Requirements 11-8
Build Command Requirements 11-9

xi

xii

Contents

Language Extensions Supported by Default 11-11

Supported Keil or IAR Language Extensions 11-13
Special Function Register Data Type 11-13
Keywords Removed During Preprocessing 11-14

Supported C++ 2011 Language Extensions 11-15

Remove or Replace Keywords Before Compilation 11-18
Remove Unrecognized Keywords 11-18
Remove Unrecognized Function Attributes 11-20

Gather Compilation Options Efficiently 11-22

Configure Inputs and Stubbing Options

12

Specify External Constraints 12-2
Create Constraint Template 12-2
Create Constraint Template After Analysis 12-3
Update Existing Template 12-4
Specify ConstraintsinCode 12-4

External Constraints for Polyspace Analysis 12-6

Constrain Global Variable Range 12-11

Constrain FunctionInputs 12-13

Constrain Stubbed Functions 12-15

XML File Format for Constraints 12-17
Syntax Description — XML Elements 12-17
Valid Modes and Default Values 12-22

Configure Multitasking Analysis

13|

Analyze Multitasking Programs in Polyspace 13-2
Configure Analysisiiiin i 13-3
Review AnalysisResults 13-4

Auto-Detection of Thread Creation and Critical Section in

Polyspace e 13-6
Multitasking Routines that Polyspace Can Detect 13-6
Example of Automatic Thread Detection 13-8
Naming Convention for Automatically Detected Threads ... 13-11
Limitations of Automatic Thread Detection 13-12

Configuring Polyspace Multitasking Analysis Manually . . . 13-14
Specify Options for Multitasking Analysis 13-14
Adapt Code for Code Prover Multitasking Analysis 13-15

Protections for Shared Variables in Multitasking Code 13-19
Detect Unprotected Access, 13-19
Protect Using Critical Sections 13-20
Protect Using Temporally Exclusive Tasks 13-21
Protect Using Priorities 13-22

Configure Coding Rules Checking and Code Metrics

14

Computation

Check for Coding Rule Violations 14-2
Configure Coding Rules Checking 14-2
Review Coding Rule Violations 14-4
Avoid Violations of MISRA C 2012 Rules 8.x 14-7
Create Custom CodingRules 14-11

Format of Custom Coding Rules File 14-13

xiii

Compute Code Complexity Metrics 14-14

Impose Limitson Metrics 14-14
Comment and Justify Limit Violations 14-17
HIS Code Complexity Metrics 14-18
Project e 14-18
File . 14-18
Function 14-18

15|

Polyspace MISRA C 2004 and MISRA AC AGC Checkers 15-2
MISRA C:2004 and MISRA AC AGC Coding Rules 15-3
Supported MISRA C:2004 and MISRA AC AGC Rules 15-3
Troubleshooting, 15-4
List of Supported CodingRules 15-4
Unsupported MISRA C:2004 and MISRA AC AGC Rules . .. 15-44
Software Quality Objective Subsets (C:2004) 15-47
Rules in SQO-Subsetl 15-47
Rulesin SQO-Subset2 i 15-48
Software Quality Objective Subsets (ACAGC) 15-53
Rules in SQO-Subsetl 15-53
Rulesin SQO-Subset2 i 15-54
Polyspace MISRA C:2012 Checkers 15-57
Software Quality Objective Subsets (C:2012) 15-59
Guidelines in SQO-Subsetl 15-59
Guidelines in SQO-Subset2 15-60
Coding Rule Subsets Checked Early in Analysis 15-64
MISRA C: 2004 and MISRAACAGCRules 15-64
MISRAC: 2012 Rules 15-74
Unsupported MISRA C:2012 Guidelines 15-84

xiv Contents

Polyspace MISRA C++ Checkers 15-85

MISRA C++ Coding Rules 15-86
Supported MISRA C++ CodingRules 15-86
Unsupported MISRAC++ Rules 15-111

Software Quality Objective Subsets (C++) 15-116
SQO Subset 1 - Direct Impact on Selectivity 15-116
SQO Subset 2 - Indirect Impact on Selectivity 15-118

Polyspace JSF C++ Checkers 15-123

JSFC++ CodingRules 15-124
Supported JSF C++ Coding Rules 15-124
Unsupported JSF++ Rules 15-147

Configure Verification of Modules or Libraries

16|

Provide Context for C Code Verification 16-2
Control Variable Range 16-2
Control Function Call Sequence 16-2
Control Stubbing Behavior 16-3

Provide Context for C++ Code Verification 16-4
Control Variable Range 16-4
Control Function Call Sequence 16-4

Verify C Application Without main Function 16-6
Generate main Function 16-6
Manually Write main Function 16-6

Verify C++ Classes 16-10
Verification of Classes 16-10
Methods and Class Specifics 16-12

xvi

Contents

Interpret Polyspace Code Prover Results

17|

Interpret Polyspace Code Prover Results 17-2
InterpretResult 17-3
Find Root Causeof Result 17-5
Code Prover Result and Source Code Colors 17-10
Result Colors oo 17-10
Source Code Colors oot 17-13
Global Variable Colors 17-15
Code Prover Run-Time Checks 17-17
Data Flow Checkso v 17-17
Numerical Checks i 17-18
Static Memory Checks 17-18
Control Flow Checks 17-19
CH4+ CheCKS . . oot 17-19
Other Checks oo e 17-20
Dashboard 17-21
Concurrency Modeling 17-27
Results List 17-29
SOUTCe e 17-33
ResultDetails 17-41
Call Hierarchy 17-44
Variable Access 17-47
Code Prover Analysis Following Red and Orange Checks . . 17-55
Code Following Red Check 17-56
Green Check Following Orange Check 17-56
Gray Check Following Orange Check 17-57
Red Check Following Orange Check 17-58
Red Checks in UnreachableCode 17-59
Order of Code Prover Run-Time Checks 17-61

Orange Checks in Code Prover
When Orange Checks Occur
Why Review Orange Checks
How to Review Orange Checks
How to Reduce Orange Checks

Managing Orange Checks
Software Development Stage
QualityGoals i

Critical Orange Checks
Path ...
Bounded InputValues
Unbounded Input Values

Limit Display of Orange Checks

Software Quality Objectives
Comparing Verification Results Against Software
Quality Objectives

Reduce Orange Checks
Provide Context for Verification
Improve Verification Precision
Follow CodingRules
Reduce Application Size

Test Orange Checks for Run-Time Errors
Run Tests for Full Range of Input
Run Tests for Specified Range of Input

Limitations of Automatic Orange Tester
Unsupported Platforms
Unsupported Polyspace Options
Options with Restrictions
Unsupported CRoutines

xvii

xviii

Reviewing Checks

18|

Contents

Review and Fix Absolute Address Usage Checks 18-3

Review and Fix Correctness Condition Checks 18-4

Step 1: Interpret Check Information 18-4

Step 2: Determine Root Cause of Check 18-7

Step 3: Trace Check to Polyspace Assumption 18-9

Review and Fix Division by Zero Checks 18-10

Step 1: Interpret Check Information 18-10

Step 2: Determine Root Cause of Check 18-11

Step 3: Look for Common Causes of Check 18-14

Step 4: Trace Check to Polyspace Assumption 18-14

Review and Fix Function Not Called Checks 18-16

Step 1: Interpret Check Information 18-16

Step 2: Determine Root Cause of Check 18-16

Step 3: Look for Common Causes of Check 18-17

Review and Fix Function Not Reachable Checks 18-18

Step 1: Interpret Check Information 18-18

Step 2: Determine Root Cause of Check 18-18

Review and Fix Function Not Returning Value Checks 18-20

Step 1: Interpret Check Information 18-20

Step 2: Determine Root Cause of Check 18-20

Review and Fix Illegally Dereferenced Pointer Checks 18-22

Step 1: Interpret Check Information 18-22

Step 2: Determine Root Cause of Check 18-25

Step 3: Look for Common Causes of Check 18-27

Step 4: Trace Check to Polyspace Assumption 18-28
Review and Fix Incorrect Object Oriented Programming

Checks e 18-30

Step 1: Interpret Check Information 18-30

Step 2: Determine Root Cause of Check 18-31

Review and Fix Invalid C++ Specific Operations Checks ... 18-33

Step 1: Interpret Check Information 18-33

Step 2: Determine Root Cause of Check
Step 3: Trace Check to Polyspace Assumption

Review and Fix Invalid Shift Operations Checks

Step 1: Interpret Check Information

Step 2: Determine Root Cause of Check
Step 3: Look for Common Causes of Check
Step 4: Trace Check to Polyspace Assumption

Review and Fix Invalid Use of Standard Library Routine

Checks
Step 1: Interpret Check Information

Step 2: Trace Check to Polyspace Assumption

Invalid Use of Standard Library Floating Point Routines . .

What the Check Looks For
Single-Argument Functions Checked
Functions with Multiple Arguments

Review and Fix Non-initialized Local Variable Checks

Step 1: Interpret Check Information

Step 2: Determine Root Cause of Check
Step 3: Look for Common Causes of Check
Step 4: Trace Check to Polyspace Assumption

Review and Fix Non-initialized Pointer Checks

Step 1: Interpret Check Information

Step 2: Determine Root Cause of Check
Step 3: Trace Check to Polyspace Assumption

Review and Fix Non-initialized Variabl
Step 1: Interpret Check Information

e Checks

Step 2: Determine Root Cause of Check
Step 3: Trace Check to Polyspace Assumption

Review and Fix Non-Terminating Call Checks
Step 1: Determine Root Cause of Check
Step 2: Look for Common Causes of Check

Identify Function Call with Run-Time Error

Review and Fix Non-Terminating Loop
Step 1: Interpret Check Information

Checks

18-34
18-35

18-36
18-36
18-37
18-40
18-40

18-42
18-42
18-44

18-45
18-45
18-46
18-47

18-49
18-49
18-49
18-50
18-51

18-53
18-53
18-53
18-55

18-56
18-56
18-57
18-57

18-59
18-59
18-60
18-62

18-64
18-64

Xix

XX

Contents

Step 2: Determine Root Cause of Check 18-64

Step 3: Look for Common Causes of Check 18-66
Identify Loop Operation with Run-Time Error 18-68
Review and Fix Null This-pointer Calling Method Checks .. 18-71

Step 1: Interpret Check Information 18-71

Step 2: Determine Root Cause of Check 18-72
Review and Fix Out of Bounds Array Index Checks 18-73

Step 1: Interpret Check Information 18-73

Step 2: Determine Root Cause of Check 18-74

Step 3: Look for Common Causes of Check 18-76

Step 4: Trace Check to Polyspace Assumption 18-76
Review and Fix Overflow Checks 18-78

Step 1: Interpret Check Information 18-78

Step 2: Determine Root Cause of Check 18-79

Step 3: Look for Common Causes of Check 18-82

Step 4: Trace Check to Polyspace Assumption 18-82
Detect Overflows in Buffer Size Computation 18-83
Review and Fix Return Value Not Initialized Checks 18-85

Step 1: Interpret Check Information 18-85

Step 2: Determine Root Cause of Check 18-85

Step 3: Look for Common Causes of Check 18-87

Step 4: Trace Check to Polyspace Assumption 18-87
Review and Fix Uncaught Exception Checks 18-89

Step 1: Interpret Check Information 18-89

Step 2: Determine Root Cause of Check 18-89
Review and Fix Unreachable Code Checks 18-92

Step 1: Interpret Check Information 18-92

Step 2: Determine Root Cause of Check 18-93

Step 3: Look for Common Causes of Check 18-95
Review and Fix User Assertion Checks 18-98

Step 1: Determine Root Cause of Check 18-98

Step 2: Look for Common Causes of Check 18-101

Step 3: Trace Check to Polyspace Assumption 18-101

Find Relations Between Variablesin Code 18-103

Insert Pragma to Determine Variable Relation 18-103
Further Exploration 18-105
Review Polyspace Results on AUTOSAR Code 18-107

Fix or Comment Polyspace Results

19]

Address Polyspace Results Through Bug Fixes or

Comments i, 19-2
CommentinResultsFile 19-3
Comment or AnnotateinCode 19-4

Annotate Code and Hide Known or Acceptable Results 19-6
Code Annotation Syntax 19-6
Syntax Examples i 19-9

Short Names of Code Prover Run-Time Checks 19-12
Checks oo 19-12
Code Complexity Metricso 19-13

Annotate Code for Known or Acceptable Results

(Deprecated) 19-15
Add Annotations from the Polyspace Interface 19-15
Add Annotations Manually 19-16

Define Custom Annotation Format 19-20
Define Annotation Syntax Format 19-23
Map Your Annotation to the Polyspace Annotation Syntax .. 19-28

Annotation Description Full XML Template 19-30
Example 19-34

Import Comments from Previous Polyspace Analysis 19-37
Import Comments from Another Analysis Result 19-37
View Imported Comments That Do Not Apply 19-38
Disable Automatic Comment Import from Last Analysis . . . 19-39

xxi

Import Existing MISRA C: 2004 Justifications to MISRA C:

2012 Results 19-40
Mapping Multiple MISRA C: 2004 Annotations to the Same
MISRAC: 2012 Result, 19-41
Justify Coding Rule Violations Using Code Prover Checks . 19-43
Rules About Data Type Conversions 19-43
Rules About Pointer Arithmetic 19-45

20

Filterand Group Results 20-2
FilterResults i 20-4
GroupResults 20-9

Prioritize Check Review 20-11

21

Generate Reports 21-2
Generate Reports from User Interface 21-2
Generate Reports from Command Line 21-4

Export Polyspace Analysis Results 21-6
Export Resultsto Text File 21-6
Export Results to MATLABTable 21-8
View Exported Results 21-8

Export Global Variable List 21-10
Export Variable Listto Text File 21-10
Export Variable List to MATLAB Table 21-12
View Exported Variable List 21-12

Visualize Code Prover Analysis Results in MATLAB 21-15
Export Results to MATLABTable 21-15

xxii Contents

Generate Graphs from Results and Include in Report 21-15

Customize Existing Code Prover Report Template 21-19
Prerequisites 21-19
View Components of Template 21-19
Change Components of Template 21-21
Further Exploration 21-24

Sample Report Template Customizations 21-25
Add List of Recursive Functions 21-25
Show Red Run-Time ChecksOnly 21-26
Show Non-Justified Run-Time ChecksOnly 21-27
Add Chapter for Functional Design Errors 21-27

Software Quality with Polyspace Metrics

22

Code QualityMetrics 22-2
SummaryTab 22-2
CodeMetricsTab 22-5
CodingRulesTab 22-5
Run-Time ChecksTab 22-7

Generate Code Quality Metrics 22-11
Upload Results to Polyspace Metrics After Remote Verificatio

Do 22-11
Upload Local Verification Results to Polyspace Metrics 22-11

View Code Quality Metrics 22-14
Open Metrics Interface 22-14
View All Projectsand Runs 22-14
Review Metrics for Particular Projector Run 22-16

Compare Metrics Against Software Quality Objectives 22-18
Apply Predefined Objectives to Metrics 22-18
Customize Software Quality Objectives 22-20

View Trends in Code Quality Metrics 22-25

Web Browser Requirements for Polyspace Metrics 22-28

xxiii

xxiv

Elements in Custom Software Quality Objectives File 22-29
HISMetrics e 22-29
Non-HIS Metrics i, 22-30

Troubleshoot Verification Problems

23

Contents

View Error Information When Analysis Stops 23-3
View Error Information in User Interface 23-3
View Error Informationin Log File 23-4

Troubleshoot Compilation and Linking Errors 23-7
ISSUE . ot 23-7
Possible Cause: Deviations from ANSI C99 Standard 23-8
Possible Cause: Linking Errors 23-9
Possible Cause: Conflicts with Polyspace Function Stubs . . 23-10

Reduce Verification Time 23-12
ISSUE ..o e 23-12
Possible Cause: Temporary Folder on Network Drive 23-12
Possible Cause: Large and Complex Application 23-13
Possible Cause: Too Many Entry Points for Multitasking

Applications 23-15

Understand Verification Results 23-17
ISSUE . .o 23-17
Possible Cause: Relation to Prior Code Operations 23-17
Possible Cause: Software Assumptions 23-18

Contact Technical Support 23-21
Provide System Information 23-21
Provide Information About the Issue 23-21

Polyspace Cannot Find the Server 23-23
MESSAGE .« v v vt e 23-23
Possible Causecoiiiiiii i 23-23
Solution e 23-23

Job Manager Cannot Write to Database 23-24
MESSAQE .« v vttt 23-24

Possible Causec i
Workaround

Compiler Not Supported for Project Creation from Build

Systems .
Issue ..

CalSE . .t

Solution

Slow Build Process When Polyspace Traces the Build

Issue . .

CaAUSE . .t

Solution

Check if Polyspace Supports Build Scripts

Issue . .

Possible Cause i

Solution

Troubleshooting Project Creation from MinGW Build

Issue . .

CalSe ..t

Solution

Troubleshooting Project Creation from Visual Studio

Build

Cannot Create Project from Visual Studio Build
Compilation Error After Creating Project from Visual Studio

Build

Could Not Find Include File

Issue . .

CalSE . .t

Solution

Conflicting Universal Unique Identifiers (UUIDs)

Issue . .
Solution

Data Type Not Recognized

Issue . .

CaAUSE . .ttt

Solution

23-24
23-24

23-26
23-26
23-26
23-26

23-36
23-36
23-36
23-36

23-37
23-37
23-37
23-37

23-39
23-39
23-39
23-39

23-40
23-40

23-40

23-42
23-42
23-42
23-42

23-44
23-44
23-44

23-46
23-46
23-46
23-46

xxvi

Contents

Undefined Identifier Error
Issue

Possible Cause: Missing Files

Possible Cause: Unrecognized Keyword

Possible Cause: Declaration Embedded in #ifdef

Statements

Possible Cause: Project Created from Non-Debug Build . . .

Unknown Function Prototype Error

Issue

CaUSE . .ttt
Solution

Error Related to #error Directive
Issue

CaAUSE . it
Solution

Large Object Errorc.....

Issue

CalSe ..ot

Issue

Errors Related to Keil or IAR Compiler
Missing Identifiers

Errors Related to Diab Compiler

Issue

CalSE . i
Solution

Errors Related to TASKING Compiler . . .

Issue

CalSE . it
Solution

Errors from In-Class Initialization (C++)

23-48
23-48
23-48
23-48

23-49
23-50

23-52
23-52
23-52
23-52

23-54
23-54
23-54
23-54

23-56
23-56
23-56
23-56

23-59
23-59
23-59
23-59

23-61
23-61

23-62
23-62
23-62
23-62

23-65
23-65
23-65
23-66

23-67

Errors from Double Declarations of Standard Template Library

Functions (C++) 23-68
Errors Related to GNU Compiler 23-69
IsSsue . ..o e 23-69
CaUSE . vttt 23-69
Solutiono 23-69
Errors Related to Visual Compilers 23-70
Import Folder 23-70
pragmaPack 23-70
CH4/CLI 23-71
Conflicting Declarations in Different Translation Units . . . 23-72
ISSUE . .o 23-72
Possible Cause: Variable Declaration and Definition
Mismatch 23-73
Possible Cause: Function Declaration and Definition
Mismatch 23-74
Possible Cause: Macro-dependent Definitions 23-75
Possible Cause: Keyword Redefined as Macro 23-76
Possible Cause: Differences in Structure Packing 23-77
Errors from Conflicts with Polyspace Header Files 23-78
ISSUE ..o 23-78
CaUSE . ot e 23-78
Solution 23-78
C++ Standard Template Library Stubbing Errors 23-80
ISSUE ... e 23-80
CalUSE . it e 23-80
Solution e 23-80
Lib C Stubbing Errors 23-81
Extern C Functions 23-81
Functional Limitations on Some Stubbed Standard ANSI
Functions 23-82

Errors from Assertion or Memory Allocation Functions . . . 23-83

ISSUE . . oo 23-83
CaUSE . it 23-83
Solution i 23-83

xxvii

Eclipse Java Version Incompatible with Polyspace Plug-in . 23-84

ISSUE . .o e 23-84
CaUSE . ot 23-84
Solution 23-84
Reasons for Unchecked Code 23-86
Issue 23-86
Possible Cause: Compilation Errors 23-87
Possible Cause: Early Red or Gray Check 23-87
Possible Cause: Incorrect Options 23-90

Source Files or Functions Not Displayed in Results List ... 23-91

ISSUE . .o e 23-91
Possible Cause: Files Not Verified 23-91
Possible Cause: Filters Applied 23-93
Coding Rule Violations Not Displayed 23-95
ISSUE . .o e 23-95
Possible Cause: Rule Checker Not Enabled 23-95
Possible Cause: Rule Violations in Header Files 23-95
Possible Cause: Rule Violations in Macros 23-95
Possible Cause: Compilation Errors 23-96

Incorrect Behavior of Standard Library Math Functions ... 23-97

ISSUE ..o 23-97
CaUSE . ot 23-97
Solution e 23-97
Insufficient Memory During Report Generation 23-98
MESSAGE .« v v vt 23-98
Possible Causecoiiiiii i 23-98
Solution 23-98
Errors with Temporary Files 23-99
NoAccessRights 23-99
No Space LeftonDevice 23-99
Cannot Open Temporary File 23-100
Error from Special Characters 23-101
ISSUEe ... 23-101
CaUSE . vt 23-101
Workaround 23-101

xxviii Contents

Error from Disk Defragmentation and Antivirus Software 23-102

ISSUE . . oo 23-102
Possible Causec i 23-102
Solution o 23-102
License Error-4,0 23-103
ISSUE . . oo 23-103
CaUSE . i 23-103
Solution i 23-103
Glossary

xxix

Introduction to Polyspace Products

* “Polyspace Verification” on page 1-2
* “How Polyspace Verification Works” on page 1-5
+ “Related Products” on page 1-7

1

Introduction to Polyspace Products

Polyspace Verification

1-2

In this section...

“Polyspace Verification” on page 1-2

“Value of Polyspace Verification” on page 1-2

Polyspace Verification

Polyspace products verify C, C++, and Ada code by detecting run-time errors before code
is compiled and executed.

To verify the source code, you set up verification parameters in a project, run the
verification, and review the results. A graphical user interface helps you to efficiently
review verification results. The software assigns a color to operations in the source code
as follows:

* Green - Indicates that the operation is proven to not have certain kinds of error.

* Red - Indicates that the operation is proven to have at least one error.

* Gray - Indicates unreachable code.

* Orange - Indicates that the operation can have an error along some execution paths.

The color-coding helps you to quickly identify errors and find the exact location of an

error in the source code. After you fix errors, you can easily run the verification again.

Value of Polyspace Verification

Polyspace verification can help you to:

* “Enhance Software Reliability” on page 1-2
* “Decrease Development Time” on page 1-3
* “Improve the Development Process” on page 1-4

Enhance Software Reliability

Polyspace software enhances the reliability of your C/C++ applications by proving code
correctness and identifying run-time errors. Using advanced verification techniques,
Polyspace software performs an exhaustive verification of your source code.

Polyspace Verification

Because Polyspace software verifies all executions of your code, it can identify code that:

* Never has an error
* Always has an error
* Isunreachable

» Might have an error

With this information, you know how much of your code does not contain run-time errors,
and you can improve the reliability of your code by fixing errors.

You can also improve the quality of your code by using Polyspace verification software to
check that your code complies with established coding standards, such as the MISRA C®,
MISRA® C++ or JSF® C++ standards.!

Decrease Development Time

Polyspace software reduces development time by automating the verification process and
helping you to efficiently review verification results. You can use it at any point in the
development process. However, using it during early coding phases allows you to find
errors when it is less costly to fix them.

You use Polyspace software to verify source code before compile time. To verify the
source code, you set up verification parameters in a project, run the verification, and
review the results. This process takes significantly less time than using manual methods
or using tools that require you to modify code or run test cases.

Color-coding of results helps you to quickly identify errors. You will spend less time
debugging because you can see the exact location of an error in the source code. After
you fix errors, you can easily run the verification again.

Polyspace verification software helps you to use your time effectively. Because you know
the parts of your code that do not have errors, you can focus on the code with proven (red
code) or potential errors (orange code).

Reviewing code that might have errors (orange code) can be time-consuming, but
Polyspace software helps you with the review process. You can use filters to focus on
certain types of errors or you can allow the software to identify the code that you should
review.

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA Consortium.

1-3

1

Introduction to Polyspace Products

1-4

Improve the Development Process

Polyspace software makes it easy to share verification parameters and results, allowing
the development team to work together to improve product reliability. Once verification
parameters have been set up, developers can reuse them for other files in the same
application.

Polyspace verification software supports code verification throughout the development
process:

* An individual developer can find and fix run-time errors during the initial coding
phase.
* Quality assurance engineers can check overall reliability of an application.

* Managers can monitor application reliability by generating reports from the
verification results.

How Polyspace Verification Works

How Polyspace Verification Works

Polyspace software uses static verification to prove the absence of run-time errors. Static
verification derives the dynamic properties of a program without actually executing it.
This differs significantly from other techniques, such as run-time debugging, in that the
verification it provides is not based on a given test case or set of test cases. The dynamic
properties obtained in the Polyspace verification are true for all executions of the
software.

What is Static Verification

Static verification is a broad term, and is applicable to any tool that derives dynamic
properties of a program without executing the program. However, most static verification
tools only verify the complexity of the software, in a search for constructs that may be
potentially erroneous. Polyspace verification provides deep-level verification identifying
almost all run-time errors and possible access conflicts with global shared data.

Polyspace verification works by approximating the software under verification, using
representative approximations of software operations and data.

For example, consider the following code:

for (i=0 ; 1i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable i never overflows the range of tab, a traditional approach
would be to enumerate each possible value of i. One thousand checks would be required.

Using the static verification approach, the variable i is modelled by its domain variation.
For instance, the model of i is that it belongs to the static interval [0..999]. (Depending
on the complexity of the data, convex polyhedrons, integer lattices and more elaborate
models are also used for this purpose).

By definition, an approximation leads to information loss. For instance, the information
that i is incremented by one every cycle in the loop is lost. However, the important fact is
that this information is not required to ensure that no range error will occur; it is only
necessary to prove that the domain variation of i is smaller than the range of tab. Only
one check is required to establish that — and hence the gain in efficiency compared to
traditional approaches.

1-5

1 introduction to Polyspace Products

Static code verification has an exact solution. However, this exact solution is not practical,
as it would require the enumeration of all possible test cases. As a result, approximation
is required for a usable tool.

Exhaustiveness

Nothing is lost in terms of exhaustiveness. The reason is that Polyspace verification works
by performing upper approximations. In other words, the computed variation domain of a
program variable is a superset of its actual variation domain. As a result, Polyspace
verifies run-time error items that require checking.

1-6

Related Products

Related Products

In this section...

“Polyspace Bug Finder” on page 1-7
“Polyspace Products for Verifying Ada Code” on page 1-7
“Tool Qualification and Certification” on page 1-7

Polyspace Bug Finder

For information about Polyspace Bug Finder™ , see https://www.mathworks.com/
products/polyspace-bug-finder/.

Polyspace Products for Verifying Ada Code

For information about Polyspace products that verify Ada code, see the following:
https://www.mathworks.com/products/polyspaceclientada/

https://www.mathworks.com/products/polyspaceserverada/

Tool Qualification and Certification

You can use the DO Qualification Kit and IEC Certification Kit products to qualify
Polyspace Products for C/C++ for DO and IEC Certification.

To view the artifacts available with these Kkits, use the Certification Artifacts Explorer.
Artifacts included in the kits are not accessible from the MathWorks® web site.

For more information on the IEC Certification Kit, see IEC Certification Kit (for ISO 26262
and IEC 61508).

For more information on the DO Qualification Kit, see DO Qualification Kit (for DO-178).

1-7

https://www.mathworks.com/products/polyspace-bug-finder/
https://www.mathworks.com/products/polyspace-bug-finder/
https://www.mathworks.com/products/polyspaceclientada/
https://www.mathworks.com/products/polyspaceserverada/
https://www.mathworks.com/products/iec-61508/
https://www.mathworks.com/products/iec-61508/
https://www.mathworks.com/products/do-178/

How to Use Polyspace Software

* “Polyspace Verification and the Software Development Cycle” on page 2-2
* “Implement Process for Verification” on page 2-4
* “Sample Workflows for Polyspace Verification” on page 2-6

“Define Your Requirements” on page 2-19

2 How to Use Polyspace Software

Polyspace Verification and the Software Development

Cycle

2-2

In this section...

“Software Quality and Productivity” on page 2-2

“Best Practices for Verification Workflow” on page 2-3

Software Quality and Productivity

The goal of most software development teams is to maximize both quality and
productivity. However, when developing software, there are three related variables to
consider: cost, quality, and time.

Cost Time

Quality

Changing the requirements for one of these variables affects the other two.

Generally, the criticality of your application determines the balance between these three
variables - your quality model. With classical testing processes, development teams
generally try to achieve their quality model by testing all modules in an application until
each module meets the required quality level. Unfortunately, this process often ends
before quality requirements are met, because the available time or budget has been
exhausted.

Polyspace verification allows a different process. Polyspace verification can support both
productivity improvement and quality improvement at the same time. However, you must
balance the aims of these activities.

You should not perform code verification at the end of the development process. To
achieve maximum quality and productivity, integrate verification into your development
process, considering time and cost restrictions.

Polyspace Verification and the Software Development Cycle

This section describes how to integrate Polyspace verification into your software
development cycle. It explains both how to use Polyspace verification in your current
development process, and how to change your process to get more out of verification.

Best Practices for Verification Workflow

Polyspace verification can be used throughout the software development cycle. However,
to maximize both quality and productivity, the most efficient time to use it is early in the
development cycle.

Requirements Validation Testing

Functional Design Integration Testing

Coding Module Testing

2 o
PolySpace
Code Code
Analysis Verification

Polyspace Verification in the Development Cycle

Typically, verification is conducted in two stages. First, you verify code as it is written, to
check coding rules and quickly identify obvious defects. Once the code is stable, you
verify it again before module/unit testing, with more stringent verification and review
criteria.

Using verification early in the development cycle improves both quality and productivity,
because it allows you to find and manage defects soon after the code is written. This
saves time because each user is familiar with their own code, and can quickly determine
why the code contains defects. In addition, defects are cheaper to fix at this stage, since
they can be addressed before the code is integrated into a larger system.

2-3

2 How to Use Polyspace Software

Implement Process for Verification

2-4

In this section...

“Overview of the Polyspace Process” on page 2-4
“Define Process to Meet Your Goals” on page 2-4
“Apply Process to Assess Code Quality” on page 2-5

“Improve Your Verification Process” on page 2-5

Overview of the Polyspace Process

Polyspace verification cannot magically produce quality code at the end of the
development process. However, if you integrate Polyspace verification into your
development process, Polyspace verification helps you to measure the quality of your
code, identify issues, and ultimately achieve your own quality goals.

To implement Polyspace verification within your development process, you must perform
each of the following steps:

Define your quality goals.

Define a process to match your quality goals.

Apply the process to assess the quality of your code.

A W N R

Improve the process.

Define Process to Meet Your Goals

Once you have defined your quality goals, you must define a process that allows you to
meet those goals. Defining the process involves actions both within and outside Polyspace
software.

These actions include:

* Communicating coding standards (coding rules) to your development team.

» Setting Polyspace analysis options. For more information, see “Specify Polyspace
Analysis Options” on page 10-2.

» Setting review criteria for consistent review of results. For more information, see
“Limit Display of Orange Checks” on page 17-74.

Implement Process for Verification

Apply Process to Assess Code Quality

Once you have defined a process that meets your quality goals, it is up to your
development and testing teams to apply it consistently to all software components.

This process includes:

Running a Polyspace verification on each software component as it is written.

Reviewing verification results consistently. See “Address Polyspace Results Through
Bug Fixes or Comments” on page 19-2.

3 Saving review comments for each component, so they are available for future review.

Performing additional verifications on each component, as defined by your quality
goals.

Improve Your Verification Process

Once you review initial verification results, you can assess both the overall quality of your
code, and how well the process meets your requirements for software quality,
development time, and cost restrictions.

Based on these factors, you may want to take actions to modify your process. These
actions may include:

* Reassessing your quality goals.

* Changing your development process to produce code that is easier to verify.

* Changing Polyspace analysis options to improve the precision of the verification.
* Changing Polyspace options to change how verification results are reported.

For more information, see “Reduce Orange Checks” on page 17-86.

2-5

2 How to Use Polyspace Software

Sample Workflows for Polyspace Verification

In this section...

“Overview of Verification Workflows” on page 2-6

“Software Developers and Testers - Standard Development Process” on page 2-6
“Software Developers and Testers - Rigorous Development Process” on page 2-9
“Quality Engineers - Code Acceptance Criteria” on page 2-12

“Quality Engineers - Certification/Qualification” on page 2-14

“Model-Based Design Users — Verifying Generated Code” on page 2-15

“Project Managers — Integrating Polyspace Verification with Configuration Management
Tools” on page 2-18

Overview of Verification Workflows

Polyspace verification supports two goals at the same time:

* Reducing the cost of testing and validation
* Improving software quality

You can use Polyspace verification in different ways depending on your development
context and quality model.

This section provides sample workflows that show how to use Polyspace verification in a
variety of development contexts.

Software Developers and Testers - Standard Development
Process

User Description

This workflow applies to software developers and test groups using a standard
development process, where coding rules are not used or followed consistently.

Quality

The main goal of Polyspace verification is to improve productivity while maintaining or
improving software quality. Verification helps developers and testers find and fix bugs

2-6

Sample Workflows for Polyspace Verification

more quickly than other processes. It also improves software quality by identifying bugs
that otherwise might remain in the software.

In this process, the goal is not to completely prove the absence of errors. The goal is to
deliver code of equal or better quality that other processes, while optimizing productivity
to provide a predictable time frame with minimal delays and costs.

Verification Workflow

This process involves file-by-file verification immediately after coding, and again just
before functional testing.

F equirements Walid ation Testing

Functional Dre=ign Integration Testing

hModule Testing

Polyspace

The verification workflow consists of the following steps:

2-7

2 How to Use Polyspace Software

o U AW

The project leader configures a Polyspace project to perform robustness verification,
using default Polyspace options.

Note This means that verification uses the automatically generated “main” function.
This main will call unused procedures and functions with full range parameters.

Each developer performs file-by-file verification as they write code, and reviews
verification results.

The developer fixes red errors and examines gray code identified by the verification.
Until coding is complete, the developer repeats steps 2 and 3 as required..
Once a developer considers a file complete, they perform a final verification.

The developer fixes red errors, examines gray code, and performs a selective orange
review.

Note The goal of the selective orange review is to find as many bugs as possible
within a limited period of time.

Using this approach, it is possible that some bugs may remain in unchecked oranges.
However, the verification process represents a significant improvement from other testing
methods.

Costs and Benefits

When using verification to detect bugs:

Red and gray checks - Reviewing red and gray checks provides a quick method to
identify real run-time errors in the code.

Orange checks - Selective orange review provides a method to identify potential run-
time errors as quickly as possible. The time required to find one bug varies from 5
minutes to 1 hour, and is typically around 30 minutes. This represents an average of
two minutes per orange check review, and a total of 20 orange checks per package in
Ada and 60 orange checks per file in C.

Disadvantages to this approach:

2-8

Number of orange checks - If you do not use coding rules, your verification results
will contain more orange checks.

Unreviewed orange checks - Some bugs may remain in unchecked oranges.

Sample Workflows for Polyspace Verification

Software Developers and Testers - Rigorous Development
Process

User Description

This workflow applies to software developers and test engineers working within
development groups. These users are often developing software for embedded systems,
and typically use coding rules.

These users typically want to find bugs early in the development cycle using a tool that is
fast and iterative.

Quality

The goal of Polyspace verification is to improve software quality with equal or increased
productivity.

Verification can prove the absence of run-time errors, while helping developers and
testers to find and fix defects efficiently.

Verification Workflow

This process involves both code analysis and code verification during the coding phase,
and thorough review of verification results before module testing. It may also involve
integration analysis before integration testing.

2-9

2 How to Use Polyspace Software

f

Integration Testing

Module Testing

Code Analysis Code Verification

y ..
Textual _| Application Module _|Hand-written|*’ | Object
Requirements Design Design Code Code

[] Development Artifact
() Software Development Activity

Workflow for Code Verification

Writing
Code

Compilation
and Linking

Verification of
C and C++ Code

Note Solid arrows in the figure indicate the progression of software development

activities.

The verification workflow consists of the following steps:

1 The project leader configures a Polyspace project to perform contextual verification.

This involves:

* Using Data Range Specifications (DRS) to define initialization ranges for input
data. For example, if a variable “x” is read by functions in the file, and if x can be
initialized to any value between 1 and 10, this information should be included in

the DRS file.

* Creates a “main” program to model call sequence, instead of using the

automatically generated main.

* Sets options to check the properties of some output variables. For example, if a
variable “y” is returned by a function in the file and should always be returned
with a value in the range 1 to 100, then Polyspace can flag instances where that
range of values might be breached.

2-10

Sample Workflows for Polyspace Verification

The project leader configures the project to check the required coding rules.

3 Each developer performs file-by-file verification as they write code, and reviews both
coding rule violations and verification results.

4 The developer fixes coding rule violations and red errors, examines gray code, and
performs a selective orange review.

Until coding is complete, the developer repeats steps 2 and 3 as required.
Once a developer considers a file complete, they perform a final verification.

The developer or tester performs an exhaustive orange review on the remaining
orange checks.

Note The goal of the exhaustive orange review is to examine orange checks that are
not reviewed as part of selective reviews. When you fix coding rule violations, the
total number of orange checks is reduced, and the remaining orange checks are
likely to reveal problems with the code.

Optionally, an additional verification can be performed during the integration phase. The
purpose of this additional verification is to track integration bugs, and review:

* Red and gray integration checks;

* The remaining orange checks with a selective review: Integration bug tracking.

Costs and Benefits

With this approach, Polyspace verification typically provides the following benefits:

» Fewer orange checks in the verification results (improved selectivity). The number of
orange checks is typically reduced to 3-5 per file, yielding an average of 1 bug. Often,
several of the orange checks represent the same bug.

» Fewer gray checks in the verification results.

» Typically, each file requires two verifications before it can be checked-in to the
configuration management system.

* The average verification time is about 15 minutes.

Note If the development process includes data rules that determine the data flow
design, the benefits might be greater. Using data rules reduces the potential of
verification finding integration bugs.

2-11

2 How to Use Polyspace Software

2-12

If performing the optional verification to find integration bugs, you may see the following
results. On a typical 50,000 line project:

* A selective orange review may reveal one integration bug per hour of code review.

* Selective orange review takes about 6 hours to complete. This is long enough to
review orange checks throughout the whole application and represents a step towards
an exhaustive orange check review. Spending more time is unlikely to be efficient.

* An exhaustive orange review would take between 4 and 6 days, assuming that 50,000
lines of code contains approximately 400-800 orange checks. Exhaustive orange
review is typically recommended only for high-integrity code, where the consequences
of a potential error justify the cost of the review.

Quality Engineers - Code Acceptance Criteria
User Description

This workflow applies to quality engineers who work outside of software development
groups, and are responsible for independent verification of software quality and
adherence to standards.

These users generally receive code late in the development cycle, and may even be
verifying code that is written by outside suppliers or other external companies. They are
concerned with not just detecting bugs, but measuring quality over time, and developing
processes to measure, control, and improve product quality going forward.

Quality

The main goal of Polyspace verification is to control and evaluate the safety of an
application.

The criteria used to evaluate code can vary widely depending on the nature of the

application. For example:

* You may be satisfied with zero red checks.

* In addition to zero red checks, you may want to conduct an exhaustive orange check
review.

Typically, these criteria become increasingly stringent as a project advances from early, to
intermediate, and eventually to final delivery.

Sample Workflows for Polyspace Verification

For more information on defining these criteria, see “Customize Software Quality
Objectives” on page 22-20.

Verification Workflow
This process usually involves both code analysis and code verification before validation

phase, and thorough review of verification results based on defined quality goals.

Walid ation Testing
‘_I.-!. 4

4

Polyspace

R equiremeants

Chipir
Equia et
WamuBcturer

Functional esign Integration Testing

Sudrcontractor

H

hodule Testing

Note Verification is often performed multiple times, as multiple versions of the software
are delivered.

The verification workflow consists of the following steps:

1 Quality engineering group defines clear quality goals for the code to be written,
including specific quality levels for each version of the code to be delivered (first,
intermediate, or final delivery) For more information, see “Customize Software
Quality Objectives” on page 22-20.

2 Development group writes code according to established standards.
Development group delivers software to the quality engineering group.

4 The project leader configures the Polyspace project to meet the defined quality goals,
as described in “Define Process to Meet Your Goals” on page 2-4.

2-13

2 How to Use Polyspace Software

2-14

5 Quality engineers perform verification on the code.

6 Quality engineers review red errors, gray code, and the number of orange checks
defined in the process.

Note The number of orange checks reviewed often depends on the version of
software being tested (first, intermediate, or final delivery). This can be defined by
quality level (see “Define Broad Requirements for Verification” on page 2-19).

7 Quality engineers create reports documenting the results of the verification, and
communicate those results to the supplier.

8 Quality engineers repeat steps 5-7 for each version of the code delivered.
Costs and Benefits

The benefits of code verification at this stage are the same as with other verification
processes, but the cost of correcting faults is higher, because verification takes place late
in the development cycle.

It is possible to perform an exhaustive orange review at this stage, but the cost of doing
so can be high. If you want to review all orange checks at this phase, it is important to use
development and verification processes that minimize the number of orange checks. This
includes:

* Developing code using strict coding and data rules.

* Providing accurate manual stubs for unresolved function calls.

» Using DRS to provide accurate data ranges for input variables.

Taking these steps will minimize the number of orange checks reported by the
verification, and make it more likely that remaining orange checks represent real issues
with the software.

Quality Engineers - Certification/Qualification
User Description

This workflow applies to quality engineers who work with applications requiring outside
quality certification, such as IEC 61508 certification or DO-178 qualification.

These users must perform a set of activities to meet certification requirements.

Sample Workflows for Polyspace Verification

You can use the “IEC Certification Kit (for ISO 26262 and IEC 61508)” to help qualify
Polyspace products within an IEC 61508, ISO 26262, EN 50128, or other related
functional-safety standard certification environment.

You can use the “DO Qualification Kit (for DO-178)” to help qualify Polyspace products
within an DO-178 qualification environment.

Model-Based Design Users — Verifying Generated Code
User Description

This workflow applies to users who have adopted model-based design to generate code
for embedded application software.

These users generally use Polyspace software in combination with several other
MathWorks products, including Simulink®, Embedded Coder® , and Simulink Design
Verifier™ products. In many cases, these customers combine application components that
are manually written code with those created using generated code.

Quality

The goal of Polyspace verification is to improve the quality of the software by identifying
implementation issues in the code, and proving that the code is both semantically and
logically correct.

Polyspace verification allows you to find run-time errors:

* In hand-coded portions within the generated code

* In the model used for production code generation

* In the integration of manually written and generated code

Verification Workflow

The workflow is different for manually written code, generated code, and mixed code.
Polyspace products can perform code verification as part of any of these workflows. The

following figure shows a suggested verification workflow for manually written and mixed
code.

2-15

2 How to Use Polyspace Software

Integration Testing

Code AnaIyS|s Code Verification

, ”
. .
’ ’

Textual
Requirements

| Application | Module | ¥ Hand-written|s”
"] Design "] Design - Code
s
s

P s Compilation Object
P and L|nk Code

Ve
)/ CodeAnaIyS|s Code Ver|f|cat|on

Textual
Requirements

| Executable N M]Pde(_I;Udsed '\‘ Generated |2
>|Specification > tortode Code
Generation

Code
Generation

Modeling

[] Development Artifact
() Software Development Activity

Verification of
C and C++ Code

Workflow for Verification of Generated and Mixed Code

Note Solid arrows in the figure indicate the progression of software development
activities.

The verification workflow consists of the following steps:

1

2-16

The project leader configures a Polyspace project to meet defined quality goals.
Developers manually code sections of the application.

Developers or testers perform Polyspace verification of manually coded sections
within the generated code, and review verification results according to the
established quality goals.

Developers create Simulink model based on requirements.

Sample Workflows for Polyspace Verification

5 Developers validate model to prove it is logically correct (using tools such as
Simulink Model Advisor, and the Simulink Coverage™ and Simulink Design Verifier
products).

Developers generate code from the model.

7 Developers or testers perform Polyspace verification on the entire software
component, including both manually written and generated code.

8 Developers or testers review verification results according to the established quality
goals.

Note Polyspace Code Prover allows you to quickly track issues identified by the
verification back to the block in the Simulink model.

Costs and Benefits

Simulink Design Verifier verification can identify errors in textual designs or executable
models that are not identified by other methods. The following table shows how errors in
textual designs or executable models can appear in the resulting code.

Examples of Common Run-Time Errors

Type of Error |Design or Model Errors Code Errors
Arithmetic * Incorrect Scaling * Overflows/Underflows
(S0 * Unknown calibrations + Division by zero

* Untested data ranges * Square root of negative numbers
Memory * Incorrect array specification in state |* Out of bound array indexes
corruption machines + Pointer arithmetic

* Incorrect legacy code (look-up

tables)
Data truncation |[* Unexpected data flow o Overflows/Underflows
* Wrap-around

Logic errors * Unreachable states * Non initialized data

* Incorrect Transitions * Dead code

2-17

2 How to Use Polyspace Software

2-18

Project Managers — Integrating Polyspace Verification with
Configuration Management Tools

User Description

This workflow applies to project managers responsible for establishing check-in criteria
for code at different development stages.

Quality

The goal of Polyspace verification is to test that code meets established quality criteria
before being checked in at each development stage.

Verification Workflow

The verification workflow consists of the following steps:

1 Project manager defines quality goals, including individual quality levels for each
stage of the development cycle.

Project leader configures a Polyspace project to meet quality goals.

Developers or testers run verification at the following stages:

Daily check-in — On the files currently under development. Compilation must
complete without the permissive option.

Pre-unit test check-in — On the files currently under development.

Pre-integration test check-in — On the whole project, ensuring that compilation
can complete without the permissive option. This stage differs from daily check-in
because link errors are highlighted.

Pre-build for integration test check-in — On the whole project, with multitasking
aspects accounted for as required.

Pre-peer review check-in — On the whole project, with multitasking aspects
accounted for as required.

4 Developers or testers review verification results for each check-in activity to confirm
the code meets the required quality level. For example, the transition criterion could
be: “No defect found in 20 minutes of selective orange review”

Define Your Requirements

Define Your Requirements

Before launching verification, define your requirements from the verification process.
Defining your requirements helps decide which analysis options and results are relevant
for you.

Define Broad Requirements for Verification

This example shows how to define your broad requirements before you begin a Polyspace
Code Prover verification, and then implement them in your verification process.

1 Prepare a set of quality levels for your application. A quality level chart can be like
this:

Software Quality Levels

Criteria Software Quality Levels
QL1 QL2 QL3 QL4

Document static information X X X X
Enforce MISRA C coding rules in SQO- X X X X
subsetl

Review all red checks X X X X
Review all gray checks X X X X
Review critical orange checks X X X
Review all orange checks X X
Enforce MISRA C coding rules in SQO- X X
subset2

Analyze dataflow X X

2 Depending on the quality level that you want to implement, choose your verification
options. The options appear on the Configuration pane in the Polyspace user
interface.

For instance, if you want to implement level QL1, under Coding Rules & Code
Metrics, for the option Check MISRA C:2004, select SQ0-subsetl.

3 Depending on the quality level that you want to implement, plan your review process
for the verification results. Your review process involves options in the Polyspace
interface.

2-19

2 How to Use Polyspace Software

For instance, if you want to implement level QL1, on the Results List pane, filter
only red and gray checks.

Define Specific Requirements for Verification

This example shows how to define specific requirements before you begin a Polyspace
Code Prover verification, and then implement them in your verification process.

Specify Code Constructs

1 Prepare a list of constructs that you want to retain in your code or remove from it.

2 On the Configuration pane, specify the verification options corresponding to your
requirements.

For instance, you can have the following requirements and choose the corresponding

options.
Requirement Option
Detect overflows only on signed integer |Under Check Behavior, for Detect
computations. overflows, select signed.
Allow a pointer to one structure field to |Under Check Behavior, select Enable
point to another field of the same pointer arithmetic across fields.
structure.
Do not allow global variables to be Under Inputs & Stubbing, select
initialized by default. Ignore default initialization of

global variables.

Specify Coding Rules

1 Prepare a list of coding rules for your code.

2 On the Configuration pane, under the Coding Rules & Code Metrics node, specify
your coding rules. For more information, see “Check for Coding Rule Violations” on
page 14-2.

Specify Results to Review

1 Prepare a list of files or list of checks that you want to review.

2-20

Define Your Requirements

2 After you run your verification, apply appropriate filters to focus your review on those
files or checks. For more information, see “Filter and Group Results” on page 20-2.

2-21

Run Polyspace Analysis on Desktop

* “Add Source Files for Analysis in Polyspace User Interface” on page 3-2
* “Run Polyspace Analysis on Desktop” on page 3-8

* “Project and Results Folder Contents” on page 3-13

* “Storage of Temporary Files” on page 3-15

* “Create Project Using Visual Studio Information” on page 3-16

* “Create Project Using Configuration Template” on page 3-19

* “Update Polyspace Project” on page 3-24

* “Organize Layout of Polyspace User Interface” on page 3-29

* “Customize Polyspace User Interface” on page 3-32

3 Run Polyspace Analysis on Desktop

Add Source Files for Analysis in Polyspace User
Interface

To begin the Polyspace analysis, you must specify the path to your source files and
headers.

You can specify your source paths explicitly or extract them from a build command
(makefile). If you use a build command for building your source code or build your source
code in an IDE (using an underlying build command), try extracting from the build
command first. If Polyspace cannot trace your build command, manually add the paths to
your source and include folders. You will also have to specify the target and compiler
options later. See “Target and Compiler”.

Provide the source paths in a project. The source files show on the Project Browser
pane.

LFE_—
rTO® TR LT HE
E}E Project Source Files
5= polyspace_project
&7 sources
15 example.c
E Praoject Indude Folders
El'_'_'_"l Module_1
=13 Module Source Files
E}_‘j polyspace_project
&7 sources
|£| example.c
-3 Configuration
[Project_test1

-1y Result

3-2

Add Source Files for Analysis in Polyspace User Interface

A corresponding . psprj file is created in the location where you saved the project. When
you create a project, choose the default location for saving or enter a new location. To
change the default location, select Tools > Preferences and use the options on the
Project and Results Folder tab.

Add Sources from Build Command
Select File > New Project. Select Create from build command.

After providing a project name and location, on the next screen, enter this information:

* The build command, exactly as you run it on your code.
* The folder from which you run your build command.

3-3

3 Run Polyspace Analysis on Desktop

" Create project using build information >

Create project using build information

Build command

Spedfy command used for building your source files

cmd.exe [C "Cioyawingbin'bash. exe” -c make 13
Spedfy working directory for running build command
C:\sourcesicomp 1 ﬁ

Add advanced configure options

-prog Polyspace_compl_verification

[> Run I__] Stop

Command output

Back Mext Finish Cancel

When you click Run, Polyspace runs the build command and extracts the information

necessary for creating a Polyspace project, specifically, source paths and compiler
information.

If you build your source code within an IDE such as Visual Studio®, in the field for
specifying the build command, enter the path to your executable, for instance, C:

3-4

Add Source Files for Analysis in Polyspace User Interface

\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE
\VCExpress.exe. When you click Run, Polyspace opens your IDE. In your IDE, perform
a complete build of your code. When you close your IDE, Polyspace extracts your source
paths and compiler information.

When you create a project from your build command, the Project Browser pane shows
your source folders but not the include folders. In case you want to verify that your
include folders were extracted, open the project file (with extension .psprj) in a text
editor.

You can use additional options to modify the default project creation from build command.
For instance, to create a Polyspace project despite build errors, in the Add advanced
configure options field, you can enter the option -allow-build-error. To look up
allowed options, see polyspace-configure.

Add Sources Manually
Select File > New Project.

After providing a project name and location, on the next screen, enter or navigate to the
root folder containing your source files. With the Add recursively box checked, click Add
Source Folders. All files in the folder and subfolders are added to your project.

3 Run Polyspace Analysis on Desktop

Link to Source Folders

" Project - Link to Source Folders

@ ®|E| PAmodfyrath

=13 Project_test1
E}_'__‘_'.] Project Source Files
e
! |£| example.c
|_'_=| Project Indude Folders

Select Source Folder

Ci\polyspace_projectisources

Add recursively

I:::',:I Add Source Folders

Tips:

Manage file and folder exclusions from the right dick menu.

Add a single file: browse to the file and dick "Add Source Folders®, All other files in this
folder will be exduded from the analysis.

Change location of a source folder by selecting the folder and "Modify Path™ from the
toolbar,

Update folders and contents: from the Project Browser select a folder and right didk to
"Refresh Source Folder™
in order to update the latest folder content.

Back Mext Finish Cancel

On the next screen, add include folders. The analysis looks for include files relative to the
include folder paths that you specify. For instance, if your code contains the preprocessor
directive #include<. ./mylib.h> and you include the folder:

C:\My Project\MySourceFiles\Includes

the folder C:\My Project\MySourceFiles must contain a file mylib.h.

3-6

See Also

For Standard Library headers such as stdio. h, if you know the path to the headers from
your compiler, specify them explicitly. Otherwise, the analysis uses Polyspace
implementation of the Standard Library headers, which in some special cases, might not
match your compiler implementation.

Your project file with source and include folders show in the Project Browser pane.
Later, if you add files to one of these folders, you can update your project. Right-click the
folder that you want to update, or the entire Project Source Files folder, and select
Refresh Source Folder.

You can also right-click to exclude files or add more folders to the project. The files that

you add the first time are copied to the first module in your project. If you add new files
later, you must explicitly right-click and add them to a module.

See Also

More About
. “Run Polyspace Analysis on Desktop” on page 3-8

3 Run Polyspace Analysis on Desktop

Run Polyspace Analysis on Desktop

After you specify your source files and compiler on page 3-2, you can run the Polyspace
analysis. This topic describes how to run an analysis in the Polyspace user interface,
monitor progress, fix compilation issues, and open analysis results as available.

During analysis, Polyspace first compiles your code and then checks for bugs (Bug Finder)
or proves code correctness (Code Prover). If you encounter compilation errors, read the
error message and diagnose the root cause of the error. Often, to resolve the errors, you
have to set some Polyspace configuration options and rerun the analysis.

Compilation No

Start Analysis Errors?

View Results

Yes

Set Options

3-8

You can run the analysis in the Polyspace user interface or by using scripts.

Run Polyspace Analysis on Desktop

Arrange Layout of Windows for Project Setup

In the user interface, for a convenient distribution of windows, select Window > Reset
Layout > Project Setup.

¥ Select product. Set options as needed:
» Start/stop analysis.

+ Target & Compiler
‘ * Macros

+ Environment Settings

File Reporting Metrics Tools Window Help

bmnc_ofem:uer - ﬁsr_m_lu‘ v
[| Bug_Finder_Example X 4 b B
=15 Bug_Finder_Bxample E ~I[varget & compier
[® [Project Source Fies Macros
[Project Incude Folders Enviranment Settings
=3 Module_1 Inputs & Stubbing =
513 Module Source Files Muttitasking A
@[sources. Coding Rules & Code Metrics Source cade lan c -
-3 Configuration Bug Finder Analysis
(¥ Bug_Finder_Example 2 Code Prover Verification Target Environment
& T3 Resuit Verification Assumptions - e =
/25| BF_Resut [Completed] Check Behavior ompiler
[FEfcP_Resuit [Running] Precision Target processor type | x86_64 ~ | Edit
Scaling ¥ || [IRespect €30 standard v

gopa'Documents Polyspace_Warkspace \Examp

» Monitor progress

Elzpsed time: 00:00:24 < !
e » Check for warnings
e P = s Ei and errors.

[¢7) C verification starts at Wed May 10 19:22:29 2017

A\ Option'main-generator’ is not compatible with option(s) "entr...

;y & core(s) detected but the verification uses 4 core(s)

A . tvead E——

A ather location for previous waming __potyspace__stdstubs.c 11540

[67] The generated defauit DRS XML file “drs-template.xmi” can be ...

clazed functicn type has 'acg L' type Incospatible with definitisn. o Select error message
Declazed pointer to a type incompatible wich definition. 5
Declared 'imt’ (64) type incompatible with defined 'pointes’ (64) type for more details.

ion: funcvion with azgument 1 of pointer te type pointer (C-STUBS_ polyspace_ stdsvubs.c

ion: function with azgument 1 of pointer to type int (C-STUBS_ polyspace_ stdstubs.c lir¥

« [>

Set Product and Result Location

To switch products or create a separate folder for each run, use the dropdown beside the
Run button.

3-9

3 Run Polyspace Analysis on Desktop

[ol EH [RunBug Finder » [Stop | &

M Bug Finder L
L T | 'E'l i -—2@| - Code Prover |
=13 Bug_Finder_Example Create new Bug Finder result folder

--EI Project Source Files

>|_E| Project Indude Folders
23 Module_1 [# Run All Modules

Create new Code Prover result folder

The results are stored in a subfolder Module # of the project folder. To use a different
folder naming convention or different storage location for results, select Tools >
Preferences and use the options on the Project and Results Folder tab.

Start and Monitor Analysis

If your project has multiple modules, select the module that you want to analyze. Start the
analysis. Monitor progress on the Qutput Summary pane.

* Bug Finder: You can see some results after partial analysis, because certain defect
checkers do not need cross-functional information and can show results as soon as a
function is analyzed. If results are available while the analysis is still running, you see
the following icon beside the Run button:

% Running (11)

The icon indicates the number of results available. Click the icon to open the results.
Once the analysis is over, the Running label in the icon changes to Completed. You
can click the icon again to reload the full set of results.

* Code Prover: You can see results only after the analysis is complete. Code Prover is
more likely to report compilation errors because it does a more rigorous analysis and
must follow stricter rules for compilation. The progress bar distinguishes between the
various phases of analysis starting from compilation.

3-10

Run Polyspace Analysis on Desktop

Fix Compilation Errors

If compilation errors occur, the analysis continues with the remaining files that do not
compile. The Dashboard pane shows that some files did not compile and links to the
Output Summary pane for details. The Output Summary pane shows compilation

errors with a O icon.

To diagnose further, select the error message to see more details. Identify the line in your
code responsible for the compilation error. You can use the error message details to
understand how the line compiled with your compiler and what additional information
Polyspace needs to mimic your compiler. See if you can work around the error using a
Polyspace option. For more information, see “Troubleshooting in Polyspace Code Prover”.

For more precise run-time error checking in Code Prover, it is recommended that you fix
all compilation errors. Use the option Stop analysis if a file does not
compile (-stop-if-compile-error).

Open Results

After analysis, the results open automatically. To open results that you have closed,
double-click the result on the Project Browser pane.

3-11

3 Run Polyspace Analysis on Desktop

3-12

E_

+ IO B LT HE

=7 Bug_Finder_Example

--EI Praoject Source Files

>|3 Project Indude Folders

&3 Module_1
EI_‘._='| Module Source Files
- @[sources
IHEI Configuration
% Bug_Finder_Example
-3 Resut

The Bug Finder (Code Prover) results are stored in a . psbf (. pscp) file in the results
folder. For instance, if you save your project in C:\Projects\, a . psbf file for the Bug
Finder analysis results on the first module Module 1 is stored in C:\Projects
\Module 1\BF Result. See also “Project and Results Folder Contents” on page 3-13.

See Also

More About

“Run Polyspace Analysis from Command Line” on page 4-2

“Run Polyspace Analysis by Using MATLAB Scripts” on page 5-2

“Interpret Polyspace Code Prover Results” on page 17-2

“Address Polyspace Results Through Bug Fixes or Comments” on page 19-2
“Filter and Group Results” on page 20-2

Project and Results Folder Contents

Project and Results Folder Contents

When you run an analysis in the Polyspace user interface, Polyspace generates files that
contain information about configuration options and analysis results.

The organization of Polyspace files in the physical folder location follows the hierarchy
displayed in the Polyspace user interface. The project folder contains a subfolder for each
module. In each module folder, there is one or more result subfolder, named Result_#.
The number of result folders depends on whether you overwrite or retain previous results
for each new run. To use a different folder naming convention or different storage
location for results, select Tools > Preferences and use the options on the Project and
Results Folder tab.

The project folder has the project file with extension .psprj. If you open a project from a
previous release in the user interface, the project is upgraded for the new release. A
backup of the old project file is saved with the extension .bak.psprj.

Files in the Results Folder

Some of the files and folders in the results folder are described below:
* Polyspace release project name date-time.log — A log file associated with
each analysis.

* ps_results.pscp — An encrypted file containing your Polyspace results. Open this
file in the Polyspace environment to view your results.

* ps_sources.db — A non-encrypted database file listing source files and macros.
* drs-template.xml — A template generated when you use constraint specification.

* ps_comments.db — An encrypted database file containing your comments and
justifications.

* comments bak — A subfolder used to import comments between results.

* .status and .settings — Two folders that store files required to relaunch the
analysis.

* Polyspace-Doc — When you generate a report, by default, your report is saved in
this folder with the name ProjectName ReportType. For example, a developer
report in PDF format would be, myProject Developer.pdf.

* Polyspace-Instrumented — When the software runs the Automatic Orange Tester
(AOT) at the end of a static verification, the software creates the Polyspace-

3-13

3 Run Polyspace Analysis on Desktop

Instrumented folder. The Polyspace-Instrumented folder contains files
associated with the configuration and running of the Automatic Orange Tester.

See Also

-results-dir

3-14

Storage of Temporary Files

Storage of Temporary Files

Polyspace produces some temporary files when performing an analysis. If your analysis
runs slow or you encounter errors such as running out of disk space, check your
temporary file location. For more information on possible errors, see:

» “Errors with Temporary Files” on page 23-99
* “Reduce Verification Time” on page 23-12

To determine where to store temporary files, Polyspace looks for these environment
variables in the following order:

* RTE_TMP DIR: Define this environment variable only if you want to store Polyspace
temporary files in a folder different from the standard temporary folders (defined by
TMPDIR and such). You can see the current standard temporary folder by using the
MATLAB® function tempdir.

Note This path must be an absolute path to an existing folder on which the current
user has access rights (for reading and writing).

+ TMPDIR
« TMP
« TEMP

If one of these variables is defined, Polyspace uses that path for storing temporary files. If
these environment variables are not defined, Polyspace stores temporary files in:

* /tmp on Linux® and Mac

* Folder specified with the USERPROFILE environment variable, folder returned from
GetWindowsDirectoryW Windows® API, or Temp directory on Windows

3-15

3 Run Polyspace Analysis on Desktop

Create Project Using Visual Studio Information

To create a Polyspace project, you can trace your Visual Studio build.

1 In the Polyspace interface, select File > New Project.

2 In the Project - Properties window, under Project Configuration, select Create
from build command and click Next.

"Y' Project - Properties =
Define project

Project definition and location
Project name |myProject
Version | 1.0

Author |username

Use default location
Location |C:\PolyspaceProjects Q

Project configuration

IUse template

| Create from build command

Back | Mext ” Finish ” Cancel |

3 In the field Specify command used for building your source files, enter the full
path to the Visual Studio executable. For instance, "C:\Program Files
(x86)\Microsoft Visual Studio 10.0\Common7\IDE\VCExpress.exe".

4 In the field Specify working directory for running build command, enter C:\.
Click | > Rn |

This action opens the Visual Studio environment.

3-16

Create Project Using Visual Studio Information

In the Visual Studio environment, create and build a Visual Studio project.

If you already have a Visual Studio project, open the existing project and build a
clean solution. To build a clean solution in Visual Studio 2012, select BUILD >
Rebuild Solution.

o8 CppExample - Microsoft Visual Studic
File Edit Wiew Project Build | Debug Team Data Polyspace Tools Test

j' s T [A Build Solution Ctrl+Shift+B

—1
1

: () wy B, A ‘E| = Rebuild Solution
Clean Solution
| . Cppbample.cpp < [l
A (=% Build Selection
3 (Global Scope) _)
m — — Rebuild Selection -
= -1// CppExample l=
.E' Iy Clean Selection
E Project Only *
— #include "std
A Profile Guided Optirnization *
_|
2 Batch Build...
= —lint _tmain{in i .
g i Configuration Manager...
return @;| % Compile Ctrl+F7

}

After the project builds, close Visual Studio.

Polyspace traces your Visual Studio build and creates a Polyspace project.
The Polyspace project contains the source files from your Visual Studio build and the
relevant Target & Compiler options.

If you update your Visual Studio project, to update the corresponding Polyspace
project, on the Project Browser, right-click the project name and select Update
Project.

3-17

3 Run Polyspace Analysis on Desktop

See Also

More About

. “Troubleshooting Project Creation from Visual Studio Build” on page 23-40

3-18

Create Project Using Configuration Template

Create Project Using Configuration Template

A configuration template is a predefined set of analysis options for a specific compilation
environment.

Why Use Templates

Use templates to simplify your project setup. For instance, after you configure a project
for a specific compilation environment, you can create a template out of the configuration.
Using the template, you can reuse the configuration for projects that have the same
compilation environment.

When creating a new project, you can do one of the following:

Use an existing template to automatically set analysis options for your compiler.

Polyspace software provides predefined templates for common compilers such as IAR,
Kiel, Visual and VxWorks. For additional templates, see Polyspace Compiler
Templates.

Set analysis options manually. You can then save your options as a template and reuse
them later. You can also share the template with other users and enforce consistent
usage of Polyspace Bug Finder in your organization.

Use Predefined Template

Select File > New Project.

On the Project - Properties dialog box, after specifying the project name and location,
under Project configuration, select Use template.

On the next screen, select the template that corresponds to your compiler. For
further details on a template, select the template and view the Description column
on the right.

If your compiler does not appear in the list of predefined templates, select
Baseline C or Baseline C++.

On the next screen, add your source files and include folders.

3-19

https://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates
https://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates

3 Run Polyspace Analysis on Desktop

3-20

Create Your Own Template

This example shows how to save a configuration from an existing project and create a
new project using the saved configuration.

* To create a template from a project that is open on the Project Browser pane:

1

Right-click the project configuration that you want to use, and then select Save As
Template.

Enter a description for the template, then click Proceed. Save your template file.

Suppose you create a Code Prover configuration template that runs Code Prover
analysis to a precision level of 1 and a verification level of 1. See:

* Precision level (-0)
e Verification level (-to)

You can enter this description for the template.

i

"¢ Project Template

Features:

1. Predision level: 1
2, Verification level: 1

Proceed] [Cancel

* When you create a new project, to use a saved template:

Create Project Using Configuration Template

Select ’ 01 Add custom template. ..

Navigate to the template that you saved earlier, and then click Open. The new
template appears in the Custom templates folder on the Templates browser.

Select the template for use.

3-21

3 Run Polyspace Analysis on Desktop

3-22

e

"¢ Project - Browse for Template
Select a template

example_project

Templates

Description

=7 Baseline

> [%3 Baseline_C++
[% Baseline_C
&-[96cc

-l GCC_C4++

- ¥} Gee_C

- g Visual10.0_i386
¥} visual10.0_x86_64
- [Visuald.0_i336

- ¥y, Visuala.0_x86_64
- g Visuald.0_i386
¥} visuala.0_x86_64
=1 VaWorks

- g VxWorks5.x_i386
- 4G VxWorkss.x_i386
=7 Custom templates

Features:
1. Predsion level: 1
2, Verification level: 1

[2+¢ Remove custom template l

| Back | MNext || Finish || Cancel

See Also

See Also
More About

. “Specify Polyspace Analysis Options” on page 10-2
. “Analysis Options”

3-23

3 Run Polyspace Analysis on Desktop

Update Polyspace Project

3-24

To analyze your C/C++ source files with Bug Finder or Code Prover in the Polyspace user
interface, you create a Polyspace project. During development, you can simply update this
project and rerun the analysis for updated results. This topic describes the updates that
you can make.

To begin updates, right-click your project on the Project Browser pane. You see a
different set of options depending on the node that you right-click.

Update Polyspace Project

A BRI LT |BE
=13 Bug_Finder_Example
-7 Project Source Files

&

14& Refresh Source Folder F5
Maodify Path
Exclude Files

Remove Delete
Open Folder with File Manager
Copy to -]

Falralralraleulralralr:
EFLUE®NX®

Project Properties Alt+P
- 2| resourcemanagement.c
- 2| security.c
-2 staticmemary.c
-|c] tainteddata.c
--[3 Project Indude Folders
=3 Module_1
EI'IE Module Source Files
-] sources
EI'IE Configuration
Iﬂ Bug_Finder_Example
-1 Result
[3] BF_Result [Completed]

Change Folder Path

If you have moved the source folder that you added to your project, modify the path in
your Polyspace project. You can also modify the folder path to point to a different version
of the code in your version control system.

3-25

3 Run Polyspace Analysis on Desktop

3-26

In the Project Browser, right-click the top sources folder ==l and select Modify
Path.Change the path to the new location.

To resync the files under this source folder, right-click your source folder and select
Refresh Source Folder.

Refresh Source List

If you made changes to files in a folder already added to the project, you do not need to
re-add the folder to your project. Refreshing your source file list looks for new files,
removed files, and moved files.

Right-click your source folder and select Refresh Source Folder. The files in your
Polyspace project refresh to match your file system.

Refresh Project Created from Build Command

If you created your project automatically from your build system, to update the project
later by rerunning your build command, right-click the project folder and select Update
Project.

You see the information that you entered when creating the original project. Click Run to
retrace your build command and recreate the Polyspace project.

Add Source and Include Folders

If you want to change which files or folders are active in your project without removing
them from your project tree, right-click the file or folder and select Exclude Files. The

file appears with an @ symbol in your project indicating it is not considered for analysis.
You can reinclude the files for analysis by right-clicking and selecting Include Files.

Update Polyspace Project

If you want to add additional source folders or include folders, right-click your project or
the Source or Include folder in your project. Select Add Source Folder or Add Include
Folder.

Before running an analysis, you must copy the source files to a module. Select the source
files that you want to copy. To select multiple files together, press the Ctrl key while
selecting the files. Right-click your selection. Select Copy to > Module_n. n is the
module number.

Manage Include File Sequence

You can change the order of include folders to manage the sequence in which include files
are compiled.

When multiple include files by the same name exist in different folders, you might want to
change the order of include folders instead of reorganizing the contents of your folders.
For a particular include file name, the software includes the file in the first include folder
under Project_Name > Include.

In the following figure, Folder 1 and Folder 2 contain the same include file
include. h. If your source code includes this header file, during compilation, Folder 2/
include.h is included in preference to Folder 1/include.h.

—'.3 Include
' ----- | H:\PolyspaceSourcestManage_Include_File_Sequence\Folder_2
b | H:\Polyspace\Sources\Manage_Include_File_Sequence\Folder 1

To change the order of include folders, in your project, expand the Include folder. Select

the include folder or folders that you want to move. To move the folder, click either = or
=

L

3-27

3 Run Polyspace Analysis on Desktop

See Also

Related Examples
. “Add Source Files for Analysis in Polyspace User Interface” on page 3-2

3-28

Organize Layout of Polyspace User Interface

Organize Layout of Polyspace User Interface

The Polyspace user interface has two default layouts of panes.

The default layout for project setup has the following arrangement of panes:

Project Browser Configuration

Output Summary

The default layout for results review has the following arrangement of panes:

Results List Result Details
Dashboard

You can create and save your own layout of panes. If the current layout of the user
interface does not meet your requirements, you can use a saved layout.

You can also change to one of the default layouts of the Polyspace user interface. Select

Window > Reset Layout > Project Setup or Window > Reset Layout > Results
Review.

Create Your Own Layout

To create your own layout, you can close some of the panes, open some panes that are not
visible by default, and move existing panes to new locations.

To open a closed pane, select Window > Show/Hide View > pane_name.

To move a pane to another location:
1 Float the pane in one of three ways:

* Click and drag the blue bar on the top of the pane to float all tabs in that pane.

For instance, if Project Browser and Results List are tabbed on the same pane,
this action floats the pane together with its tabs.

* Click and drag the tab at the bottom of the pane to float only that tab.

3-29

3 Run Polyspace Analysis on Desktop

For instance, if Project Browser and Results List are tabbed on the same pane,
dragging out Project Browser creates a pane with only Project Browser on it
and floats this new pane.

* Click = on the top right of the pane to float all tabs in that pane.
2 Drag the pane to another location until it snaps into a new position.

If you want to place the pane in its original location, click [Zl in the upper-right corner
of the floating pane.

For instance, you can create your own layout for reviewing results.

:

¥ Polyspace - Code_Prover_ Example C:\polyspace._project\Examples\R2017a\Code _Prover_ExampleiModule 1\CP_Result

File Reporting Metrics Tools Window Help
(& & & | [> Run Code Prover » [Stop |
Results List T Rest 7 &=l
All results v | T New Fv < 5> @ Showing 375/375 v | |o§ kgl [l | fx single_file_analysis.c / reset_temperature()| | 4u wb B2 & 44 & &
F.. o Type & Check o File & | |P Result Review ;1'!
Red checkJout of bounds array index_single file_an... i { IRV ~ | [Enter comment here. Confidential Prerelease ki
® " RedCheck Ilegally dereferenced poin... example.c L |- - Li')ﬁmécnellﬂﬂliﬂnA— Subject to =
®* Red Check Non-terminating call example.c 3 ondisclosure Agreement
®° RedCheck Non-terminating loop main.c m —
@ RedCheck Invalid use of standard libr... example.c @ out of bounds array index (2 Out of bounds array
x - Unreachable code iitislications.c. Error: array index is outside its bounds : [0..38] ;
array size: 39 index
X * < Unreachable code single_file_an... | 2oy index value: [-255 .. -39
% * onromchable code angle.fle_an... Array is accessed expand all n page
x* y Check Unreachable code example.c outside range
x* 'y Check Unreachable code example.c
x* 'y Check Unreachable code main.c Description
X% * Unused va... Unused variable c
= Out of bounds array index single_file_an... ™ Source This check on an aray element access
brviston by 7ero example.c whether the element is outside the
; || single_file_analysis.c x| 4B array range.
Hon-initialized local variable example.c %
Non-initialized local variable initialisations.c return {in / 9 + ({(332)ex_speed + (332)c_speed) / 2): i " . .
Non-initialized local variable single_file_an...) I - - Diagnosing This Check
Non-initialized local variable single_file_an... Review and Fix Out of Bounds Aray Index
Non-initialized local variable single_file_an... Checks
Non-initialized local variable main.c static char resec_semerasure(u in_vd)
Non-initialized lacal variable main.c f -
Examples expand all
Overflow single_file_an... M int array[255-(54 * BIN v3)]: =
Overflow tasksl.c |E
Overflow example.c e arraflin va'2ss] = 0 ' 5 Away index is equal to array
Overflow tasks2.c recurn srraylin viS235]; size
Tlegally dereferenced poin... example.c)
Tlegally dereferenced poin... main.c
overflow example.c Check Information
Overflow example.c 8 Jeneric validation(s® extrapolated speed, u corputed speed) Group: Static memory
Overflow example.c i Language: C | C++
User assertion single_file_an... _ | yv——
Pl —r— ’ T < I ' o

Save and Reset Layout

After you have created your own layout, you can save it. You can change from another
layout to this saved layout.

* To save your layout, select Window > Save Current Layout As. Enter a name for this
layout.

3-30

See Also

* To use a saved layout, select Window > Reset Layout > layout _name.

* Toremove a saved layout from the Reset Layout list, select Window > Remove
Custom Layout > layout_name.

See Also

More About

. “Customize Polyspace User Interface” on page 3-32
. “Organize Layout of Polyspace User Interface” on page 3-29

3-31

3 Run Polyspace Analysis on Desktop

Customize Polyspace User Interface

In this section...
“Possible Customizations” on page 3-33
“Storage of Polyspace User Interface Customizations” on page 3-34

You can customize various aspects of the Polyspace user interface, for instance, default
project storage locations or default font size of source code. Select Tools > Preferences.

W Polyspace Preferences

Review Scope

Tools Menu Review Statuses Miscellaneous Character Encoding

Server Configuration Project and Results Folder Editors

Project location configuration
Default project location: | \\fs-58-ahwmgr$thome0&\agangopa\Documents'Polyspace_Workspace =

Results folder configuration
Parent results folder location: E

Add a subfolder using the project name

Formatting options:
Project variable Date format Time format Counter

Results folder prefix
W w | _[counter] .

Result v
Mote: Result folder names will be automatically prefixed by BF or CP for Bug Finder analysis or Code Prover verification respectively

Compilation Assistant
[] Use Compilation Assistant.

For unit by unit verification, Compilation Assistant is automatically disabled.

Import comments
Automatically import comments from last verification,

>

oK Apply Cancel

3-32

Customize Polyspace User Interface

Possible Customizations
Change Default Font Size

To change the default font size in the Polyspace user interface, select the Miscellaneous
tab.

* To increase the font size of labels on the user interface, select a value for GUI font
size.

For example, to increase the default size by 1 point, select +1.

» To increase the font size of the code on the Source pane and the Code Editor pane,
select a value for Source code font size.

When you restart Polyspace, you see the increased font size.

Specify External Text Editor

You can change the default text editor for opening source files from the Polyspace
interface. By default, if you open your source file from the user interface, it opens on a
Code Editor tab. If you prefer editing your source files in an external editor, you can
change this default behavior.

To change the text editor, select the Editors tab. From the Text editor drop-down list,
select External. In the Text editor field, specify the path to your text editor. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

To make sure that your source code opens at the correct line and column in your text
editor, specify command-line arguments for the editor using Polyspace macros, $FILE,
$LINE and $COLUMN. Once you specify the arguments, when you right-click a check on
the Results List pane and select Open Editor, your source code opens at the location of
the check.

Polyspace has already specified the command-line arguments for these editors: Emacs,

Notepad++ (Windows only), UltraEdit, VisualStudio, WordPad (Windows only) or
gVim. If you are using one of these editors, select it from the Arguments drop-down list.

3-33

3 Run Polyspace Analysis on Desktop

3-34

If you are using another text editor, select Custom from the drop-down list, and enter the
command-line options in the field provided.

For console-based text editors, you must create a terminal. For example, to specify vi:

1 In the Text Editor field, enter /usr/bin/xterm.
2 From the Arguments drop-down list, select Custom.
3 Inthe field to the right, enter -e /usr/bin/vi $FILE.

To revert back to the built-in editor, on the Editors tab, from the Text editor drop-down
list, select Built In.

Create Custom Review Status

When reviewing Polyspace results, you can assign a status such as To fix or
Justified. See “Address Polyspace Results Through Bug Fixes or Comments” on page
19-2.

You can create your own statuses to assign. To create a new status, select the Review
Statuses tab.

Storage of Polyspace User Interface Customizations

The software stores the settings that you specify through the Polyspace Preferences in the
following file:

* Windows: $Drive\Users\$User\AppData\Roaming\MathWorks \MATLAB\
$Release\Polyspace\polyspace.prf
* Linux: /home/$User/.matlab/$Release/Polyspace/polyspace.prf

Here, $Drive is the drive where the operating system files are located such as C:, $User
is the username and $Release is the release number.

The following file stores the location of all installed Polyspace products across various
releases:

* Windows: $Drive\Users\$User\AppData\Roaming\MathWorks\MATLAB
\polyspace shared\polyspace products.prf

Customize Polyspace User Interface

* Linux: /home/$User/.matlab/polyspace shared/polyspace products.prf

3-35

Run Polyspace Analysis with
Windows or Linux Scripts

* “Run Polyspace Analysis from Command Line” on page 4-2
* “polyspace-configure Source Files Selection Syntax” on page 4-5
* “Create Command-Line Script from Project File” on page 4-8

4 Run Polyspace Analysis with Windows or Linux Scripts

Run Polyspace Analysis from Command Line

To run an analysis from a DOS or UNIX® command window, use the command
polyspace-bug-finder-nodesktop or polyspace-code-prover-nodesktop
followed by other options you wish to use. See also:

* polyspace-bug-finder-nodesktop
* polyspace-code-prover-nodesktop

Specify Sources and Analysis Options Directly

At the Windows, Linux or Mac OS X command-line, append sources and analysis options
to the polyspace-bug-finder-nodesktop or polyspace-code-prover-nodesktop
command.

For instance:

» To specify sources, use the -sources option followed by a comma-separated list of
sources.

polyspace-bug-finder-nodesktop -sources C:\mySource\myFilel.c,C:\mySource\myFile2.c

If your current folder contains a sources subfolder with the source files, you can omit
the -sources flag. The analysis considers files in sources and all subfolders under
sources.

» To specify the target processor, use the -target option. For instance, to specify the
m68k processor for your source file file.c, use the command:

polyspace-bug-finder-nodesktop -sources "file.c" -lang c -target m68k

* To check for violation of MISRA C rules, use the -misra2 option. For instance, to
check for only the required MISRA C rules on your source file file. c, use the
command:

polyspace-bug-finder-nodesktop -sources "file.c" -misra2 required-rules
For the full list of analysis options, see:
* “Analysis Options”

For the full list of options, enter the following at the command line:

4-2

Run Polyspace Analysis from Command Line

polyspace-code-prover-nodesktop -help

Specify Sources and Analysis Options in Text File

Instead of specifying the options directly, you can save the options in a text file and use
the text file each time you run the analysis.

1

Create an options file called listofoptions.txt with your options. For example:

#These are the options for MyCodeProverProject
-lang c

-prog MyCodeProverProject

-author jsmith

-sources "mymain.c,funAlgebra.c, funGeometry.c"
-target x86_64

-compiler generic

-dos

-misra2 required-rules
-do-not-generate-results-for all-headers
-main-generator

-results-dir C:\Polyspace\MyCodeProverProject

Run Polyspace using options in the file listofoptions. txt.

polyspace-code-prover-nodesktop -options-file listofoptions.txt

See also -options-file.

Create Options File from Build System

If you use a build command (makefile) to build your source code, you can collect the
sources and compiler options from your build command. Trace your build command to
generate a text file with the required Polyspace options.

1

Create a list of Polyspace options using the configuration tool.

polyspace-configure -output-options-file \
myOptions buildCommand

where buildCommand is the command you use to build your source code, for
instance make -B.

See also polyspace-configure.

4-3

4 Rrun Polyspace Analysis with Windows or Linux Scripts

4-4

2 Run Polyspace using the options read from your build.

polyspace-bug-finder-nodesktop -options-file myOptions \
-results-dir myResults

In addition to the options collected from your build command, you might want to add
further options, for instance, to specify the defect checkers. You can append these
options to the options file, add them directly at the command line or add them
through a second options file (using another -options-file flag).

3 Open the results in the Polyspace user interface.

polyspace-bug-finder myResults

See Also

polyspace-bug-finder-nodesktop | polyspace-code-prover-nodesktop |
polyspace-configure

More About

. “Create Command-Line Script from Project File” on page 4-8

External Websites

. Set up Continuous Code Verification with Jenkins

https://www.mathworks.com/matlabcentral/answers/279990-how-do-i-use-polyspace-bug-finder-with-jenkins

polyspace-configure Source Files Selection Syntax

polyspace-configure Source Files Selection Syntax

When you create projects by using polyspace-configure, you can include or exclude
source files whose paths match the pattern that you pass to the options -include-
sources or -exclude-sources. You can specify these two options multiple times and
combine them at the command line.

This folder structure applies to these examples.

= sources
= app
i o1 .
[g main.c

= lib

a

[j alc
[j azc
b

& b1c
[&f b2.c

| Makefile

To try these examples, use the demo files in matlabroot\help\toolbox\codeprover
\examples\sources-select. matlabroot is your MATLAB installation folder.

Run this command:

polyspace-configure -allow-overwrite -include-sources glob pattern \
-print-excluded-sources -print-included-sources make -B

glob pattern is the glob pattern that you use to match the paths of the files you want
to include or exclude from your project. In the table, the examples assume that sources
is a top-level folder.

Glob Pattern Syntax Example

No special characters, slashes ('/'), or -include-sources 'main.c' matches:
backslashes ('\').
/sources/app/main.c
Pattern matches corresponding files, but
not folders.

4 Run Polyspace Analysis with Windows or Linux Scripts

4-6

Glob Pattern Syntax

Example

Pattern contains '*' or '?' special
characters.

"*' matches zero or more characters in file
or folder name.

'?"' matches one character in file or folder
name.

The matches do not include path
separators.

-include-sources 'b?.c' matches:
/sources/lib/b/bl.c
/sources/lib/b/b2.c
-include-sources 'app/*.c' matches:

/sources/app/main.c

Pattern starts with slash ' /' (UNIX) or
drive letter (Windows).

Pattern matches absolute path only.

-include-sources '/a' does not match
anything.

-include-sources '/sources/app'
matches:

/sources/app/main.c

Pattern ends with a slash (UNIX), backslash
(Windows), or '**',

Pattern matches all files under specified
folder.

"**!isignored if it is at the start of the
pattern.

-include-sources 'a/' matches
/sources/lib/a/al.c

/sources/lib/a/a2.c

Pattern contains ' /**/' (UNIX) or '**\'
(Windows). Pattern matches zero or more
folders in the specified path.

-include-sources 'lib/**/?1.c'
matches:

/sources/lib/a/al.c

/sources/1lib/b/bl.c

polyspace-configure Source Files Selection Syntax

Glob Pattern Syntax

Example

Pattern starts with '. "' or

Pattern matches paths relative to the path
where you run the command.

If you start polyspace-configure from /
sources/lib/a,

-include-sources '../lib/**/b?.c'
matches:

/sources/1lib/b/bl.c
/sources/1lib/b/b2.c

Pattern is a UNC path on Windows .

If your files are on server myServer:

\\myServer\sources\lib\b**
matches:

\\myServer\sources\lib\b\bl.c

\\myServer\sources\lib\b\b2.c

polyspace-configure does not support these glob patterns:

* Absolute paths relative to the current drive on Windows.

For instance, \foo\bar.
* Relative paths to the current folder.

For instance, C: foo\bar.
» Extended length paths in Windows.

For instance, \\?\ foo.

* Paths that contain '." or '.." except at the start of the pattern.

For instance, /foo/bar/../a?.c.
* The '*' character by itself.

4 Run Polyspace Analysis with Windows or Linux Scripts

Create Command-Line Script from Project File

4-8

In this section...

“Generate Scripting Files” on page 4-8
“Run an Analysis” on page 4-9

This example shows how to use a project file that you configured in the Polyspace
interface to generate the necessary information to run from the command line. If you
have already spent time configuring your project in the Polyspace interface, this
command is useful to extract your setup work for scripting.

Generate Scripting Files

Generate a script from the demo Polyspace project, Code_Prover_Example.psprj.

1

In the Polyspace interface, open the example project by selecting Help > Examples
> Code_Prover_Example.psprj.

This example has been set up and configured with analysis options.

Open a command-line terminal and navigate to your Polyspace Workspace folder.
By default it is:

* Linux — /home/USER/Polyspace Workspace

* Windows — Users\USER\Documents\Polyspace Workspace

*+ Mac — USER/Polyspace Workspace

Navigate down to the example project:

cd Examples/R2017b/Code Prover Example
Run the script generation command .

matlabroot/polyspace/bin/polyspace ...
-generate-launching-script-for Code Prover Example.psprj

Here, matlabroot is your installed program folder, for example C: \Program
Files\MATLAB\R2017b.

Polyspace generates the following folder:

Code Prover Example

See Also

The folder contains:

* source command.txt — List of source files
* options command.txt — List of the analysis options

* launchingCommand. sh (UNIX) or launchingCommand.bat (DOS) — Shell
script that calls the correct commands

For more details about what files are generated and how to use them, see -generate-
launching-script-for.

Run an Analysis

After you have completed, “Generate Scripting Files” on page 4-8, you can use the files to
run an analysis from the command line. The launching script makes integrating into
continuous integration tools such as Jenkins, easier. Here are a few examples of how to
use the generated files to run an analysis.

Run the generated script locally by using the TaunchingCommand. bat file.

Code_Prover_Example\launchingCommand.bat

Run the generated script and change the results folder.

Code Prover Example\launchingCommand.bat ...
-results-dir Results Code Prover Example RTE Only

The extra - results-dir option overrides the results folder specified in the
options command. txt file.
Send the analysis to a remote server and store the results in Polyspace Metrics.

Code Prover Example\launchingCommand.bat ...
-add-to-results-repository -batch -scheduler MJS@NoteHost
Run the analysis from the command line with the -options-file option.

matlabroot/polyspace/bin/polyspace-code-prover-nodesktop -options-file ...
Code Prover Example/options_ command.txt

See Also

-generate-launching-script-for

4-9

4 Run Polyspace Analysis with Windows or Linux Scripts

Related Examples

. “Run Polyspace Analysis from Command Line” on page 4-2

External Websites

. Set up Continuous Code Verification with Jenkins

4-10

https://www.mathworks.com/matlabcentral/answers/279990-how-do-i-use-polyspace-bug-finder-with-jenkins

Run Polyspace Analysis with
MATLAB Scripts

* “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-2
* “Generate MATLAB Scripts from Polyspace User Interface” on page 5-6
* “Troubleshoot Polyspace Analysis from MATLAB” on page 5-9

5 Run Polyspace Analysis with MATLAB Scripts

Run Polyspace Analysis by Using MATLAB Scripts

5-2

You can automate the analysis of your C/C++ code by using MATLAB scripts. In your
script, you specify your source files and analysis options such as compiler, run an analysis,
and read the analysis results to MATLAB tables.

For instance, use this script to run a Polyspace Bug Finder analysis on a sample file:
proj = polyspace.Project

% Specify sources and includes
sourceFile = fullfile(matlabroot, 'polyspace',

'examples', 'cxx', 'Bug _Finder Example', 'sources', 'numerical.c');
includeFolder = fullfile(matlabroot, 'polyspace’,
'examples', 'cxx', 'Bug Finder Example', 'sources');

% Configure analysis

proj.Configuration.Sources = {sourceFile};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};
proj.Configuration.ResultsDir = fullfile(pwd, 'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

See also polyspace.Project.

Specify Multiple Source Files

You can specify a folder containing all your source files. For instance:
sourceFolder = fullfile(matlabroot, 'polyspace’,

'examples', 'cxx', 'Bug _Finder Example', 'sources');
proj.Configuration.Sources = {fullfile(sourceFolder,'*"')};
You can also specify multiple source folders in the cell array.

You can specify a folder that contains all your source files directly or in subfolders. For
instance:

Run Polyspace Analysis by Using MATLAB Scripts

sourceFolder = fullfile(matlabroot, 'polyspace’,
‘examples', 'cxx', 'Bug_Finder Example', 'sources');
proj.Configuration.Sources = {fullfile(sourceFolder, '**")};

If you do not want to analyze all files in a folder, you can explicitly specify which files to
analyze. For instance:

sourceFolder = fullfile(matlabroot, 'polyspace’,
‘examples', 'cxx', 'Bug_Finder Example', 'sources');

filel = fullfile(sourceFolder, 'numerical.c');

file2 = fullfile(sourceFolder, 'staticmemory.c');

proj.Configuration.Sources = {filel, file2};

You can explicitly exclude files from analysis. For instance:

% Specify source folder.

sourceFolder = fullfile(matlabroot, 'polyspace’,
‘examples', 'cxx', 'Bug_Finder Example', 'sources');

proj.Configuration.Sources = {fullfile(sourceFolder, '**")};

% Specify files to exclude.
filel = fullfile(sourceFolder, 'security.c');
file2 = fullfile(sourceFolder, 'tainteddata.c');

proj.Configuration.InputsStubbing.DoNotGenerateResultsFor = ['custom=' filel ...

b, file2];

However, this method of exclusion does not apply to Code Prover run-time error checking.

Check for MISRA C:2012 Violations

You can customize the Polyspace analysis to check for MISRA C:2012 rule violations.

Set options for checking MISRA C:2012 rules. Disable the regular Bug Finder analysis,
which looks for defects.

% Enable MISRA C checking
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset

true;
'mandatory’;

% Disable defect checking
proj.Configuration.BugFinderAnalysis.EnableCheckers = false;

% Run analysis
bfStatus = proj.run('bugFinder');

5-3

5 Run Polyspace Analysis with MATLAB Scripts

% Read summary of results
misraSummary = proj.Results.getSummary('misraC2012");

Check for Specific Defects or Coding Rule Violations
Instead of the default set of defect or coding rule checkers, you can specify your own set.

To disable MISRA C:2012 rules 8.1 to 8.4:

% Disable rules
misraRules = polyspace.CodingRulesOptions('misraC2012"');

misraRules.rule 8 1 = false;
misraRules.rule 8 2 = false;
misraRules.rule 8 3 = false;
misraRules.rule 8 4 = false;

% Configure analysis
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset

true;
misraRules;

See also polyspace.CodingRulesOptions.

To enable Bug Finder defects, use the class polyspace.DefectsOptions. One
difference between coding rules and defects class is that coding rule checkers are
enabled by default. You disable the ones that you do not want. All defect checkers are
disabled by default. You enable the ones that you want.

Find Files That Do Not Compile

If one or more of your files contain a compilation error, the analysis continues with the
remaining files. You can choose to stop analysis on compilation errors.

proj.Configuration.EnvironmentSettings.StopWithCompileError = true;

However, it is more convenient to let the analysis complete and capture all compilation
errors from the analysis log file. For more information, see “Troubleshoot Polyspace
Analysis from MATLAB” on page 5-9.

See Also

Run Analysis on Cluster

You can run an analysis on a cluster instead of your local desktop. Once you have set up
connection to a server, you can run the analysis in batch mode. For setup information, see
“Set Up Server for Metrics and Remote Analysis”.

Specify that the analysis must run on a server. Specify a folder on your desktop where
results are downloaded after analysis.

proj.Configuration.MergedComputingSettings.BatchBugFinder = true;
proj.Configuration.ResultsDir = fullfile(pwd, 'results');

Run analysis as usual.

proj.run('bugFinder"');

Open the results from the results folder location.

pslinkfun('openresults', '-resultsfolder', proj.Configuration.ResultsDir);

If the analysis is complete and the results have been downloaded, they open in the
Polyspace user interface.

See Also

polyspace.Project | polyspaceCodeProver

Related Examples

. “Generate MATLAB Scripts from Polyspace User Interface” on page 5-6
. “Visualize Code Prover Analysis Results in MATLAB” on page 21-15

. “Troubleshoot Polyspace Analysis from MATLAB” on page 5-9

3-5

5 Run Polyspace Analysis with MATLAB Scripts

Generate MATLAB Scripts from Polyspace User Interface

You can specify analysis options in the Polyspace user interface and later generate a
MATLARB script for easier reuse of those options.

In the user interface, to determine which options to specify, you have tooltips,
autocompletion of function names, compilation assistant, context-sensitive help and so on.
After you specify the options, you can generate a MATLAB script. For subsequent
analyses, you can modify and run the script without opening the Polyspace user interface.

To start an analysis in the Polyspace user interface, create a project. In the project:

* You specify source and include folders during project creation.

* You specify analysis options such as compiler or multitasking in your project
configuration. You also enable or disable checkers.

From this project, you can generate a script that contains your sources, includes and
other analysis options. To begin, select File > New Project. For details, see “Add Source
Files for Analysis in Polyspace User Interface” on page 3-2.

This example uses a sample project. To open the project, select Help > Examples >
Code_Prover_Example.psprj. You see the options in the project configuration. For
instance, on the Target & Compiler node, you see a generic compiler and an 1386
Processor.

Generate MATLAB Scripts from Polyspace User Interface

quiraaol L]
iCode Prover Example x] 4 &
- arget & Compiler Target & Compiler
-~ Macros
" Environment Settings
----- Inputs & Stubbing ~
---- Multitasking Target Language
..... Coding Rules & Code Metrics it |C » |
----- Bug Finder Analysis
[~ Code Prover Verification Target Environment
- Verification Assumptions ; i
i Compiler |genenc e |
i Check Behavior
* Precision Target processor type |i386 e " Edit |
+ Sealing [] Respect C90 standard
----- Reporting o

1 Open MATLAB.

For instance, select Tools > Open MATLAB.
2 Create a polyspace.Options object from the sample Polyspace project.

projectFile =

fullfile(matlabroot, 'polyspace', 'examples',6 'cxx',

'Code_Prover Example', 'Code Prover Example.psprj');
opts = polyspace.loadProject(projectFile);

3 Append the object to a MATLAB script.

filePath = opts.toScript('runPolyspace.m', 'append');

Open the script runPolyspace.m. You see the options that you specified from the
user interface. For instance, you see the compiler and target processor.

opts.TargetCompiler.Compiler = 'generic';
opts.TargetCompiler.Target = 'i386"';

Later, you can run the script to create a polyspace.Options object.

run(filePath);

The preceding example converts the sample project Code Prover Example directly to a
script. When you open the sample project in the user interface, a copy is loaded into your

5-7

5 Run Polyspace Analysis with MATLAB Scripts

Polyspace workspace. If you make changes to the sample project, the changes are made
to the copied version. To see the changes in your MATLAB script, provide the copied
project path to the LoadProject method. To see the location of your workspace, select
Tools > Preferences and view the Project and Results Folder tab.

See Also

Related Examples
. “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-2

Troubleshoot Polyspace Analysis from MATLAB

Troubleshoot Polyspace Analysis from MATLAB

When you run a Polyspace analysis on your C/C++ code, if one or more of your files fail to
compile, the analysis continues with the remaining files. You can choose to stop the
analysis on compilation errors.

proj = polyspace.Project;
proj.Configuration.EnvironmentSettings.StopWithCompileError = true;

However, it is more convenient to let the analysis complete and capture all compilation
errors.

The compilation errors are displayed in the analysis log that appears on the MATLAB
command window. The analysis log also contains the options used and the various stages
of analysis. The lines that indicate errors begin with the Error: string. Find these lines
and extract them to a log file for easier scanning. Produce a warning to indicate that
compilation errors occurred.

The function runPolyspace defined later captures the output from the command
window using the evalc function and stores lines starting with Error: in a file
error.log. You can call runPolyspace with paths to your source and include folders.

[status, resultsSummary] = runPolyspace('/path/to/sources', '/path/to/includes');

The function is defined as follows.

function [status, resultsSummary] = runPolyspace(sourcePath, libPath)
% runPolyspace takes two string arguments: source and include folder.
The files in the source folder are analyzed for defects.

If one or more files fail to compile, the errors are saved in a log.
A warning on the screen indicates that compilation errors occurred.

o° o o°

proj = polyspace.Project;

% Specify sources
proj.Configuration.Sources = {fullfile(sourcePath,'*')};

% Specify compiler and paths to libraries
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {fullfile(libPath,'*")};

% Run analysis

5-9

5 Run Polyspace Analysis with MATLAB Scripts

5-10

runMode = 'bugFinder';
[LogFileContent,status] = evalc('proj.run(runMode)"');

% Open file for writing errors
errorFile = fopen('error.log', 'wt+');

% Check log file for compilation errors
numgrrors = 0;

log = strsplit(logFileContent, '\n');
errorLines = find(contains(log, {'Error:'}, 'IgnoreCase', true));
for ii=1:numel(errorLines)
fprintf(errorFile, '%s\n', log{errorLines(ii)});
numErrors = numErrors + 1;
end

if numErrors

warning('%sd compilation error(s). See error.log for details.', numErrors);
end

fclose(errorFile);

% Read results
resultsSummary = proj.Results.getSummary('defects');

The analysis log is also captured in a file Polyspace R20##n ProjectName date-
time.log. Instead of capturing the output from the command window, you can search
this file.

You can adapt this script for other purposes. For instance, you can capture warnings in
addition to errors. The lines with warnings begin with warning:. The warnings indicate
situations where the analysis proceeds despite an issue. The analysis makes an
assumption to work around the issue. If the assumption is incorrect, you can see errors
later or in rare cases, incorrect analysis results.

See Also

polyspace.Project

See Also

Related Examples
. “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-2
. “Troubleshooting in Polyspace Code Prover”

5-11

Run Polyspace Analysis on Remote
Clusters

* “Run Polyspace Analysis on Remote Clusters” on page 6-2
* “Run Polyspace Analysis on Remote Clusters Using Scripts” on page 6-4

6 Run Polyspace Analysis on Remote Clusters

Run Polyspace Analysis on Remote Clusters

6-2

Before running a batch analysis in the Polyspace user interface, you must set up your
project’s source files, analysis options, and remote analysis settings. If you have not done
S0, see:

* “Add Source Files for Analysis in Polyspace User Interface” on page 3-2

» “Set Up Server for Metrics and Remote Analysis”

To start a remote analysis:

Select a project to analyze.
On the Configuration pane, select Run Settings.
Select Run Bug Finder analysis on a remote cluster.

D W N R

If you want to store your results in the Polyspace Metrics repository, select Upload
results to Polyspace Metrics.

Otherwise, clear this check box.

Select the L; button.

6 To monitor the analysis, select Tools > Open Job Monitor. In the Polyspace Job
Monitor, follow your queued job to monitor progress.

Once the analysis is complete, you can open your results from the Results folder, or
download them from Polyspace Metrics.

If the analysis stops after compilation and you have to restart the analysis, to avoid
restarting from the compilation phase, use the option -submit-job-from-
previous-compilation-results.

Note If you choose to upload results to Polyspace Metrics, your results are not
downloaded automatically after verification. Use the Polyspace Metrics web dashboard to
view the results and download them to your desktop. For more information, see “View
Code Quality Metrics” on page 22-14.

See Also

See Also

More About
. “Set Up Server for Metrics and Remote Analysis”
. “Run Polyspace Analysis on Remote Clusters Using Scripts” on page 6-4

6-3

6 Run Polyspace Analysis on Remote Clusters

Run Polyspace Analysis on Remote Clusters Using
Scripts

6-4

Before you run a remote analysis, you must set up a server for this purpose. For more
information, see “Set Up Server for Metrics and Remote Analysis”.

Run Remote Analysis

Use the following command to run a remote analysis:

matlabroot\polyspace\bin\polyspace-code-prover-nodesktop
-batch -scheduler NodeHost | MJISName@NodeHost [options]

where:

* matlabroot is your MATLAB installation folder.

* NodeHost is the name of the computer that hosts the head node of your MATLAB
Distributed Computing Server™ cluster.

MJSName is the name of the MATLAB Job Scheduler (M]S) on the head node host.

If you set up communications with a cluster from the Polyspace user interface, you can
determine NodeHost and MJSName from the user interface. Select Metrics > Metrics
and Remote Server Settings. Open the MATLAB Distributed Computing Server
Admin Center. Under MATLAB Job Scheduler, see the Name and Hostname
columns for MJSName and NodeHost. For details, see “Configure for an MJS”
(MATLAB Distributed Computing Server).

* options are the analysis options. These options are the same as that of a local
analysis. For instance, you specify the results folder using the option -results-dir.

For more information, see “Run Polyspace Analysis from Command Line” on page 4-2.

After compilation, the software submits the analysis job to the cluster and provides you a
job ID. You can also read the ID from the file ID. txt in the results folder. Use the
polyspace-jobs-manager command with the job ID to monitor your analysis and
download results after analysis is complete. For more information, see “Manage Remote
Analysis” on page 6-6.

Run Polyspace Analysis on Remote Clusters Using Scripts

If the analysis stops after compilation and you have to restart the analysis, to avoid
restarting from the compilation phase, use the option -submit-job-from-previous-
compilation-results.

Tip In Windows, to avoid typing the commands each time, you can save the commands in
a batch file. In Linux, you can relaunch the analysis using a . sh file.

1 Save your analysis options in a file lListofoptions.txt. See “Specify Sources and
Analysis Options in Text File” on page 4-3.

To specify your sources, in the options file, instead of -sources, use -sources-
list-file. This option is available only for remote analysis and allows you to
specify your sources in a separate text file.

2 Create a file launcher.bat in a text editor like Notepad.
3 Enter the following commands in the file.

echo off

set POLYSPACE PATH=matlabroot\polyspace\bin

set RESULTS PATH=C:\Results

set OPTIONS FILE=C:\Options\listofoptions.txt

"%POLYSPACE_PATHS%\polyspace-code-prover-nodesktop.exe" -batch -scheduler localhost
-results-dir %RESULTS PATH% -options-file %0PTIONS FILES%

pause

Where matlabroot is your MATLAB installation folder, and localhost is the name
of the computer that hosts the head node of your MATLAB Distributed Computing
Server cluster.

4 Replace the definitions of the following variables in the file:

* POLYSPACE_PATH: Enter the actual location of the .exe file.

* RESULTS PATH: Enter the path to a folder. The files generated during compilation
are saved in the folder.

* OPTIONS FILE: Enter the path to the file listofoptions.txt.
5 Double-click launcher.bat to run the analysis.
If you run a Polyspace analysis, a Windows .bat or Linux . sh file is automatically

generated for you. The file is in the .settings subfolder in your results folder. You can
relaunch the analysis using this file.

6 Run Polyspace Analysis on Remote Clusters

Manage Remote Analysis

To manage remote analyses, use this command:

matlabroot\polyspace\bin\polyspace-jobs-manager action [options]
[-scheduler schedulerOption]

where:

* matlabroot is your MATLAB installation folder
* schedulerOption is one of the following:
* Name of the computer that hosts the head node of your MATLAB Distributed
Computing Server cluster (NodeHost).
* Name of the M]JS on the head node host (MJSName@NodeHost).
* Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Discover Clusters and Use Cluster
Profiles” (Parallel Computing Toolbox)

If you do not specify a job scheduler, polyspace-job-manager uses the scheduler
specified in the Polyspace Preferences > Server Configuration > Job scheduler
host name.

* action [options] refer to the possible action commands to manage jobs on the
scheduler:

6-6

Run Polyspace Analysis on Remote Clusters Using Scripts

Action

Options

Task

listjobs

None

Generate a list of Polyspace jobs on the
scheduler. For each job, the software
produces the following information:

ID — Verification or analysis identifier.
AUTHOR — Name of user that submitted
job.

APPLICATION — Name of Polyspace
product, for example, Polyspace Code
Prover or Polyspace Bug Finder.

LOCAL RESULTS DIR — Results folder
on local computer, specified through the
Tools > Preferences > Server
Configuration tab.

WORKER — Local computer from which
job was submitted.

STATUS — Status of job, for example,
running and completed.

DATE — Date on which job was
submitted.

LANG — Language of submitted source
code.

6 Run Polyspace Analysis on Remote Clusters

6-8

Action

Options

Task

download

-job ID -results-
folder
FolderPath

Download results of analysis with specified
ID to folder specified by FolderPath.

When the analysis job is queued on the
server, the command polyspace-code-
prover-nodesktop returns a job id.
Additionally, a file ID. txt in the results
folder contains the job id in this format:

job id;server name:project name versio
For instance, 92; localhost:Demo 1.0.

If you do not use the -results-folder
option, the software downloads the result to
the folder you specified when starting
analysis, using the -results-dir option.

After downloading results, use the
Polyspace user interface to view the results.
See “Interpret Polyspace Code Prover
Results” on page 17-2.

getlog

-job ID

Open log for job with specified ID.

remove

-job ID

Remove job with specified ID.

promote

-job ID

Promote job with specified ID in the queue.

demote

-job ID

Demote job with specified ID in the queue.

See Also

More About

“Set Up Server for Metrics and Remote Analysis”

“Run Polyspace Analysis on Remote Clusters” on page 6-2

n_number

See Also

External Websites
. Set up Continuous Code Verification with Jenkins

6-9

https://www.mathworks.com/matlabcentral/answers/279990-how-do-i-use-polyspace-bug-finder-with-jenkins

Run Polyspace Analysis on
Generated Code

7 rRun Polyspace Analysis on Generated Code

Run Polyspace Analysis on Code Generated with
Embedded Coder

If you generate code from a Simulink model using Embedded Coder or TargetLink®, you
can analyze the generated code for bugs or run-time errors with Polyspace from within
the Simulink environment. You do not have to manually set up a Polyspace project.

This topic uses Embedded Coder for code generation. For analysis of TargetLink-
generated code, see “Run Polyspace Analysis on Code Generated with TargetLink” on
page 7-32.

For a tutorial with a specific model, see “Analyze Code Generated from Simulink
Subsystem” on page 7-10.

Generate and Analyze Code

Configure code

Generate code Configure code

. . Analyze code
generation analysis Y

7-2

Configure Code Generation and Generate Code

To configure code generation and generate code from a model or subsystem, do one of the
following:

* Select Code > C/C++ > Embedded Coder Quick Start. Follow the on-screen
instructions.

* Configure code generation through Simulink configuration parameters. The chief
parameters to set are:

* Type (Simulink): Select Fixed-step.

Run Polyspace Analysis on Code Generated with Embedded Coder

e Solver (Simulink): Select auto (Automatic solver selection) or Discrete (no
continuous states).

* System target file (Simulink Coder): Enter ert.tlc or autosar.tlc. If you derive
target files from ert. tlc, you can also specify them.

* “Code-to-model” (Simulink Coder): Select this option to enable links from code to
model.

For the full list of parameters to set, see “Recommended Model Configuration
Parameters for Polyspace Analysis” on page 7-20.

Alternatively, run the Code Generation Advisor with the objective Polyspace and
check if the required parameters are already set. See “Configure Model for Code
Generation Objectives by Using Code Generation Advisor” (Embedded Coder).

To generate code, select Code > C/C++ > Build Model. There is an equivalent
option for a subsystem.

Configure Code Analysis

Select Code > Polyspace > Options. Change default values of these options if needed.

“Product mode”: Choose Code Prover or Bug Finder.

Settings from: Enable checking of MISRA coding rules in addition to the default
checks specified in the project configuration. The default Bug Finder checks look for
bugs and the Code Prover checks look for run-time errors.

“Input”, “Tunable parameters” and “Output”: Constrain inputs, tunable parameters or
outputs for a more precise Code Prover analysis.

“Output folder”: Specify a dedicated folder for results. The default analysis saves the
results in a folder results_modelName in the current working folder.

“Open results automatically after verification”

Analyze Code

To analyze the code, select Code > Polyspace > Verify Code Generated for > Model.
There is an equivalent option for a subsystem.

You can follow the progress of the analysis in the MATLAB command window.

7 rRun Polyspace Analysis on Generated Code

The results open automatically unless explicitly disabled. By default, the results are saved
in a folder results_ModelName in the current folder. Each new run overwrites previous
results. You can change these behaviors or save the results to a Simulink project. To make
these changes, select Code > Polyspace > Options.

If you want to open the results later, select Code > Polyspace > Open Results > For
Generated Code.

Review Analysis Results

/* Sum: '<S6>/Sum' incorporates:
* UnitDelay: '<56>/Unit Delay!'
* S

Sum = (intlé_T) (in_pressure - psdemo model link sl DWork.UnitDelay DSTATE b)i —(——» COdE‘: with
b e A B Sl s bt p095|b|e overflow
(orange)
e Block
CO—fF s NED »| responsible for

B faultl code
int16

nt16
* sfc16_E1 nt16

>
uint16 int1
GO Pt

Run Polyspace Analysis on Code Generated with Embedded Coder

Review Result in Code

The results appear in the Polyspace user interface on the Results List pane. Click each
result to see the source code and details on the Result Details pane. See also:

* “Interpret Polyspace Code Prover Results” on page 17-2

* “Code Prover Result and Source Code Colors” on page 17-10

* “Address Polyspace Results Through Bug Fixes or Comments” on page 19-2
* “Filter and Group Results” on page 20-2

Navigate from Code to Model

Links in code comments show blocks that generate the subsequent lines of code. To see
the blocks in the model, click the block names in the links. If you run into issues, see
“Troubleshoot Navigation from Code to Model” on page 7-37.

Alternatively, you can right-click a variable name and select Go to Model. This option is
not available for all variables.

Fix Issue
Investigate whether the issues in your code are related to design flaws in the model.

There can be many design flaws in the model that lead to issues in the generated code.
For instance:

* The generated code might be free of specific run-time errors only for a certain range
of a block parameter. To fix this, you can change the storage class of that block
parameter or use calibration data for the analysis using the configuration parameter
“Tunable parameters”.

* The generated code might be free of specific run-time errors only for a certain range
of inputs. To verify this, you can specify a minimum and maximum value for the Inport
block signals. The Polyspace analysis uses this constrained range. See “Specify Ranges
for Signals” (Simulink).

* Certain transitions in Stateflow® charts can be unreachable.

7-5

7 rRrun Polyspace Analysis on Generated Code

If you include handwritten C/C++ code in S-Function blocks, the Polyspace analysis can

reveal possible integration issues between the handwritten and generated code. You can
also analyze the handwritten code in isolation. See “Analyze S-Function Code” on page 7-
18.

Annotate Blocks to Justify Issue

If you do not want to make changes in response to a Polyspace result, annotate the
relevant blocks. After you annotate a block, code operations generated from the block
show results prepopulated with your comments. To annotate a block, right-click the block
and select Polyspace > Annotate Selected Block > Edit. Enter the following:

* Comma-separated list of result acronyms. To justify only type of result, select Only 1
check.

See:

* “Short Names of Bug Finder Defect Checkers” (Polyspace Bug Finder)
* “Short Names of Code Prover Run-Time Checks” on page 19-12
* Status, severity and comment to be assigned to the results.

Sometimes operations in the generated code are known to cause orange checks in Code

Prover. Suppose an operation is known to possibly overflow. The generated code protects
against the overflow by following the operation with a saturation. Polyspace still flags the
possible overflow as an orange check. To automatically justify these checks through code
comments, specify the configuration parameter “Operator annotations” (Simulink Coder).

See Also

More About
. “Configure Advanced Polyspace Options in Simulink” on page 7-23

Verify Generated Code Using Polyspace Code Prover

Verify Generated Code Using Polyspace Code Prover

If you generate C or C++ code from models using Embedded Coder, you can check the
generated code for run-time errors. Polyspace Code Prover proves code correctness, finds
run-time errors, and checks for MISRA-C compliance in generated and handwritten code.

This example contains a demo model from which you can generate code and then analyze
the generated code.

Open Model

Open and explore the example model. The model contains a controller subsystem,
which itself contains many subsystems. One of the subsystems has some issues that can
lead to run-time errors in the generated code.

open_system('psdemo model link sl');

7-7

7 rRun Polyspace Analysis on Generated Code

—O

h

i

User
requested
Prassure

+
e

int16
J

v s —p Nt1B F—
-

Engine

rotation 1300

A] vint16

Battary

level

M »| uint16

User
requestad

Rate

Generate and Analyze Code

fok_pos

o= cmdl

Req Pressura

Rotation

Max Pressure

angle cmd

Batbery info

Req rate

FauliTable

In1

Ot

Y

In2

Out2

¥

In3

Outd

¥

Ind

Outd

¥

controller

plant

The scope

1: -500 2000
2: -2000 4000
30500

4: 010

Copyright 2010-2015 The MathWorks, Inc.

Generate code from the controller subsystem or one of the subsystems underneath.
Then, run Polyspace Code Prover on the generated code. You can trace back from run-
time errors found in the generated code to corresponding blocks in the model. You can
also check for coding rule violations and add annotations on blocks to justify the

violations. For details, see Analyze Code Generated from Simulink Subsystem.

https://www.mathworks.com/help/codeprover/ug/verify-code-generated-from-simulink-subsystem-1.html

Verify Generated Code Using Polyspace Code Prover

The controller subsystem also contains an S-Function block. You can separately
analyze the C code that the S-Function block refers to. For details, see Analyze S-
Function Code.

https://www.mathworks.com/help/codeprover/ug/verify-s-function-code.html
https://www.mathworks.com/help/codeprover/ug/verify-s-function-code.html

7 rRrun Polyspace Analysis on Generated Code

Analyze Code Generated from Simulink Subsystem

7-10

You can run Polyspace on the code generated from a Simulink model or subsystem.

» Polyspace Bug Finder checks the code for bugs or coding rule violations (for instance,
MISRA C: 2012 rules).

* Polyspace Code Prover exhaustively checks the code for run-time errors.
If you use Embedded Coder for code generation, this tutorial shows how to run Polyspace
on the generated code from within Simulink.

Open Model

Open the example model.

modelName = 'psdemo model link s1l';
open_system(modelName)

Analyze Code Generated from Simulink Subsystem

I

User
requested
Prassure

Engine
rotation

A

» intle
oy

»

intle 4&0\6

J—’-O
-1300

uintlé

P

Battery
lewvel

uintlé

i

User
requested
Rate

Generate Code

Generate code for the controller subsystem in your model.

fok_pos
pos cmd In1 Ot
Req Pressuna
Max Pressure In2 Outz
Rotation
angle cmd In3 Out3d
Battery info
Req rate FauliTabls Ind Outd
contraller
plant

Scopal

The scope

1: -500 2000
2: -2000 4000
3: 0500
4:010

Copyright 2010-2015 The MathWorks, Inc.

1 Right-click the controller subsystem and select C/C++ Code > Build This

Subsystem.

2 In the dialog box, select Build.

Equivalent MATLAB Code:

7-11

7 rRrun Polyspace Analysis on Generated Code

subsysPath = 'psdemo model link sl/controller’;
rtwbuild(subsysPath);

Analyze Code

Analyze the code generated for the controller subsystem.

1 Choose a product, Bug Finder or Code Prover, to analyze the code.

Right-click the controller subsystem and select Polyspace > Options. For
Product mode, choose Code Prover or Bug Finder.

2 Analyze the generated code.

Right-click the controller subsystem and select Polyspace > Verify Generated
Code for > Selected Subsystem. Follow the progress of analysis in the MATLAB
Command Window.

Equivalent MATLAB Code:

opts = polyspace.ModelLinkOptions('C"');

mlopts = pslinkoptions(subsysPath);

mlopts.VerificationMode = 'CodeProver';

mlopts.PrjConfigFile = generateProject(opts, 'polyspaceProject');
pslinkrun(subsysPath, mlopts);

To analyze with Bug Finder, replace CodeProver with BugFinder. For more information
on the code, see polyspace.ModelLinkOptions, pslinkoptions and pslinkrun.

Review Analysis Results
After analysis, the results are displayed in the Polyspace user interface.

If you run Bug Finder, the results consist of bugs detected in the generated code. If you
run Code Prover, the results consist of checks that are color-coded as follows:

* Green (proven code): The check does not fail for the data constraints provided. For
instance, a division operation does not cause a Division by Zero error.

* Red (verified error): The check always fails for the set of data constraints provided.
For instance, a division operation always causes a Division by Zero error.

7-12

Analyze Code Generated from Simulink Subsystem

Orange (possible error): The check indicates unproven code and can fail for certain
values of the data constraints provided. For instance, a division operation sometimes
causes a Division by Zero error.

Gray (unreachable code): The check indicates a code operation that cannot be
reached for the data constraints provided.

Review each analysis result in detail. For instance, in your Code Prover results:

On the Results List pane, select the red Out of bounds array index check.

On the Source pane, place your cursor on the red check to view additional
information. For instance, the tooltip on the red [operator states the array size and
possible values of the array index. The Result Details pane also provides this
information.

The error occurs in a handwritten C file Command strategy file.c. The C file is inside
an S-Function block Command Strategy in the controller subsystem.

Trace Errors Back to Model and Fix Them

For code generated from the model, you can trace an error back to your model. These
sections show how to trace specific Code Prover results back to the model.

Error 1: Out of bounds array index

1

On the Results List pane, select the orange Out of bounds array index error that
occurs in the file controller.c.

On the Source pane, click the link $5:76 in comments above the orange error.
/* Transition: '<S5>:75' */

/* Transition: '<S5>:76' */
(*1)++;

/* Qutport: '<Root>/FaultTable' */
controller Y.FaultTable[*i] = 10;

You see that the error occurs due to a transition in the Stateflow chart
synch_and asynch monitoring. You can trace the error to the input variable index of
the Stateflow chart.

7-13

7 rRun Polyspace Analysis on Generated Code

‘EJ_theDmDutSpeed 5

i (entry ‘i‘ Ny
: / IF condition? THEN actiont]
! ELZE action? |
i ENDIF '
E * Compute the pressure threshaold * i
L { IF condition THEN sctiond !
i s ELZEIF condition2 THEN action2 !
E i = index; ELSE action3 '
i IL}; [i={max/Kmax)] 227 :
H ' =l 1
: o 4 =N % :
i 2 j++ E
i FauliTable[]=10; E
E ,H‘ [i=max] PressureThd = faultt,]
' M) 1 E
fles 1 :
i li=0; i+ '
v [FaultTgblelll =7, FauliTable[i] =14 E
i |PresstreThd = 0; PressureThd = fJaulttZ; i
| Jj ;
E (E)c L W :
A /]

You can avoid the Out of bounds array index in several ways. One way is to constrain
the input variable index using a Saturation block before the Stateflow chart.

Error 2: Overflow

1 On the Results List pane, select the orange Overflow error shown below. The error
appears in the file controller.c.

2 On the Source pane, review the error. To trace the error back to the model, click the
link S2/Gain in comments above the orange error.

/* Gain: '<S2>/Gain' incorporates:
* Inport: '<Root>/Battery Info'

7-14

Analyze Code Generated from Simulink Subsystem

* Inport: '<Root>/Rotation'
* Sum: '<S2>/Suml’
*/

Gain = (intl16 T)(((intl6 _T)((in_rotation + in battery info) >> 1) * 24576) >>
10);

You see that the error occurs in the Fault Management subsystem inside a Gain
block following a Sum block.

nt16

B
in1 ol »(1)
o fault1
nt1G
1 .
— |Unit Delay
z
3
2 -+ P
=il E ntig
2 s —
(e _ oz
Gain
In2

You can avoid the Overflow in several ways. One way is to constrain the value of the
signal in_battery info that is fed to the Sum block. To constrain the signal:

1 Double-click the Inport block Battery info that provides the input signal
in_battery_info to the controller subsystem.

2 On the Signal Attributes tab, change the Maximum value of the signal.

The errors in this model occur due to one of the following:

* Faulty scaling, unknown calibrations and untested data ranges coming out of a
subsystem into an arithmetic block.

* Array manipulation in Stateflow event-based modelling and handwritten lookup table
functions.

* Saturations leading to unexpected data flow inside the generated code.
* Faulty Stateflow programming.

7-15

7 rRun Polyspace Analysis on Generated Code

Once you identify the root cause of the error, you can modify the model appropriately to
fix the issue.

Check for Coding Rule Violations

To check for coding rule violations, before starting code analysis:

Right-click the controller subsystem and select Polyspace > Options.

2 In the Configuration Parameters dialog box, select an appropriate option in the
Settings from list. For instance, select Project configuration and MISRA C
2012 AGC Checking.

It is recommended that you run Bug Finder for checking MISRA C:2012 rules. For
Product mode, choose Bug Finder.

3 Click Apply or OK and rerun the analysis.

Annotate Blocks to Justify Results

You can justify your results by adding annotations to your blocks. During code analysis,
Polyspace Code Prover reads your annotations and populates the result with your
justification. Once you justify a result, you do not have to review it again.

1 On the Results List pane, from the drop-down list in the upper left corner, select
File.

2 Inthe file controller.c, in the function controller step(), select the violation
of MISRA C:2012 rule 10.4. The Source pane shows that an addition operation
violates the rule.

3 On the Source pane, click the link S2/Sum1 in comments above the addition
operation.

/* Gain: '<S2>/Gain' incorporates:

* Inport: '<Root>/Battery Info'

* Inport: '<Root>/Rotation'

* Sum: '<S2>/Suml’

*/

Gain = (intl6 _T)(((intl6_T)((in_rotation + in_battery info) >> 1) * 24576) >>
10);

You see that the rule violation occurs in a Sum block.

7-16

See Also

.
i o (1)
v fault
ntiG
1 .
— |Unit Delay
z
3
2 |+ P
=il E nt16
2 s ——
(2 — _ iz
Gain
In3

To annotate this block and justify the rule violation:

a Right-click the block and select Polyspace > Annotate Selected Block > Edit.

Select MISRA-C-2012 for Annotation type and enter information about the rule
violation. Set the Status to No action planned and the Severity to Unset.

¢ Click Apply or OK. The words Polyspace annotation appear below the block,
indicating that the block contains a code annotation.

d Regenerate code and rerun the analysis. The Severity and Status columns on
the Results List pane are prepopulated with your annotations.

See Also

More About
. “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 7-2

7-17

7 rRrun Polyspace Analysis on Generated Code

Analyze S-Function Code

7-18

If you want to check your S-Function code for bugs or errors, you can run Polyspace
directly from your S-Function block in Simulink.

S-Function Analysis Workflow

To verify an S-Function with Polyspace, follow this recommended workflow:

1
2
3

Compile your S-Function to be compatible with Polyspace.

Select your Polyspace options.

Run a Polyspace Code Prover verification using one of the two analysis modes:

* This Occurrence — Analyzes the specified occurrence of the S-Function with the
input for that block.

* All Occurrences — Analyzes the S-Function code with input values from every
occurrence of the S-Function.

Review results in the Polyspace interface.
* For information about navigating through your results, see “Filter and Group
Results” on page 20-2.

* For help reviewing and understanding the results, see “Polyspace Code Prover
Results”.

Compile S-Functions to Be Compatible with Polyspace

Before you analyze your S-Function with Polyspace Code Prover, you must compile your
S-Function with one of following tools:

The Legacy Code Tool with the
def.Options.supportCoverageAndDesignVerifier set to true. See
legacy code.

The SFunctionBuilder block, with Enable support for Design Verifier selected on
the Build Info tab of the SFunctionBuilder dialog box.

The Simulink Coverage function slcovmex, with the option -sldv.

Analyze S-Function Code

Example S-Function Analysis

This example shows the workflow for analyzing S-Functions with Polyspace. You use the
model psdemo_model link sl and the S-Function Command Strategy.

1 Open the model and use the Legacy Code Tool to compile the S-Function
Command Strategy.

% Open Model
psdemo model link sl

% Compile S-Function Command Strategy

def = legacy code('initialize');

def.SourceFiles = { 'command strategy file.c' };

def.HeaderFiles = { 'command strategy file.h' };

def.SFunctionName = 'Command Strategy';

def.OutputFcnSpec = 'intl6 yl = command strategy(uintl6 ul, uintl6 u2)’';
def.IncPaths = { fullfile(matlabroot,

‘toolbox', 'polyspace’, 'pslink', 'pslinkdemos', 'psdemo _model link sl') };
def.SrcPaths = def.IncPaths;
def.Options.supportCoverageAndDesignVerifier = true;
legacy code('compile',def);

Open the subsystem psdemo _model link sl/controller.

Right-click the S-Function block Command Strategy and select Polyspace >
Options.

4 In the Configuration Parameters dialog box, make sure that the following parameters
are set:

* Product mode — Code Prover
* Settings from — Project configuration and MISRA C 2012 checking

* Open results automatically after verification — |¥| On
5 Apply your settings and close the Configuration Parameters.

Right-click the Command Strategy block and select Polyspace > Verify S-Function
> This Occurrence.

7 Follow the analysis in the MATLAB Command Window. When the analysis is finished,
your results open in the Polyspace interface.

7-19

7 rRun Polyspace Analysis on Generated Code

Recommended Model Configuration Parameters for
Polyspace Analysis

For Polyspace analyses, set the following parameter configurations before generating
code. If you do not use the recommended value for SystemTargetFile, you get an error.
For other parameters, if you do not use the recommended value, you get a warning.

Grouping

Command-Line

Name and Location in
Configuration

Code Generation

7-20

Name: SystemTargetFile (Simulink
Coder)

Value: An Embedded Coder Target Language
Compiler (TLC) file.

For example ert.tlc or autosar.tlc.

Location: Code Generation
Name: System target file

Value: Embedded Coder
target file

Name: MatFileLogging (Simulink Coder)

Value: 'off'

Location: Code Generation
> Interface

Name: MAT-file logging

Value: [C] Not selected

Name: GenerateReport (Simulink Coder)

Value: 'on'

Location: Code Generation
> Report

Name: Create code-
generation report

Value: [¥] Selected

Name: IncludeHyperlinksInReport
(Simulink Coder)

Value: 'on'

Location: Code Generation
> Report

Name: Code-to-model

Value: ¥] Selected

Recommended Model Configuration Parameters for Polyspace Analysis

Grouping Command-Line Name and Location in
Configuration
Name: GenerateSampleERTMain (Embedded |Location: Code Generation
Coder) > Templates
Value: 'off' Name: Generate an
example main program
Value: [[1 Not selected
Name: GenerateComments (Simulink Location: Code Generation
Coder) > Comments
Value: 'on' Name: Include comments
Value: ¥ Selected
Name: DefaultParameterBehavior Location: Optimization
(Simulink Coder)
Name: Default parameter
Value: 'Inlined'’ behavior
Value: Inlined
Name: InitFltsAndDblsToZero (Simulink |Location: Optimization
Coder)
Name: Use memset to
Optimization Value: 'on' initialize floats and
doubles to 0.0
Value: [C] Not selected
Name: ZeroExternalMemoryAtStartup Location: Optimization
(Simulink Coder)
Name: Remove root level
Value: 'on' I/0 zero initialization
Value: [l Not selected
Name: SolverType (Simulink) Location: Solver
Solver Value: 'Fixed-Step' Name: Type

Value: Fixed-step

7-21

7 Run Polyspace Analysis on Generated Code

Name: Solver (Simulink) Location: Solver
Value: 'FixedStepDiscrete' Name: Solver

Value: discrete (no
continuous states)

7-22

Configure Advanced Polyspace Options in Simulink

Configure Advanced Polyspace Options in Simulink

Before analyzing generated code in Simulink, you can change some of the default options.
This topic shows how to configure the options and save this configuration.

For getting started with Polyspace analysis in Simulink, see “Run Polyspace Analysis on
Code Generated with Embedded Coder” on page 7-2.

Configure Options

7-23

7 rRun Polyspace Analysis on Generated Code

Set basic options here

‘%% Configuration Parameters: psdemo_model_link_sl/Configuration2 (Active) - O X
Solver Polyspace options (for Embedded Coder generated code) o
Data Import/Export
Math and Data Types Polyspace

» Diagnostics Product mode: | Code Prover [«]
Hardware Implementation Sai o ” - - =
Model Referencing ngs from: |Project configuration |
Simulation Target [] use custom project file emply= Browse for project file

* Code Generation Project configuration: Configure

* Coverage

» HOL Code Generation |:| Enable additional file list Salpct files

*» Design Verifier [] Stub lookup tables
Polyspace v

E »
[ok || cancd || nep | [Apply
Set advanced options here
L4

* Palyspace - O s

File Edit Tools Window Help
&/ Jjal -
- v on -l -.]
J’mdmu_mde{_hk_sl_cmﬁg x| 4 b

Target & Compiler Target & Compiler

' Environment Settings

Inputs & Stubbing I~
- Multitasking Target Language
' Coding Rules & Code Metrics Carce cods i eoe 5
- Bug Finder Analysis -
EI C_ode Prover Verification Target Environment

Verification Assumptions I

Compiler generic

Check Behavior 12 |

- Precision Target processor type Eﬂhtcma-ic ~ Edit
| codcling [(JRespect €30 standard
-~ Reporting

7-24

Configure Advanced Polyspace Options in Simulink

Set basic options

The commonly used options appear in Simulink Configuration Parameters. Select Code >
Polyspace > Options.

Set advanced options

Select Code > Polyspace > Options. From the Configuration Parameters window, you
can access a wider set of options for configuring the analysis. Click the Configure button
beside Project configuration.

For instance, you can:

* Run the code analysis on a remote cluster. Use the option Run Bug Finder or Code
Prover analysis on a remote cluster.

If you use this option, after starting the analysis, you can follow the progress of the
analysis on the remote cluster through the Job Monitor window. Select Code >
Polyspace > Open Job Monitor.

» Stub certain functions for the analysis and then constrain the function output. Use the
options Functions to stub (-functions-to-stub) and Constraint setup
(-data-range-specifications).

If a basic option in the Configuration Parameters window directly conflicts with an

advanced option in the Polyspace window, the former prevails. For instance, in this
situation, Polyspace checks for MISRA C: 2012 rules:

» “Settings from (C)”: You select this basic option Project configuration and
MISRA C 2012 checking for generated code.

* Check MISRA (C:2012 (-misra3): You disable this advanced option.

Share and Reuse Configuration

You can share the basic or advanced options across multiple models.

7-25

7 Rrun Polyspace Analysis on Generated Code

7-26

* Basic options: You can share and reuse the options set in the Configuration Parameters
window. See “Share a Configuration for Multiple Models” (Simulink).

» Advanced options: The advanced options are saved in a separate Polyspace project
associated with your analysis. Share this project across multiple models.

The next sections show how to reuse the advanced options. You can specify the advanced
options just once. You can reuse these advanced options across multiple models and set
only the basic options individually in each model.

Set options from model

Set the advanced options as needed. To see where the associated project file is stored or

change the name of the file, on the Polyspace window toolbar, click the 53 jcon.

Reuse options in another model

To reuse the advanced options in another model, open the Configuration Parameters
window from the model. Select Code > Polyspace > Options.

* Select Use custom project file. Provide the path to the project file previously created
(extension .psprj).

» For Settings from, select Project configuration so that the settings in your
project are used.

If you want to check for additional issues, for instance MISRA C: 2012 violations,
select Project configuration and MISRA C 2012 checking for generated
code.

See Also

More About
. “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 7-2

See Also

“Run Polyspace Analysis on Code Generated with TargetLink” on page 7-32

“Default Polyspace Options for Code Generated with Embedded Coder” on page 7-
29

“Default Polyspace Options for Code Generated with TargetLink” on page 7-34

7-27

7 rRrun Polyspace Analysis on Generated Code

How Polyspace Analysis of Generated Code Works

7-28

When you run Polyspace on generated code, the software automatically reads the
following information from the generated code:

initialize() functions
terminate() functions
step() functions

List of parameter variables
List of input variables

If you run Code Prover, the software uses this information to generate a main function

that:

1 [Initializes parameters using the Polyspace option Parameters (-variables-
written-before-1loop).

2 Calls initialization functions using the option Initialization functions (-
functions-called-before-loop).
Initializes inputs using the option Inputs (-variables-written-in-loop).
Calls the step function using the option Step functions (-functions-called-
in-loop).

5 Calls the terminate function using the option Termination functions (-

functions-called-after-loop).

The main function conceptually looks like this:

init parameters \\ -variables-written-before-loop
init fct() \\ -functions-called-before-loop

while(1){ \\ start main loop

init inputs \\ -variables-written-in-loop

step fct() \\ -functions-called-in-loop
terminate fct() \\ -functions-called-after-loop

Code Prover uses this generated main function to perform the subsequent analysis.

For C++ code that is generated with Embedded Coder, the initialize(), step(), and
terminate() functions and associated variables are either class members or have global
scope.

Default Polyspace Options for Code Generated with Embedded Coder

Default Polyspace Options for Code Generated with
Embedded Coder

In this section...

“Default Options” on page 7-29

“Constraint Specification” on page 7-29

“Recommended Polyspace options for Verifying Generated Code” on page 7-30
“Hardware Mapping Between Simulink and Polyspace” on page 7-30

Default Options

For Embedded Coder code, the software sets the following verification options by default:

-sources path _to _source_code

-D PST_ERRNO

-D main=main_ rtwec

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include
-functions-to-stub=[rtIsNaN, rtIsInf,rtIsNaNF, rtIsInfF]
-results-dir results

Note matlabroot is the MATLAB installation folder.

Constraint Specification

You can constrain inputs, parameters, and outputs to lie within specified ranges. Use
these configuration parameters:

* “Input”
* “Tunable parameters”
s “Output”

The software automatically creates a Polyspace constraints file using information from the
MATLAB workspace and block parameters.

7-29

7 rRrun Polyspace Analysis on Generated Code

7-30

You can also manually define a constraints file in the Polyspace user interface. See
“Specify External Constraints” on page 12-2. If you define a constraints file, the
software appends the automatically generated information to the constraints file you
create. Manually defined constraint information overrides automatically generated
information for all variables.

The software supports the automatic generation of constraint specifications for the
following kinds of generated code:

* Code from standalone models

* Code from configured function prototypes

* Reusable code

* Code generated from referenced models and submodels

Recommended Polyspace options for Verifying Generated
Code

For Embedded Coder code, the software automatically specifies values for the following
verification options:

* -main-generator

 -functions-called-in-loop

+ -functions-called-before-loop

 -functions-called-after-loop

* -variables-written-in-loop

* -variables-written-before-loop

In addition, for the option -server, the software uses the value specified in the Send to

Polyspace server check box on the Polyspace pane. These values override the
corresponding option values in the Configuration pane of the Polyspace user interface.

You can specify other verification options for your Polyspace Project through the
Polyspace Configuration pane. See “Configure Advanced Polyspace Options in Simulink”
on page 7-23.

Hardware Mapping Between Simulink and Polyspace

The software automatically imports target word lengths and byte ordering (endianness)
from Simulink model hardware configuration settings. The software maps Device vendor

Default Polyspace Options for Code Generated with Embedded Coder

and Device type settings on the Simulink Configuration Parameters > Hardware
Implementation pane to Target processor type settings on the Polyspace
Configuration pane.

The software creates a generic target for the verification.

7-31

7 rRun Polyspace Analysis on Generated Code

Run Polyspace Analysis on Code Generated with
TargetLink

7-32

You can analyze code generated from Simulink models with TargetLink.

You have fewer capabilities for code generated with TargetLink compared to code
generated with Embedded Coder. For instance, you cannot add annotations to your blocks
that carry over to the generated code and justify known issues.

Configure and Run Analysis
Configure code analysis

Select Code > Polyspace > Options. Change default values of these options if needed.

* “Product mode”: Choose Bug Finder or Code Prover.

* “Settings from (C)”: Enable checking of MISRA or JSF coding rules in addition to the
default checks.

* “Output folder”: Specify a dedicated folder for results. The default analysis runs Code
Prover on generated code and saves the results in a folder results_modelName in
the current working folder.

* “Enable additional file list”: Add C files that are not part of the generated code.
* “Open results automatically after verification”

Analyze code

To analyze the code, select Code > Polyspace > Verify Code Generated for > Selected
Target Link Subsystem. You cannot analyze code generated from the entire model.

You can follow the progress of the analysis in the MATLAB command window.

The results open automatically unless explicitly disabled. By default, the results are saved
in a folder results_ModelName in the current folder. Each new run overwrites previous
results. You can change these behaviors or save the results to a Simulink project using
appropriate configuration parameters.

Run Polyspace Analysis on Code Generated with TargetLink

Note Verification of a 3,000 block model takes approximately one hour to verify, or about
15 minutes per 2,000 lines of generated code.

Review Analysis Results
Review result in code

The results appear on the Results List pane. Click each result to see the source code and
details on the Result Details pane.

Navigate from code to model

Links in code comments show blocks that generate the subsequent lines of code. To see
the blocks in the model, click the block names.

Fix issue
Investigate whether the issues in your code are related to design flaws in the model.

For instance, you might need to constrain the range of signal from Inport blocks. See
“Specify Ranges for Signals” (Simulink).

7-33

7 rRrun Polyspace Analysis on Generated Code

Default Polyspace Options for Code Generated with
TargetLink

7-34

In this section...

“TargetLink Support” on page 7-34
“Default Options” on page 7-34

“Lookup Tables” on page 7-35

“Data Range Specification” on page 7-35
“Code Generation Options” on page 7-36

TargetLink Support

The Windows version of Polyspace Code Prover is supported for versions 3.5 and 4.0 of
the dSPACE® Data Dictionary and TargetLink Code Generator.

Polyspace Code Prover does support CTO generated code. However, for better results,
MathWorks recommends that you disable the CTO option in TargetLink before generating
code. For more information, see the dSPACE documentation.

Because Polyspace Code Prover extracts information from the dSPACE Data Dictionary,
you must regenerate the code before performing an analysis.

Default Options

Polyspace sets the following options by default:

-sources path to source code
-results-dir results folder name

-I path to source code

-D PST_ERRNO

-1 dspaceroot\matlab\TL\SimFiles\Generic
-1 dspaceroot\matlab\TL\srcfiles\Generic
-1 dspaceroot\matlab\TL\srcfiles\i86\LCC
-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

Default Polyspace Options for Code Generated with TargetLink

-functions-to-stub=[rtIsNaN, rtIsInf,rtIsNaNF, rtIsInfF]
-ignore-constant-overflows

-scalar-overflows-behavior wrap-around

-boolean-types Bool

Note dspaceroot and matlabroot are the dSPACE and MATLAB tool installation
directories respectively.

Lookup Tables

By default, Polyspace provides stubs for the lookup table functions. The dSPACE data
dictionary is used to define the range of their return values. A lookup table that uses
extrapolation returns full range for the type of variable that it returns. You can disable
this behavior from the Polyspace configuration menu.

Data Range Specification

You can constrain inputs, parameters, and outputs to lie within specified data ranges. See
“Specify Ranges for Signals” (Simulink).

The software automatically creates a Polyspace constraints file using the dSPACE Data
Dictionary for each global variable. The constraint information is used to initialize each
global variable to the range of valid values as defined by the min..max information in the
data dictionary. This information allows Polyspace software to model real values for the
system during analysis. Carefully defining the min-max information in the model allows
the analysis to be more precise, because only the range of real values is analyzed.

Note Boolean types are modeled having a minimum value of 0 and a maximum of 1.

You can also manually define a constraint file in the Polyspace user interface. See “Specify
External Constraints” on page 12-2. If you define a constraint file, the software

appends the automatically generated information to the constraint file you create.
Manually defined constraint information overrides automatically generated information
for all variables.

Constraints cannot be applied to static variables. Therefore, the compilation flags -D
static=is set automatically. It has the effect of removing the static keyword from the

7-35

7 rRun Polyspace Analysis on Generated Code

7-36

code. If you have a problem with name clashes in the global name space, either rename
the variables or disable this option in Polyspace configuration.

Code Generation Options

From the TargetLink Main Dialog, it is recommended to:

* Set the option Clean code

* Unset the option Enable sections/pragmas/inline/ISR/user attributes

* Turn off the compute to overflow (CTO) generation. Polyspace can analyze code
generated with CTO, but the results may not be as precise.

When you install Polyspace, the t1cgOptions variable is updated with
'PolyspaceSupport', 'on' (see variable in 'C:\dSPACE\Matlab\T1l\config
\codegen\tl pre codegen hook.m' file).

See Also

Related Examples
. “Run Polyspace Analysis on Code Generated with TargetLink” on page 7-32

External Websites
. dSPACE - TargetLink

http://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm

Troubleshoot Navigation from Code to Model

Troubleshoot Navigation from Code to Model

When you run Polyspace on generated code, in the analysis results, you see links in code
comments. The links show names of blocks that generate the subsequent lines of code. To
see the blocks in the model, you click the block names in the links.

/* Sum: '<56>/5um’ incorporates:

* UnitDelay: '<56>/Unit Delay'
* S

Sum = (intl6_T) (in pressure - pademo model link sl DWork.UnitDelay DSTRIE b); COde. with
e e L pOSSIble overflow
(orange)
G Or—f s »(D responsible for

B faultl code
int18

- nt16
* sf16_E1 nt16

>
uint16 int1
GOl . iz

This topic shows the issues that can happen in navigation from code to model.

7-37

7 rRrun Polyspace Analysis on Generated Code

Links from Code to Model Do Not Appear

See if you are looking at source files (. c or . cpp) or header files. Header files are not
directly associated with blocks in the model and do not have links back to the model.

Links from Code to Model Do Not Work

You may encounter issues with the back-to-model feature if:

* Your operating system is Windows Vista™ or Windows 7; and User Account Control
(UAC) is enabled or you do not have administrator privileges.

* You have multiple versions of MATLAB installed.

To reconnect MATLAB and Polyspace:

Close Polyspace.
2 At the MATLAB command-line, enter pslinkfun('enablebacktomodel').

When you open your Polyspace results, the hyper-links will highlight the relevant
blocks in your model.

Your Model Already Uses Highlighting

If your model extensively uses block coloring, the coloring from this feature may interfere
with the colors already in your model. You can change the color of blocks when they are
linked to Polyspace results. For instance, to change the color to magenta, use this
command:

color = 'magenta’;

HILITE DATA = struct('HiliteType', 'find', 'ForegroundColor', 'black"',
'BackgroundColor', color);

set param(0, 'HiliteAncestorsData', HILITE DATA)

The color can be one of the following:

« ‘'cyan'

* 'magenta’

* 'orange'

* 'lightBlue’

7-38

Troubleshoot Navigation from Code to Model

'red’
‘green’
'blue’
'darkGreen'

7-39

7 rRrun Polyspace Analysis on Generated Code

Run Polyspace on C/C++ Code Generated from MATLAB

Code

7-40

After generating C/C++ code from MATLAB code, you can independently check the
generated code for:

* Bugs or defects and coding rule violations: Use Polyspace Bug Finder.
* Run-time errors: Use Polyspace Code Prover.

Whether you generate code in the MATLAB Coder™ app or use codegen, you can follow
the same workflow for checking the generated code.

This tutorial uses the MATLAB Coder example averaging filter. To copy the required
MATLARB files into a temporary folder and change to the folder, enter:

coderdemo_setup('coderdemo averaging filter');
The example shows a Code Prover analysis. You can follow a similar workflow for Bug

Finder.

Prerequisites
To run this tutorial:

* You must have an Embedded Coder license. The MATLAB Coder app does not show
options for running Polyspace unless you have an Embedded Coder license.

* You must be familiar with how to open and use the MATLAB Coder app or the
codegen command. Otherwise, see the MATLAB Coder Getting Started.

Run Polyspace Analysis

In the MATLAB Coder app, generate code from the file averaging filter.mand
analyze the generated code.

1 Generate code.

From the entry-point function in the file, generate standalone C/C++ code (a static
library, dynamically linked library, or executable program) in the MATLAB Coder app.
The function has one input. Explicitly specify a data type for the input, for instance, a
1 X 100 vector of type double, or provide a file for deriving data types.

Run Polyspace on C/C++ Code Generated from MATLAB Code

2 Analyze the generated code.

After code generation, open the Polyspace pane and click Run.

f2] MATLAB Coder - averaging_filter.prj - O x

D Generate Code GENERATE v VERIFY CODE

Product mode: | Code Prover ~
Results type: | Based on Polyspace configuration ~

Qutput felder: |results_averaging_filter

P Advanced Settings

[ave
[(] avel
[

& main.c 1

[rt_nonfinite.c
B rtGetinf.c Target Build Log | Variables

o

[3) rtGetNal.c Variable Type Size
averaging_filter_intialize.h

averaging_filter_terminateh :
averaging_filter_types.h : EEE Jes
averaging_filter.h
main.h y double Tx5
rt_nonfinite.h
rtGetinf.h
rtGetMah.h

rhadunec b

Back Next)

buffer double 16x1

AE‘E'E'E'E’E’E’

If the analysis is completed without errors, the Polyspace results open automatically.
If you close the results, you can reopen them from the final page in the app, under
the section Generated Output. The results are stored in a subfolder

results averaging filter in the folder containing the MATLAB file.

To script the preceding workflow, run:

7-41

7 rRun Polyspace Analysis on Generated Code

7-42

% Copy demo files into a temporary folder
coderdemo_setup('coderdemo averaging filter');

% Generate code

codeName = 'averaging filter';
codegenFolder = fullfile(pwd, 'codegenFolder');
codegen(codeName, '-config:lib', '-c', '-args', ...

{zeros (1,100, 'double")}, '-d', codegenFolder);

% Configure Polyspace analysis

opts = pslinkoptions(‘'ec');
opts.ResultDir = ['results ', codeName];
opts.OpenProjectManager = 1;

% Run Polyspace
pslinkrun('-codegenfolder', codegenFolder, opts);

Review Analysis Results

After analysis, the Results List pane shows a list of run-time checks. For an explanation
of the result colors, see “Code Prover Result and Source Code Colors” on page 17-10.

Review the results and determine whether to fix the issues.

1 Filter out results that you do not want to review. For instance, you might not want to
see the green checks.

See an overview of the results on the Dashboard pane. Click the orange section of
the pie chart to filter the list of results on the Results List pane to the one orange
check. Click this orange Overflow check and see the source code for the operation
that can overflow.

If results are grouped by family, to see a flat list, on the Results List pane, from the
E- dropdown, select None.

Run Polyspace on C/C++ Code Generated from MATLAB Code

Check distribution
Proven: 99%

Green (32) =~ Orange (1)

_ vll‘]:j'.;.NEWv <32 5» Showing 1/90 ¥
Family:... ¥ Group & Check “f File ~1 ¥ Function

:wm averaging_filter.c averaging_filter ()

/* Compute the current average value of the window and */
/* write result */
b_y = buffer[0];
for (k = 0; k < 15; ke#) {
buffer[l + k] = dv0[k];
b y = buffer[k + 11;

2 Find the root cause of each run-time error.

On the Source pane, use right-click navigation tools and tooltips to identify the root
cause of the check. In this case, you see that the + operation overflows because
Polyspace makes an assumption about the input array to the function. The
assumption is that the array elements can have any value allowed by their double
data type. The tooltip on the line buffer[0] = x[i] shows the assumed range.

7-43

7 rRun Polyspace Analysis on Generated Code

7-44

f* Rdd a new sample wvalue to the buffer */

buffer[0] = x[i]*

s+ Com Assignment to element of static array (float 64): [-1.7977E 00 _ 1.7977E 0]
F* owri

b_y = b armay size: 16

for (k |array mndex value: 0

buzze Press "FY' for fooues

by 4= buffer[k + 1];

With an Embedded Coder license, you can easily trace back from the generated C
code to the original MATLAB code. See “Interactively Trace Between MATLAB Code
and Generated C/C++ Code” (Embedded Coder).

Run Analysis for Specific Design Range

You can check the generated code for a specific range of inputs. Range specification helps
narrow down the default assumption that inputs are full-range.

To specify a range for inputs:
1 Open the analysis configuration.

In the Polyspace user interface, switch to the Polyspace project created for the
analysis. Select Window > Reset Layout > Project Setup. On the Project Browser
pane, click the project configuration.

Run Polyspace on C/C++ Code Generated from MATLAB Code

) Project Browser

+IO WM LT HE

=13 averaging_filter
E Project Source Files
--E Praoject Indude Folders
E}ﬁ averaging_filter
Elﬁ Module Source Files
&3 averaging_filter
Elﬁ Configuration
L [
-3 Resuit
averaging_filter [Completed]

lﬁ Project Browser J Results List |

2 Specify a design range for the inputs.

In the Configuration pane, on the Inputs & Stubbing node, set up your

constraints. Click Edit beside Constraint setup. Constrain the range of the first

input to [-100..100].

Mame File Main Generator Called

Global Variables _——-

El---L.Iser Defined Functions
¢ E-averaging_filter() averaging_filter.c |MAIN GENERATOR

v

E...aueraging_ﬁlter.argl averaging_filter.c

oy averaging_filter.* arg1 averaaging_filter.c
H-averaging_filter.arg2 averaging_filter.c

Init Mode

INIT

INIT

INIT

Init Range

-100..100

7-45

7 rRrun Polyspace Analysis on Generated Code

You can overwrite the default constraint template or save the constraints elsewhere.
For information on the columns in this window, see “External Constraints for
Polyspace Analysis” on page 12-6.

3 Rerun the analysis from the Coder app (or at the MATLAB command line) and see the
results.

On the Dashboard pane, you do not see the previous orange overflow anymore.

Check distribution
Proven: 100%:

Green (33)

See Also

More About
. “Configure Advanced Polyspace Options in MATLAB Coder App” on page 7-47

7-46

Configure Advanced Polyspace Options in MATLAB Coder App

Configure Advanced Polyspace Options in MATLAB Coder

App

Before analyzing generated code with Polyspace in the MATLAB Coder App, you can
change some of the default options. This topic shows how to configure the options and
save this configuration.

For getting started with Polyspace analysis in the MATLAB Coder App, see “Run
Polyspace on C/C++ Code Generated from MATLAB Code” on page 7-40.

Configure Options

7-47

7 rRun Polyspace Analysis on Generated Code

f2] MATLAB Coder - averaging_filter.prj - O X
»)))) Generate Code GENERATE = VERIFY CODE
avel
Product mode: | Code Prover ~
Results type: | Based on Polyspace configuration ~
Output folder: | results_averaging_filter
W Advanced Settings
Polyspace Configuration
Reuse existing configuration
F Template configuration file: | ging_filter\averaging_filter.psprj B
ave)
[5) ave Update configuration: Configure
B
B ma Check code generation options: | On (proceed with warnings) ~
B rr
[G Results
B e
B ave Make output folder name unique by adding a suffix
B ave Open results automatically
ave)
B ave o
B ma ' Run
B ort_r
B G
B G
B rtwiypes.h
4 report midatx buffer double 16 %1
riw_proj.tmw

2 . Lo
(Back l»#) Source Code generation succeeded. View Report

The default analysis runs Code Prover based on a default project configuration. The
results are stored in a folder result project name in the current working folder.

You can change these options in the MATLAB Coder App itself:

* Product mode: Select Code Prover or Bug Finder.

* Results type: Check for MISRA C:2004 (MISRA AC AGC) or MISRA C:2012 rule
violations, in addition to or instead of the default checkers.

7-48

Configure Advanced Polyspace Options in MATLAB Coder App

* Output folder: Choose an output folder name. To save the results of each run in a
new folder, under Advanced Settings, select Make output folder name unique by
adding a suffix.

* Check code generation options: Choose to see warnings or errors if the code
generation uses options that can result in imprecise Code Prover analysis.

For instance, if the code generation setting Use memset to initialize floats and
doubles to 0.0 is disabled, Code Prover can show imprecise orange checks because of
approximations. See “Orange Checks in Code Prover” on page 17-63.

To see the other default options or update them, under Advanced Settings, click the
Configure button. You see the options on a Configuration pane.

For more information on the options, see Bug Finder Analysis Options (Polyspace Bug
Finder) or Code Prover Analysis Options.

Share and Reuse Configuration

If you change some of the default options in the Configuration pane, your updated
configuration is saved as a . psprj file in the results folder. Using this file, you can reuse
your configuration across multiple MATLAB Coder projects.

To reuse a previous configuration in the current project opened in the MATLAB Coder
App, under Advanced Settings, select Reuse existing configuration. For Template
configuration file, provide the .psprj file that stores the previous configuration.

The Results type option in the MATLAB Coder app still shows Based on Polyspace
configuration but the configuration used is the one that you provided.

More About
. “Run Polyspace on C/C++ Code Generated from MATLAB Code” on page 7-40

7-49

Run Polyspace Analysis in IDE
Plugins

8 Run Polyspace Analysis in IDE Plugins

Run Polyspace Analysis in Eclipse

If you develop code in Eclipse or an Eclipse-based IDE, you can install the Polyspace
plugin and run a Polyspace analysis on the source files in an Eclipse project. You can
check for bugs each time you save your code, or explicitly run an analysis.

This topic describes how to set up a Polyspace analysis in Eclipse and review analysis
results.

8-2

Run Polyspace Analysis in Eclipse

% Polyspace - My_project/src/My_project.c - Eclipse

File Edit Source Refactor MNavigate Search Project Run Polyspace Window Help

[m] hed

A E I REA S =Sl S E T I e e |Quick Access || | B@c/Co+ |V Polyspace
[P Project Explorer 37 2 <:==(>| ¢ ¥ = 08 [€] My_projectc &1 = 8
v [My_project #include <stdlib.h> L]

v B src #include <stdio.n>
W @ My_project.c ~ int increment content of address(int base_wval, int shifc)
B stdioh {
A1 stdlib.h int 3;
@ increment_content_of_address(int, i int* pi = (int*)malloc(sizeof(int});
if (pi == NULL) return 0O;
*pi = base_wal:
free(pi); -
3 = Bpi + shife; =
/* Defect: Reading a freed pointer */
return j:
}
< >
' Result Details &3 = B gl problems ¥ Polyspace Run - Bug Finder ¥ Results List - Bug Finder 13 P v = O
[] variable trace My_project.c / increment_content_o | | All results w ﬁNew v Showing 2/2
Check Information File Class Fi

12 § = *pi + shift;

Result Review
Status Unreviewed w | |Enter of
Severity Unset ~

Use of previously freed pointer (Impact: High)
Pointer is deallocated.
It cannot be dereferenced.

Event File

1 Call to 'free' My_project.c i

2 Use of previously freed pointer My_project.c ir|

Use of previously freed pointer Impact: High My _praject.c Global Scope

Missing reset of freed painter Impact: Low

My_project.c

Global Scope

After you install the Polyspace plugin, you see a Polyspace menu and right-click options

in the Project Explorer to run a Polyspace analysis.

The analysis progress bar, quick run buttons and analysis results appear on specific
panes. To avoid cluttering your window, you can confine these panes to the Polyspace

8-3

8 Run Polyspace Analysis in IDE Plugins

perspective. Select Window > Open Perspective > Other. In the Open Perspective
dialog box, select Polyspace. You can switch back to other perspectives using tabs on the
upper right.

Configure and Run Analysis
Configure analysis

Polyspace analyzes the source files in your Eclipse project. In addition to sources, the
analysis uses the following information:

* Compiler: The compiler toolchain can be extracted from your Eclipse project. If the
project directly refers to a compilation toolchain such as MinGW GCC, the Polyspace
analysis can use the information.

e =)
2o R

C++ Project —>

Create C++ project of selected type [

Project name: HelloWorld

[¥] Use default location

cation: | Chcdtworkspacel\HelloWorld Browse...
Project type: Toolchains:
4 [= Executable MinGW GCC

@ Empty Project
L@ Hello Wodd C:++ Project
i [= Shared Library

8-4

Run Polyspace Analysis in Eclipse

If your Eclipse project uses a build command (makefile) that has the compiler
information, you must perform some additional steps to extract this information for

the Polyspace analysis.

If Polyspace cannot extract the compiler information from your build command, you

can also explicitly specify your compiler options explicitly like other analysis options.

See “Specify Polyspace Compiler Options Through Eclipse Project” on page 8-8.

* Other analysis options: You can retain the default analysis options or adjust them to

your requirements. Select Polyspace > Configure Project.

“ Polyspace X
File Edit Teols Window Help
GIE] -|Q |
onmngurans o o
My_project = e
[~ Target & Compiler Bug Finder Analysis
- Macros
- Environment Settings
""" Inputs & Stubbing Find defects | custom w~
----- Multitasking . -
----- Coding Rules & Code Metrics = A Numerical '\
M Bug Finder Analysis |[NNMEE_-— N Integer division by zero (Impact: High)
- Code Prover Verification || Float division by zero (Impact: High)
L Verification Assumptions || 7 Integer conversion overflow (Impact: High)
Check Behavier || = Unsigned integer conwversion overflow (Impact: Low)
----- Sign change integer conversion overflow (Impact: Medium)
----- Float conversion overflow {(Impact: High)
_____ Reporting -] Integer overflow {Impact: Medium)
_____ Run Settings -] Unsigned integer overflow (Impact: Low)
_____ Advanced Settings -] Float overflow (Impact: Low)
]

----- Absorption of float operand (Impact: High)

The key options are:

8-5

8 Run Polyspace Analysis in IDE Plugins

8-6

+ Target & Compiler: If you have not specified your compiler information through
your Eclipse project, use these options.

* Bug Finder Analysis: Specify which defects to check for in a Bug Finder analysis.

* Code Prover Verification, Check Behavior, Precision: Modify the behavior of
checkers in a Code Prover verification.

Note that you cannot run a remote analysis using the Polyspace plugin for Eclipse. To
send the analysis job to a remote cluster, start the analysis from the Polyspace user
interface or using scripts. See “Polyspace Analysis on Clusters”.

Run analysis

After configuration, you can start and stop a Polyspace analysis explicitly from the
Polyspace menu, right-click options on your Eclipse project or quick run buttons in the
Polyspace panes. You can switch between Bug Finder and Code Prover using the ¥ icon
on the Polyspace Run pane.

Run analysis when saving code

In the Polyspace perspective, you can set up a Bug Finder analysis that runs each time
you save your code. To enable this analysis, select Polyspace > Run Fast Analysis on
Save. The analysis runs quickly but looks for a reduced set of defects. You get the same
results as if you had specified the analysis option Use fast analysis mode for Bug
Finder (-fast-analysis).

Review Analysis Results
View results after analysis

After analysis, the results appear on the Results List pane. Click each result to see the
source code and details on the Result Details pane.

See Also

= O |2 Problems ¥ Polyspace Run - Bug Finder V' Results List - Bug Finder 53

My_proect.c ncrement conent of addressO) | [Alrests] FaNew [T~ Show

Fie Cass
My_project.c Giobal scope

Use of previously freed pointer

[Missing reset of freed pointer

View results as available

Some results of a Bug Finder analysis are often available before the analysis is complete.

If so, the icon in the Polyspace Run - Bug Finder pane turns to J—‘-—t To load available
results, click this icon. The icon shows up again when more results are available.

Address results

Based on the result details, fix your code or justify the result. To justify a result, set its
Status to Justified, No Action Planned or Not a Defect. To hide a justified result
in the next run, add the status as annotation to your source code. For quick annotation,
right-click the result and select Hide Result and Annotate Code.

See Also

Related Examples

. “Specify Polyspace Compiler Options Through Eclipse Project” on page 8-8
. “Interpret Polyspace Code Prover Results” on page 17-2

. “Address Polyspace Results Through Bug Fixes or Comments” on page 19-2
. “Filter and Group Results” on page 20-2

8 Run Polyspace Analysis in IDE Plugins

Specify Polyspace Compiler Options Through Eclipse
Project

8-8

Polyspace analysis in Eclipse uses a set of default analysis options preconfigured for your
coding language and operating system. For each project, you can customize the analysis
options further.

» Compiler options: You specify the compiler that you use, the libraries that you include
and the macros that are defined for your compilation.

+ Ifyour Eclipse project directly refers to a compilation toolchain, the analysis
extracts the compiler options from the project.

See “Eclipse Refers Directly to Your Compilation Toolchain” on page 8-8.

+ If the project refers to your compilation toolchain through a build command, the
analysis cannot extract the compiler options. Trace the build command to extract
the options.

See “Eclipse Uses Your Compilation Toolchain Through Build Command” on page 8-
9.

* Other options: Through the other options, you specify which analysis results you want
and how precise you want them to be.To specify these options in Eclipse, select
Polyspace > Configure Project.

For information on how to run Polyspace from Eclipse, see “Run Polyspace Analysis in
Eclipse” on page 8-2.
Eclipse Refers Directly to Your Compilation Toolchain

When setting up your Eclipse project, you might be directly referring to your compilation
toolchain without using a build command. For instance, you might refer to the MinGW
GCC toolchain in the project setup wizard as below.

Specify Polyspace Compiler Options Through Eclipse Project

C++ Project —

Create C++ project of selected type '

Project name: HelloWorld

[¥] Use default location

{u)
=
m

Chedt\workspace\HelloWorld

Project type: Toolchains:

4 (= Executable | MinGW GCC
@ Empty Project
& Hello World C++ Project I

(= Shared Library

The compiler options from your Eclipse project, such as include paths and preprocessor
macros, are reused for the analysis.

You cannot view the options directly in the Polyspace configuration but you can view them
in your Eclipse editor. In your project properties (Project > Properties), in the Paths
and Symbols node:

* See the include paths under the Includes tab.

During analysis, the paths are implicitly used with the analysis option Include
folders (-I).

* See the preprocessor macros under the Symbols tab.

During analysis, the macros are implicitly used with the analysis option
Preprocessor definitions (-D).

Eclipse Uses Your Compilation Toolchain Through Build
Command

When setting up your Eclipse project, instead of specifying your compilation toolchain
directly, you might be specifying it through a build command. For instance, in the Wind

8-9

8 Run Polyspace Analysis in IDE Plugins

River Workbench IDE (an Eclipse-based IDE), you might specify your build command as
shown in the following figure.

Binary Parser

> Build Properties
Builders

» C/C++ General
Code Coverage Analyzer
Project Info
Project References
Refactoring History
Run/Debug Settings
Task Tags

» Walidation

@ Properties for testWR. -_— uﬂl&]
Build Properties M= 4
: Resource

Specify all build properties.

Build support

) Dlisabled

©# Build Support and Specs |f§‘ Toolsl = Paths-l # Defines | =4 Libraries-l % Variables

@ Managed build (makefiles generated by the IDE)

Build command: 9,makeprefix® make --no-print-directory

-

If you use a build command for compilation, the analysis cannot automatically extract the

compiler options. You must trace your build command.

1 Replace your build command:

matlabroot\polyspace\bin\polyspace-configure.exe

-output-project
PolyspaceWorkspace\Projects\EclipseProjects\Name\Name.psprj buildCommand

Here:

» matlabRoot is the MATLAB installation folder.

* polyspaceworkspace is the folder where your Polyspace files are stored. You
specify this location on the Project and Results Folder tab in your Polyspace

preferences (Tools > Preferences in the Polyspace user interface).
* Name is the name of your Eclipse project.

* buildCommand is the original build command that you want to trace.

For instance, in the preceding example, buildCommand is the following:

%makeprefix%s make --no-print-directory

2 Build your Eclipse project. Perform a clean build so that files are recompiled.

8-10

See Also

For instance, select the option Project > Clean. Normally, the option runs your build
command. With your replacement in the previous step, the option also traces the
build to extract the compiler options.

3 Restore the original build command and restart Eclipse.

You can now run analysis on your Eclipse project. The analysis uses the compiler
options that it has extracted.

See Also

Related Examples

. “Run Polyspace Analysis in Eclipse” on page 8-2

8-11

Running Polyspace on AUTOSAR
Code

» “Using Polyspace in AUTOSAR Software Development” on page 9-2

* “Benefits of Polyspace for AUTOSAR” on page 9-6

* “Run Polyspace on AUTOSAR Code” on page 9-15

* “Troubleshoot Polyspace Analysis of AUTOSAR Code” on page 9-22

* “Run Polyspace on AUTOSAR Code with Conservative Assumptions” on page 9-28

9 Running Polyspace on AUTOSAR Code

Using Polyspace in AUTOSAR Software Development

Whatever your role in the AUTOSAR software development workflow, you can benefit
from Polyspace. These sections describe some of the situations where you can use
Polyspace to check the C code implementation of Software Components.

For an overview of Polyspace for AUTOSAR, see “Benefits of Polyspace for AUTOSAR” on
page 9-6.

Check if Implementation of Software Components Follow
Specifications

Suppose you are part of an OEM specifying the structure and runtime behavior of the
Software Component-s in the application layer, including the data types, events and
runnables. You want to check if the tier-1 suppliers providing the code implementation of
the Software Component-s follow your specifications.

Check the code implementation of each Software Component individually or see an
overview of results for all Software Component implementations. To see an overview:

1 Run Polyspace on all Software Components and upload all results to Polyspace
Metrics.
2 Inthe results, see if:
* All runnables are implemented. See if the checker AUTOSAR runnable not
implemented shows any result.

* All runnables implementations conform to data constraints in the specifications.
See if the checker Invalid result of AUTOSAR runnable implementation
shows any result.

* Arguments to Rte functions follow data constraints in the specifications. See if
the checker Invalid use of AUTOSAR runtime environment function shows
any result.

* There are other possibilities of run-time errors.

To begin checking the code implementation of Software Component-s against ARXML
specifications:

1 Provide the locations of your ARXML and code folders. Run Polyspace to check the
code implementation of all Software Component-s against ARXML specifications.

9-2

Using Polyspace in AUTOSAR Software Development

If you run verification on a remote server, you can specify that all results must be
uploaded to Polyspace Metrics after verification. Otherwise, you can upload them
later.

See “Run Polyspace on AUTOSAR Code” on page 9-15.

2 Upload all results to Polyspace Metrics. When uploading, make sure you use the same
project name and version number for all results.
See “Generate Code Quality Metrics” on page 22-11.

3 In Polyspace Metrics, click the project name and see a summary of the results.

Run-Time Errors

Verification Verification Status Confirmed| Run-Time reen . — - Pp[‘:;i[‘:;‘ls
Defecis Selectivity = ’
E|_| 1.0 completed (PASS2) 98.6% 338 1 = 1 0.0%
B 1] pkg 151002 swe001 bhv001 completed (PASS2) 93.4% 308 1 5 0.0%
B 1] pkg 15002 swe002.bhy completed (PASS2) 100.0% 0 1 0.0%

See “View Code Quality Metrics” on page 22-14.

Alternatively, you can ask for code analysis reports from the suppliers. The reports are
produced individually for each Software Component. To begin, see “Generate Reports” on
page 21-2.

Assess Impact of Edits to Specifications

Suppose you are part of an OEM and want to add to or edit the specifications that you
provide to a tier-1 supplier. Before making the edits, you want to test their potential
impact on the existing code implementation.

Check the code implementation of Software Component-s that are likely to be impacted.
Compare Code Prover analysis results that use the modified specifications with results

that use the original specifications.

To begin comparing verification results for a Software Component:

1 Run Polyspace using the original specifications.

See “Run Polyspace on AUTOSAR Code” on page 9-15.

9-3

9 Running Polyspace on AUTOSAR Code

9-4

2 Upload the result for a Software Component to Polyspace Metrics.

See “Generate Code Quality Metrics” on page 22-11.
Rerun Polyspace using the updated specifications.

4 Upload the new result to Polyspace Metrics. Use the same project name but a
different version number when uploading the result.

5 See if there is an increase in the number of red, gray or orange checks.

See “View Trends in Code Quality Metrics” on page 22-25.

Check Code Implementation for Run-time Errors and Mismatch
with Specifications

Suppose you are part of a tier-1 supplier providing the code implementation of Software
Components based on specifications from an OEM. You want to check for run-time errors
such as overflow and division by zero or violations of data constraints in the ARXML
specifications.

Check Software Components that you implemented. Use the advanced option -autosar-
behavior to check specific Software Components.

To begin:

1 Run Polyspace on the code implementation of your Software Component-s.

2 Ifyou update the implementation of a Software Component, you can continue to use
the same project to reanalyze your code. The later analysis only consider the
Software Component-s whose implementation changed since the previous analysis.

See “Run Polyspace on AUTOSAR Code” on page 9-15.

Check Code Implementation Against Specification Updates

Suppose you are part of a tier-1 supplier implementing specifications from an OEM. You
receive some updates to the specifications. If you had been running Polyspace to compare
your code against the specifications, you can quickly check if the specification changes
introduced any errors.

See Also

In this case, you will already have set up your project, possibly with additional options to
emulate your compiler. You can reuse these options when creating a new project from the
new ARXML specifications.

See Also

More About

. “Benefits of Polyspace for AUTOSAR” on page 9-6

. “Run Polyspace on AUTOSAR Code” on page 9-15

. “Review Polyspace Results on AUTOSAR Code” on page 18-107

9 Running Polyspace on AUTOSAR Code

Benefits of Polyspace for AUTOSAR

Polyspace for AUTOSAR runs static program analysis on code implementation of
AUTOSAR Software Component-s. The analysis looks for possible run-time errors or
mismatch with specifications in the AUTOSAR XML (ARXML).

Polyspace for AUTOSAR reads the ARXML specifications that you provide and
modularizes the analysis based on the Software Component-s in the ARXML
specifications. The analysis then checks each module for:

Mismatch with AUTOSAR specifications: These checks aim to prove that certain
functions are implemented or used in accordance with the specifications in the
ARXML. The checks apply to runnables (functions provided by the Software
Component-s) and to the usage of functions supplied by the Run-Time Environment
(RTE). See also:

* AUTOSAR runnable not implemented
* Invalid result of AUTOSAR runnable implementation
* Invalid use of AUTOSAR runtime environment function

For instance, if an RTE function argument has a value outside the constrained range
defined in the ARXML, the analysis flags a possible issue.

Run-time errors: These checks aim to prove the absence of certain types of run-time
errors in the bodies of the runnables (for instance, overflow). The proof uses the
specifications in the ARXML to determine precise ranges for runnable arguments and
RTE function return values and output arguments. For instance, the proof considers
only those values of runnable arguments that are specified in their AUTOSAR data

types.

After analysis, you can open the results for each module in the Polyspace user interface.
When reviewing a mismatch between code and ARXML specifications, you can navigate to
the relevant extract of the ARXML.

This topic shows how Polyspace is AUTOSAR-aware and helps in the AUTOSAR
development workflow. For the actual steps for running Polyspace, see:

9-6

“Run Polyspace on AUTOSAR Code” on page 9-15
“Review Polyspace Results on AUTOSAR Code” on page 18-107

Benefits of Polyspace for AUTOSAR

Polyspace Modularizes Analysis Based on AUTOSAR
Components

swc

:§§ -
|8 SI
ARXML
Polyspace for AUTOSAR
~ _— e

V. W

Polyspace Results

Polyspace for AUTOSAR modularizes your code by reusing the modularization already
present in your ARXML specifications. The modularization is based on the Software
Component-s in the ARXML specifications. Modularizing your code is essential to avoid
long analysis times and allow more precise analysis.

A Software Component consists of one or more runnables. You implement
runnables through functions.

A Software Component (SWC) is the unit of functionality in the application layer of the
AUTOSAR architecture. A Software Component has an Internal Behavior that consists of
data types, events, one or more runnable entities (tasks), and other information.

9 Running Polyspace on AUTOSAR Code

The AUTOSAR XML lists the Internal Behavior of a Software Component like this
(AUTOSAR XML schema version 4.0):

<APPLICATION-SW-COMPONENT-TYPE>
<SHORT -NAME>swc001</SHORT - NAME>
<INTERNAL - BEHAVIORS>
<SWC-INTERNAL-BEHAVIOR>
<SHORT -NAME>bhv001</SHORT - NAME>
<DATA-TYPE-MAPPING-REFS>

</DATA-TYPE-MAPPING-REFS>
<EVENTS>
</EVENTS>
<RUNNABLE-ENTITY>
<SHORT - NAME>foo</SHORT - NAME>

</RUNNABLE-ENTITY>
</SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>
<APPLICATION-SW-COMPONENT-TYPE>

As a developer, you implement the bodies of these runnable entities through handwritten
C functions or functions generated from a Simulink model.

iOperations ApplicationError foo(
Rte Instance const self,
app_Array 2 n320to320ConstRef aInput,
app_Array 2 n320to320Ref alOutput,
app_Enum@01Ref alut2)

{

/* Your implementation */

}

Polyspace collects the source code for each Software Component into a module.

Using the information in the AUTOSAR XML, Polyspace for AUTOSAR creates a project
with a separate module for each Software Component. In a single module, Polyspace
collects the source code (. c and . h files) containing the implementation of all runnables
in the Software Component and generates any additional header file required for the
implementation.

A Polyspace project with two modules from two Software Component-s can look like this:

9-8

Benefits of Polyspace for AUTOSAR

-
[T Project Source Files
&[5 Project Indude Folders
=+ pko.tst002.swc001.bhvool —» Module
(=13 Module Source Files

- 23 polyspace
=3 AUTOSAR Generated main
=23 {359 to exercise runnables
=1 tst002
=11 swc01 T
=+ bhvoo1
: - €| psar_prove_main.c
-3 code
i i-[£] dep.c l
+{c] dep2.c — > Sources
i-{c] dep3.c
=] swc00l.c _
-3 Configuration
¥ options
-3 Result

“-|s5| prover [Completed]
=1 pkg.tst002.5wc002.bhv
[#-"=] Module Source Files
- Configuration
-] Result

The module name corresponds to the fully qualified name of the Internal Behavior of the

Software Component.

For instance, the name pkg.tst002.swc001.bhv001 corresponds to this XML structure

(AUTOSAR XML schema version 4.0):

<AR-PACKAGE>
<SHORT - NAME>pkg</SHORT - NAME>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>tst002</SHORT - NAME>
<ELEMENTS>
<APPLICATION-SW-COMPONENT-TYPE>
<SHORT -NAME>swc001</SHORT - NAME>

9 Running Polyspace on AUTOSAR Code

9-10

<SWC-INTERNAL-BEHAVIOR>
<SHORT -NAME>bhv001</SHORT - NAME>

</SWC-INTERNAL-BEHAVIOR>
</APPLICATION-SW-COMPONENT-TYPE>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>
</AR-PACKAGE>

If bhvOO1 has one runnable foo, Polyspace collects the files containing the function foo
and the functions called in foo into one module.

For this modularization, you simply provide the two folders with ARXML and
source files.

Polyspace for AUTOSAR uses the fact that the required information is already present in
your ARXML specifications and modularizes your code. You do not need to know the
details of the ARXML specifications or code implementation for running the analysis. You
simply provide the folders containing your ARXML and source files.

Without this automatic modularization, you have to manually add the implementation of
each Software Component (the files with the entry point functions implementing
runnables, the functions called within, and so on) to a module. Not only that, you have to
define the interface for each runnable, that is, the range of values for inputs based on
their data types.

Polyspace Detects Mismatch Between Code and AUTOSAR
XML Spec

Polyspace for AUTOSAR detects mismatch between the ARXML specifications of
AUTOSAR Software Component-s and their code implementation. The mismatch can
occur at run time between data constraints in the ARXML and actual values of function
arguments in the code. The mismatch detection occurs for certain functions only:
functions implementing the runnables and Rte functions used in the runnables. The
arguments of these functions have data types specified in the ARXML.

Benefits of Polyspace for AUTOSAR

AUTOSAR runnables communicate via Rte_ functions.

The implementation of an AUTOSAR runnable uses functions provided by the run-time
environment (RTE) for communication with runnables in other SWCs. For instance, the
function Rte IWrite runnable port variable can be used to provides write access
to variable from the current runnable.

Rte IWrite step out ed4(self, ed);

The function arguments have data types specified in the ARXML.

These functions have signatures specified in the AUTOSAR standard with parameter data
types that are detailed in ARXML specifications. For instance, the standard defines the
signature of the Rte IWrite function like this, where the type of data is specified in
the ARXML.

void Rte IWrite re p o([IN Rte_Instance], IN data)

When deploying your implementation, an Run-Time Environment generator uses the
information in the ARXML specifications to create header files with data type definitions
for your application. When developing your implementation, you do not have to worry
about details of communication with other SWCs. You simply use the Rte functions and
the data types provided for your implementation.

Likewise, the data types of the inputs, outputs and return value of your runnable are also
listed in the ARXML.

You can constrain data types in the ARXML using data constraints.

In your ARXML specifications, you often limit the values associated with data types using
data constraints. A data constraint specification can look like this (AUTOSAR XML
schema version 4.0):

<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT -NAME>Float n100p4321t0100p8765</SHORT - NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>

9-11

9 Running Polyspace on AUTOSAR Code

9-12

<DATA-CONSTR-REF DEST="DATA-CONSTR">n320t0320</DATA-CONSTR-REF>
. .</SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>

<DATA-CONSTR>
<SHORT-NAME>n320t0320</SHORT - NAME>
<DATA-CONSTR-RULES>
<DATA-CONSTR-RULE>
<PHYS-CONSTRS>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">-320</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">320</UPPER-LIMIT>
<UNIT-REF DEST="UNIT">/pkg/types/units/NoUnit</UNIT-REF>
</PHYS-CONSTRS>
</DATA-CONSTR-RULE>
</DATA-CONSTR-RULES>
</DATA-CONSTR>

When an Rte_ function uses data types that are constrained this way, the expectation is
that values passed to the function stay within the constrained range. For instance, for the
preceding constraint, if an Rte IWrite function uses a variable of type n320t0320, its
value must be within [-320, 320].

If you generate the ARXML in Simulink, the data constraints come from signal ranges in
the model.

At run time, your code implementation can violate data constraints.

The Rte_ functions represent ports in the SWC interface. So, in effect, when you
constrain the data type of an argument in the ARXML, the ports are prepared for data
within that range. However, in your code implementation, when you invoke an Rte
function, you can pass an argument outside a constrained range.

For instance, in this call to Rte IWrite step out e4:
Rte IWrite step out e4d(self, e4d);

the second argument of Rte IWrite step out e4 can have the previously defined
data type n320t0320. But at run time, your code implementation can pass a value
outside the range [-320, 320]. The argument might be the result of a series of previous
operations and one of those operations can cause the out-of-range value.

Benefits of Polyspace for AUTOSAR

app_Enum@O1l e4;
e4 = Rte IRead step in e4(self);

/* Some operation on e4*/

Rte IWrite step out ed(self, e4d);

Polyspace Code Prover checks for possible data constraint violations.

You can either test each invocation of an Rte function to check if the arguments are
within the constrained range and also make sure that the tests cover all execution paths
in the runnable. Alternatively, you can use static analysis that guarantees that all
execution paths leading up to the Rte_function call are considered (up to certain
reasonable assumptions on page 17-55). Polyspace uses static analysis to determine if
arguments to Rte functions stay within the constrained range defined in the ARXML
files.

The checks for mismatch detection in a Polyspace analysis can show results like this.
Here, the second argument in the invocation of RTE IWrite step out e4 violates the
data constraints in the ARXML specifications.

Invalid use of AUTOSAR runtime environment function (2
Warning: Function 'Rte_IWrite_step_out_e4 is called with possibly invalid argument(s)
«» Conditions on first argument 'self (see parameter spec):
+ self meets its specification.
Specification: non-MULL

+ self meets its spedfication.
Specification: allocated

+ self-=Rte_Dummy meets its spedfication.
Specification: [0 .. 255]
Actual value {unsigned int 8): ful-range [0 .. 255]

« Conditions on second argument 'aData’ (see parameter spec):
+ aData meets its spedfication.
Specdification: non-MULL

+ aData meets its spedification.
Specification: allocated

? aData[] may not meet its specification.
Specification: [-320 .. 320]
Actual value (int 32): [-320.. 321]

9-13

9 Running Polyspace on AUTOSAR Code

See Also

Invalid result of AUTOSAR runnable implementation | Invalid use of
AUTOSAR runtime environment function

More About

. “Using Polyspace in AUTOSAR Software Development” on page 9-2
. “Run Polyspace on AUTOSAR Code” on page 9-15
. “Review Polyspace Results on AUTOSAR Code” on page 18-107

9-14

Run Polyspace on AUTOSAR Code

Run Polyspace on AUTOSAR Code

Polyspace for AUTOSAR runs static program analysis on code implementation of
AUTOSAR Software Component-s. The analysis looks for possible run-time errors or
mismatch with specifications in the AUTOSAR XML (ARXML).

To run Polyspace on code implementation of AUTOSAR software components, provide this
information:

* ARXML folder: This folder contains all the .arxml files that define your AUTOSAR
model. The files specify the data types, runnables, events and other information about
the Software Component-s in your AUTOSAR model.

Note that Polyspace can parse an AUTOSAR XML schema only for releases 3.0 and
later.

* Source code folder: This folder contains the C code implementation of the Software
Component-s. The . ¢ files in this folder contain functions implementing the AUTOSAR
runnables and other called functions. The folder can also contain header files
referenced in your source files.

If you reference header files located in another folder, you can provide that location
separately.

The analysis parses your ARXML files, reads your source files and creates a Polyspace
project with a separate module for each Software Component. Polyspace Code Prover
then checks each module for run-time errors or violations of data constraints in the
ARXML at run-time.

This topic shows how to run Polyspace on code implementation of AUTOSAR Software
Component-s. To try the steps, run a Polyspace analysis on the demo files in matlabroot
\help\toolbox\codeprover\examples\polyspace autosar.

Run Polyspace in User Interface

9-15

9 Running Polyspace on AUTOSAR Code

W Specify AUTOSAR information

Specfy AUTOSAR information

ALTOSAR

H:'oroj arsmi_folder
ﬂ:edf}rﬂﬂﬂﬁﬂ source folder
H:'oraj1icode

Spedfy additional indude folders

Folder

&@%H}Rm:uﬂeﬁm_v W stop | Q|

IO WR| LT

=3 llﬂhl'!pilrce

El 7 Project Source Files

Bug Finder

Code Prover

Create new Bug Finder result folder

Create new Code Prover result folder

&I polyspace

b

Run Al Modules

= code
w[c] dep2.c
wo|e]| depd.c
~-|e] sweddl.c
|=] swcO02.c
- [Project Include Folders
-3 pkg.tst002.swc01.bhv001
: = 13 Module Source Files
&[] polyspace
=1 code
b{] dep.e
12] dep2.c
lc] dep3.c
: 1_i'| swol0l.c
= 3 Configuration
Wl ankiane

9-16

Run Polyspace on AUTOSAR Code

Read ARXML and Sources
Specify upfront that the project must be created from AUTOSAR specifications.
1 Select File > New. In the Project-Properties window, select Create from AUTOSAR

specification.
2 Specify the two folders containing your ARXML and source files. Click Run.

The software parses your ARXML specifications and C code implementation and creates a
Polyspace project. Each module in the project references C files that implement one
Software Component. The module name corresponds to the fully qualified name of the
Software Component, as specified in the ARXML. See “Benefits of Polyspace for
AUTOSAR” on page 9-6.

If the software fails to parse your ARXML specifications or runs into compilation issues
with your code, see additional details in the Command output or Project status tab.
Investigate the issue further and fix your ARXML files or code accordingly. See
“Troubleshoot Polyspace Analysis of AUTOSAR Code” on page 9-22.

In some cases, you might have to provide additional paths to include folders or macro
definitions to troubleshoot errors.

* To specify paths to include files that are not directly under the source folder, use the
field Specify additional include folders.

This field corresponds to the option -I of polyspace-autosar.

» To specify data type and macro definitions that are not in your source files, use the
field Specify additional macro definitions. Specify a file with the definitions.

This field corresponds to the option -include of polyspace-autosar.

* To specify one of the advanced command-line options associated with polyspace-
autosar, use the field Advanced settings.

For instance, you might want the verification to be performed on a remote cluster and
the results uploaded to Polyspace Metrics. Enter this advanced option:

-extra-project-options "-add-to-results-repository -batch -scheduler localhost"

Here localhost indicates that the same computer serves as the server and client.
Replace it with the name of your server.

9-17

9 Running Polyspace on AUTOSAR Code

9-18

Configure Project

Once a project is created, you can change some of the default analysis options. For
instance, you can generate a report after analysis using the options in the Reporting
section. For details on how to specify options, see “Specify Polyspace Analysis Options” on
page 10-2.

You do not need the options in these sections for a project generated from an AUTOSAR
description:

* “Inputs and Stubbing”: External data constraints in your ARXML files are extracted
automatically when you create a Polyspace project. You cannot explicitly specify
external constraints.

* “Multitasking”: You cannot perform a multitasking analysis with the Polyspace project
because each module analyzes the implementation of one Software Component. To
detect data races, create a separate project for the entire application and explicitly
add your source folders. Specify the ARXML files relevant for multitasking and run
Bug Finder. For more information, see ARXML files selection (-autosar-
multitasking).

* “Code Prover Verification”: A main function is generated (in the file
psar_prove main.c) when you create a Polyspace project from an AUTOSAR
description. The main function calls functions that implement runnable entities in the
Software Components. The generated main is needed for the Code Prover analysis.
You cannot change the properties of this main function.

Verify Code

Verify each module individually or all the modules. The verification of a module checks
the code implementation of the corresponding Software Component against the ARXML
specifications and also checks for run-time errors. See “Benefits of Polyspace for
AUTOSAR” on page 9-6.

To verify a single module, select the module and click Run Code Prover. To verify all
modules, from the drop down list beside Run Code Prover, select Run All Modules.

Run Polyspace on AUTOSAR Code

Update Project for Later Changes

If you update your code or ARXML specifications, you can reanalyze the modules. To
begin, right-click your project and select Update AUTOSAR Project. Recreate your
project and rerun verification on the modules.

If you change the code only for specific Software Component-s, only the affected modules
are recreated. The modules correponding to the other Software Components remain
unchanged.

Run Polyspace Using Scripts

Run the polyspace-autosar command with paths to your ARXML and source code
folder. The command parses the ARXML and source files, creates a Polyspace project and
analyzes all modules in the project for run-time errors or violation of data constraints in
the ARXML.

In the first run, specify the path to your ARXML and source files explicitly. In later runs,
specify the file psar project.xhtml created in the previous run. The analysis detects
changes in the ARXML and source files since the last run and reanalyzes only those
modules where the Software Component implementation changed. If the ARXML
specification changed since the previous analysis, the new analysis reanalyzes all
modules.

For instance, you can run these commands in a . bat script. In the first run, this script
looks for the ARXML specifications in a folder arxml in the current folder, and C source
files in a folder code. The results are stored in a folder polyspace in the current folder.
In later runs, the analysis reuses the result from the previous run through the file

psar project.xhtml and updates the results only for the Software Component-s
modified since the last run.

echo off
set POLYSPACE AUTOSAR PATH=C:\Program Files\MATLAB\R2018a\polyspace\bin

IF NOT EXIST polyspace\psar project.xhtml (

"%POLYSPACE AUTOSAR PATH%\polyspace-autosar" -create-project polyspace \
-arxml-dir arxml -sources-dir code

) ELSE (

"%POLYSPACE AUTOSAR PATH%\polyspace-autosar" \
-update-project polyspace\psar project.xhtml

9-19

9 Running Polyspace on AUTOSAR Code

9-20

Pause

Open Code Prover Results

If you run the analysis in the Polyspace user interface, you can open each result directly.

If you run the analysis using scripts, after analysis, you can open the results in several
ways:

Open the file psar _project.psprj in the Polyspace user interface. Open each
result.

Open the file psar _project.xhtml from your project folder in a web browser. Click
the Behaviors tab at the top.

You see the list of all Software Component whose Internal Behavior-s are extracted. To
see the results for a Software Component, click the link to the results file (with
extension .pscp).

Navigate to the folders containing the individual results. Open a result file (with
extension . pscp) in the Polyspace user interface.

The results files are stored in a subfolder AUTOSAR of the project folder. The path to
each result follows the fully qualified name of the Internal Behavior of the Software
Component. For instance, for a fully qualified name pkg.component.bhv, the results
are stored in AUTOSAR\pkg\component\bhv\verification.

To see an overview of results for all Software Component-s, upload the result files to
Polyspace Metrics. To begin, see “Generate Code Quality Metrics” on page 22-11.

See Also

AUTOSAR runnable not implemented | Invalid result of AUTOSAR runnable
implementation | Invalid use of AUTOSAR runtime environment function

More About

“Benefits of Polyspace for AUTOSAR” on page 9-6

See Also

“Using Polyspace in AUTOSAR Software Development” on page 9-2

“Run Polyspace on AUTOSAR Code with Conservative Assumptions” on page 9-28
“Review Polyspace Results on AUTOSAR Code” on page 18-107

“Troubleshoot Polyspace Analysis of AUTOSAR Code” on page 9-22

9-21

9 Running Polyspace on AUTOSAR Code

Troubleshoot Polyspace Analysis of AUTOSAR Code

9-22

To analyze code implementation of AUTOSAR Software Components, Polyspace parses the
AUTOSAR XML specifications, detects the corresponding code implementation, compiles
this code and runs static analysis to detect run-time errors or mismatch between code
and specifications. If an error occurs in any of these steps, you do not see analysis results
for the Software Component containing the error. This topic shows how to diagnose and
fix these errors.

For sound analysis results, Code Prover requires that your AUTOSAR XML must be well-
formed and your code must not have compilation errors. For instance, two elements in
your AUTOSAR XML must not have the same Universal Unique Identifier (UUID). You
might be using other tools to ensure well-formed ARXML and code without compilation
errors. In addition to those tools, you can use the errors during the AUTOSAR XML
parsing and code extraction phases of a Code Prover analysis to find issues in your XML
and code.

After analysis, open the file psar_project.xhtml in a web browser. The file is located
in the results folder. Check the overall project status and drill down to the specific
Software Component-s that have issues. If you create a project in the Polyspace user
interface, the Project Status tab shows this HTML file after project creation.

View Project Completion Status

If the analysis completes successfully, you see a status message like this.

Troubleshoot Polyspace Analysis of AUTOSAR Code

Project Status

Project is marked created on Sat Dec 23 2017 19:37:53 GMT-0500 (Eastern Standard
Time) after completing the following sequence of states in 38.25s:

project created entered as created with success in 0.05s.

project installed entered as created with success in 0.08s.

prove artifacts created entered as created with success in 1.66s.

user code extracted entered as created with success in 4.29s.

code verification configured entered as created with success in 0.2s.

O U1 A W N R

code verification executed entered as created with success in 31.97s.

In current state, 2 AUTOSAR behaviors are processed, 2 with extracted behavior-
runnables' implementation code and 2 with generated code-prover result.behaviors

V¥ behaviors

The message shows how many Software Component-s were detected in the ARXML
specifications, found in the code implementation and analyzed successfully with Code
Prover.

View Errors in AUTOSAR XML Parsing

If an error occurs in parsing of AUTOSAR XML, the project status can look like this.

9-23

9 Running Polyspace on AUTOSAR Code

Project Status

Project is marked created on Wed Dec 31 1969 19:25:14 GMT-0500 (Eastern Standard
Time) after completing the following sequence of states in 0.58s:

project created entered as created with success in 0.02s.

project installed entered as created with success in 0.09s.

prove artifacts created entered as created with
error in autosar prove artifacts creation (2 errors, 0 warnings) in 0.47s.

Execution terminates with error in autosar prove artifacts creation (2 errors, 1
warnings) and message: ArxmlError(1);InvalidAutosarModel (1)

In current state, 0 AUTOSAR behaviors are processed, 0 with extracted behavior-
runnables' implementation code and 0 with generated code-prover result.behaviors

¥ behaviors

The above message shows that an error occurred when parsing the AUTOSAR XML.

To diagnose further, click the behaviors arrow below the status message (or the
Behaviors tab at the top). You see the status for each Software Component. For instance,
if no Software Component-s are read, a message like this can appear.

Behaviors with Unit-Prove Environment
State after last command execution: error fail updating with 2 errors and 1 warning.

Identified errors, in summary, are: ArxmlError(1);InvalidAutosarModel(1)

See detailed log messages.

Click the detailed log messages link. You see the exact location of the error in the XML.

9-24

Troubleshoot Polyspace Analysis of AUTOSAR Code

Tip If you run polyspace-autosar at the command-line, you can run only the
AUTOSAR XML parsing phase. Fix all errors in your AUTOSAR XML first before
continuing the analysis.

Use the options -do-not-update-extract-code and -do-not-update-
verification.

View Compilation Errors in Code

If a compilation error is found in the source files, the project status can look like this.

Project Status

Project is marked created on Sat Dec 23 2017 19:37:53 GMT-0500 (Eastern Standard
Time) after completing the following sequence of states in 38.25s:

1 project created entered as created with success in 0.05s.

2 project installed entered as created with success in 0.08s.

3 prove artifacts created entered as created with success in 1.66s.

4

user code extracted entered as created with error in user code extraction (4
errors, 0 warnings) in 4.29s.

code verification configured entered as created with success in 0.2s.

code verification executed entered as created with success (0 errors, 1
warnings) in 31.97s.

Execution terminates with error in user code extraction (4 errors, 1 warnings) and
message:
FoundNoBehaviorImplementation(1);FoundRunnableEntryPointImplementati
onCompileError(3)

In current state, 2 AUTOSAR behaviors are processed, 2 with extracted behavior-
runnables' implementation code and 2 with generated code-prover result.behaviors

V¥ behaviors

9-25

9 Running Polyspace on AUTOSAR Code

9-26

The above message shows that an error occurred when extracting the code.

To diagnose further, click the behaviors arrow below the status message (or the
behaviors tab at the top). You see the status for each Software Component.

To navigate to the components that have errors, search for the string
error_atlLeastOneRunnableInFileThatDoesNotCompile.

ApplicationComponentBehavior - jyb.tst002.swc001.bhv001

Extracted implementation code
State after last command execution: updated.

Extraction of implementation completes with state
error atLeastOneRunnableInFileThatDoesNotCompile. Found implementation for 3 of 3
required runnables; extracting 4 files from code-source directory.

V¥ extracted runnables implementation-files

Identify which Software Components have an error. To see the specific error message,
click the Extracted runnables implementation-files arrow. You see a link to a . Log file
containing the error message.

V¥ extracted runnables implementation-files

File ../code/swc001.c is extracted but its code fails to compile with 1 error (see code-
compilation messages at: .extract/swc001.log). It implements all or part of 3 runnables.

See Also

Click the link to the . log file. You see the error along with the file and line number.

Tip

» If one or more files do not compile, you can still see analysis results for Software
Component-s where all files passed compilation. In this way, you can analyze certain
Software Component-s while development is still in progress on the others.

e Ifyourun polyspace-autosar at the command-line, you can run only the code
extraction phase. Fix all errors in your code first before continuing the analysis.

Use the options -do-not-update-autosar-prove-environment and -do-not-
update-verification.

See Also

polyspace-autosar

More About

. “Run Polyspace on AUTOSAR Code” on page 9-15

. “Conflicting Universal Unique Identifiers (UUIDs)” on page 23-44
. “Could Not Find Include File” on page 23-42

. “Data Type Not Recognized” on page 23-46

9-27

9 Running Polyspace on AUTOSAR Code

Run Polyspace on AUTOSAR Code with Conservative
Assumptions

Polyspace for AUTOSAR runs static program analysis on code implementation of
AUTOSAR Software Component-s. The analysis looks for possible run-time errors or
mismatch with specifications in the AUTOSAR XML (ARXML).

The default analysis assumes that pointer arguments to runnables and pointers returned
from Rte functions are not NULL. For instance, in this example, the analysis assumes
that aInput, aOutput and aOut2 are not NULL. The conditions that compare these
arguments against NULL PTR always evaluate to false and appear gray in the results.
Here, NULL_PTR is a macro that represents NULL.

iOperations ApplicationError foo(
Rte Instance const self,
app_Array 2 n320to320ConstRef alnput,
app_Array 2 n320to320Ref aOutput,
app_Enum@O1Ref alut2)

{
iOperations ApplicationError rc = E_NOT OK;
if (aInput==NULL PTR) {
rc = RTE_E iOperations ERR0OO1;
} else if (aOutput==NULL PTR) {
rc = 43;
} else {
unsigned int i=0;
for (;i<2U;++1i) {
alutput[1l-i] = alnput[i];
}
if (aOut2!=NULL PTR) {
*alut2 = 1234;
rc = RTE_E OK;
}
}
return rc;
}

You might want to run a conservative analysis where pointer arguments to runnables and
pointers returned from Rte functions can be NULL-valued. The conservative analysis
helps you determine if you have guarded against the possibility of NULL-valued pointers
within your runnable.

9-28

See Also

To allow the possibility of NULL-valued pointers from external sources, undefine the
macro RTE_PTR2USERCODE_SAFE. To undefine a macro, use one of these methods
depending on how you run the analysis.

* In the Polyspace user interface, the macro is defined with the option Preprocessor
definitions (-D). Remove the macro from this option and move to the option
Disabled preprocessor definitions (-U).

» Ifyourun polyspace-autosar at the command-line, use the option -U to undefine
the macro.

If you disable the macro, you no longer see unreachable code when comparing pointers
arguments to runnables against NULL. To see the effect of this macro, run a conservative
Polyspace analysis on the demo files in matlabroot\help\toolbox\codeprover
\examples\polyspace autosar.

See Also

polyspace-autosar

More About
. “Run Polyspace on AUTOSAR Code” on page 9-15

9-29

Configure Polyspace Analysis

10 Configure Polyspace Analysis

Specify Polyspace Analysis Options

You can change the default options associated with a Polyspace analysis. For instance, you
can:

* Change the set of defects that Bug Finder looks for.

See Find defects (-checkers).
* Change the default behavior of run-time checkers in Code Prover.

See, for instance, Detect overflows (-scalar-overflows-checks).

For the full list of analysis options, see “Analysis Options”.

Depending on how you run Polyspace, you can configure the analysis options accordingly.

Polyspace User Interface

In the Polyspace user interface, you create a project for the analysis. The project can have
one or more modules. Click the Configuration node in a module. On the Configuration
pane, change options as needed.

I:I':,':I @ ® | :3 i} | o f | I}g = polyspace_project X
E|_'_'_'l polyspace_project El"'Tgarget & Compiler fing Rules & o Metrics
[T Project Source Files Macros
i1-[3 Project Include Folders - Environment Settings
= Module .z || Inputs & Stubbing
5.0 Module Source Files || Multitasking Coding Rules
[sources a1 Coding Rules & Code Metrics Check MISRA C:2004 |custom ~
3 configuration || Bug Finder Analysis
- = Code Prover Verification Ct\polyspace_project\coding_rules

=13 Result i Verification Assumptions [[] Check MISRA AC AGC | OBL-ules
v Check Behavior
&5 CP_Result [Completed] Precisi [] Check MISRA C:2012 |mandatory-required

+ Precision
“ Scaling [chedk custom rules

----- Reporting

Effective boolean types
----- Run Settings P Type
----- Advanced Settings

For more information, see the tooltip on each option. Click the More help link for
context-sensitive help on the options.

10-2

Specify Polyspace Analysis Options

Check MISRA C:2004 |custom

Check MISRA C:2004
Chedk code for compliance with MISRA C: 2004 standard

(2) More Help

For more information, see “Run Polyspace Analysis on Desktop” on page 3-8.

Windows or Linux Scripts

Provide the options to the polyspace-bug-finder-nodesktop or polyspace-code-
prover-nodesktop command. See also:

* polyspace-bug-finder-nodesktop
* polyspace-code-prover-nodesktop

For instance:

polyspace-code-prover-nodesktop -sources file name \
-main-generator main-generator-writes-variables all

You can also provide the options in a text file. See “Run Polyspace Analysis from
Command Line” on page 4-2.

MATLAB Scripts

Create a polyspace.Project object and set the options through the Configuration
property of the object. See also:

* polyspace.Project
* polyspace.Project.Configuration Properties

For instance:

proj = polyspace.Project;
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.BugFinderAnalysis.EnableCheckers = false;

See also “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-2.

10-3

10 Configure Polyspace Analysis

Eclipse and Eclipse-based IDEs
Select Polyspace > Configure Project. Set the options in the Configuration window.

Some Target & Compiler options are automatically extracted from your Eclipse project.
See “Run Polyspace Analysis in Eclipse” on page 8-2.

Simulink

In your Simulink model, specify the basic options through Simulink Configuration
Parameters. Select Code > Polyspace > Options.

From this window, you can navigate to the full set of Polyspace analysis options.
See:

* “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 7-2
* “Configure Advanced Polyspace Options in Simulink” on page 7-23

MATLAB Coder App

In the MATLAB Coder app, after code generation, specify the basic options through the
Polyspace pane. From this window, you can navigate to the full set of Polyspace analysis
options.

See:

* “Run Polyspace on C/C++ Code Generated from MATLAB Code” on page 7-40
* “Configure Advanced Polyspace Options in MATLAB Coder App” on page 7-47

10-4

Configure Target and Compiler
Options

11 Configure Target and Compiler Options

Specify Target Environment and Compiler Behavior

11-2

Before verification, specify your source code language (C or C++), target processor, and
the compiler that you use for building your code. In certain cases, to emulate your
compiler behavior, you might have to specify additional options.

Using your specification, the verification determines the sizes of fundamental types,
considers certain macros as defined, and interprets compiler-specific extensions of the
Standard. If the options do not correspond to your run-time environment, you can
encounter:

* Compilation errors
» Verification results that might not apply to your target
If you use a build command such as gmake to build your code and the build command

meets certain restrictions, you can extract the options from the build command.
Otherwise, specify the options explicitly.

Specify Target Environment and Compiler Behavior

Extract options
from build command

L Does build Ne

extraction
succaad?

¥

Specify options explicitly
Start verification &
Start verification

Extract Options from Build Command

If you use build automation scripts to build your source code, you can set up a Polyspace
project from your scripts. The options associated with your compiler are specified in that
project.

For information on how to trace your build command from the:

* Polyspace user interface, see “Add Source Files for Analysis in Polyspace User
Interface” on page 3-2.

* DOS or UNIX command line, see polyspace-configure.
* MATLAB command line, see polyspaceConfigure.
For Polyspace project creation, your build automation script (makefile) must meet certain

requirements. See “Requirements for Project Creation from Build Systems” on page 11-
8.

11-3

11 Configure Target and Compiler Options

11-4

Specify Options Explicitly

If you cannot trace your build command and therefore manually create a project, you
have to specify the options explicitly.

In the Polyspace user interface, select a project configuration. On the Configuration
pane, select Target & Compiler. Specify the options.

At the DOS or UNIX command line, specify flags with the polyspace-code-prover-
nodesktop command.

At the MATLAB command line, specify arguments with the polyspaceCodeProver
function.

Specify the options in this order.

Required options:

Source code language (-lang):If all files have the same extension .c
or . cpp, the verification uses the extension to determine the source code language.
Otherwise, explicitly specify the option.

Compiler (-compiler): Select the compiler that you use for building your
source code. If you cannot find your compiler, use an option that closely matches
your compiler.

Target processor type (-target): Specify the target processor on which
you intend to execute your code. For some processors, you can change the default
specifications. For instance, for the processor hc08, you can change the size of
types double and long double from 32 to 64 bits.

If you cannot find your target processor, you can create your own target and
specify the sizes of fundamental types, default signedness of char, and endianness
of the target machine. See Generic target options.

Language-specific options:

C++11 extensions (-cppll-extension): Select this option if you use C++11
extensions. See also “Supported C++ 2011 Language Extensions” on page 11-15.

Respect (90 standard (-no-language-extensions): Select this option if
you prefer that the verification use the C90 Standard (ISO/IEC 9899:1990).
Otherwise, the verification uses the ANSI® C99 Standard (ISO®/IEC 9899:1999)
for compilation and checking of certain coding rules.

Compiler-specific options:

See Also

Whether these options are available or not depends on your specification for
Compiler (-compiler). For instance, if you select a visual compiler, the option
Pack alignment value (-pack-alignment-value) is available. Using the
option, you emulate the compiler option /Zp that you use in Visual Studio.

For all compiler-specific options, see “Target and Compiler”.
Advanced options:

Using these options, you can modify the verification results. For instance, if you use
the option Division round down (-div-round-down), the verification considers
that quotients from division or modulus of negative numbers are rounded down. Use
these options only if you use similar options when compiling your code.

For all advanced options, see “Target and Compiler”.
Compiler header files:

If you specify the diab, tasking or greenhills compiler, you must specify the path

to your compiler header files. See “Provide Standard Library Headers for Polyspace
Analysis” on page 11-6.

If you still see compilation errors after running analysis, you might have to specify other
options:

Define macros: Sometimes, a compilation error occurs because the analysis considers
a macro as undefined. Explicitly define these macros. See “Macros”.

Specify include files: Sometimes, a compilation error occurs because your compiler
defines standard library functions differently from Polyspace and you do not provide
your compiler include files. Explicitly specify the path to your compiler include files.
See “Errors from Conflicts with Polyspace Header Files” on page 23-78.

See Also

More About

“Language Extensions Supported by Default” on page 11-11
“Supported Keil or IAR Language Extensions” on page 11-13
“Supported C++ 2011 Language Extensions” on page 11-15

11-5

11 Configure Target and Compiler Options

Provide Standard Library Headers for Polyspace
Analysis

Before Polyspace analyzes the code for bugs and run-time errors, it compiles your code.
Even if the code compiles with your compiler, you can see compilation errors with
Polyspace. If the error comes from a standard library function, it usually indicates that
Polyspace is not using your compiler headers. To work around the errors, provide the path
to your compiler headers.

This topic shows how to locate the standard library headers from your compiler. The code
examples cause a compilation error that shows the location of the headers.

» To locate the folder containing your C compiler system headers, compile this C code by
using your compilation toolchain:

float fopen(float f);
#include <stdio.h>

The code does not compile because the fopen declaration conflicts with the
declaration inside stdio.h. The compilation error shows the location of your compiler
implementation of stdio.h. Your C standard library headers are all likely to be in that
folder.

* To locate the folder containing your C++ compiler system headers, compile this C++
code by using your compilation toolchain:

namespace std {
float cin;

}

#include <iostream>

The code does not compile because the cin declaration conflicts with the declaration
inside iostream.h. The compilation error shows the location of your compiler
implementation of iostream.h. Your C++ standard library headers are all likely to be
in that folder.

After you locate the path to your compiler's header files, specify the path for the
Polyspace analysis. For C++ code, specify the paths to both your C and C++ headers.

* Inthe user interface, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
on page 3-2.

11-6

See Also

* At the command line, use the flag - I with the polyspace-code-prover-nodesktop
command.

For more information, see -1.

See Also

More About

. “Errors from Conflicts with Polyspace Header Files” on page 23-78

11-7

11 Configure Target and Compiler Options

Requirements for Project Creation from Build Systems

11-8

For automatic project creation from build systems, your build commands or makefiles
must meet certain requirements.

Compiler Requirements

Your compiler must be called locally.

If you use a compiler cache such as ccache or a distributed build system such as
distmake, the software cannot trace your build. You must deactivate them.

Your compiler must perform a clean build.

If your compiler performs only an incremental build, use appropriate options to build
all your source files. For example, if you use gmake, append the -B or -W
makefileName option to force a clean build. For the list of options allowed with the
GNU® make, see make options.

Your compiler configuration must be available to Polyspace. The compilers currently
supported include the following:
* Clang

* Wind River® Diab

* GNUC

* JAR Embedded Workbench

* Green Hills®

* NXP CodeWarrior®

* Altium® Tasking

* Texas Instruments™

« Tiny C

* Microsoft® Visual C++®

If your compiler configuration is not available to Polyspace:

* Write a compiler configuration file for your compiler in a specific format. For more
information, see “Compiler Not Supported for Project Creation from Build
Systems” on page 23-26.

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html

Requirements for Project Creation from Build Systems

* Contact MathWorks Technical Support. For more information, see “Contact
Technical Support” on page 23-21.

* With the TASKING compiler, if you use an alternative sfr file with extension .asfr,
Polyspace might not be able to locate your file. If you encounter an error, explicitly
#include your .asfr file in the preprocessed code using the option Include (-
include).

Typically, you use the statement #include = SFRFILE (CPU_) along with the
compiler option --alternative-sfr-file to specify an alternative sfr file. The path
to the file is typically Tasking C166 INSTALL DIR\include\sfr

\regCPUNAME . asfr. For instance, if your TASKING compiler is installed in C:
\Program Files\Tasking\C166-VX v4.0r1\ and you use the CPU-related flag -
Cxc2287m_104f or - -cpu=xc2287m_104f, the path is C:\Program Files
\Tasking\C166-VX v4.0rl\include\sfr\regxc2287m.asfr.

Build Command Requirements

* Your build command must run to completion without any user interaction.

* In Linux, only UNIX shell (sh) commands must be used. If your build uses advanced
commands such as commands supported only by bash, tcsh or zsh, Polyspace cannot
trace your build.

In Windows, only DOS commands must be used. If your build uses advanced
commands such as commands supported only by PowerShell or Cygwin™, Polyspace
cannot trace your build. To see if Polyspace supports your build command, run the
command from cmd.exe in Windows. For more information, see “Check if Polyspace
Supports Build Scripts” on page 23-37.

* Ifyou use statically linked libraries, Polyspace cannot trace your build. In Linux, you
can install the full Linux Standard Base (LSB) package to allow dynamic linking. For
example, on Debian® systems, install LSB with the command apt-get install
1sb.

* Your build command must not use aliases.
The alias command is used in Linux to create an alternate name for commands. If
your build command uses those alternate names, Polyspace cannot recognize them.
* Your build process must not use the LD PRELOAD mechanism.

* Your build command must be executable completely on the current machine and must
not require privileges of another user.

11-9

https://www.mathworks.com/support/?s_tid=gn_supp

11 Configure Target and Compiler Options

11-10

If your build uses sudo to change user privileges or ssh to remotely log in to another
machine, Polyspace cannot trace your build.

* If your build command uses redirection with the > or | character, the redirection
occurs after Polyspace traces the command. Therefore, Polyspace does not handle the
redirection.

For example, if your command occurs as
commandl | command2

And you enter

polyspace-configure commandl | command2

When tracing the build, Polyspace traces the first command only.

+ If the System Integrity Protection (SIP) feature is active on the operating system
macOS El Capitan (10.11) or a later macOS version, Polyspace cannot trace your build
command. Before tracing your build command, disable the SIP feature. You can
reenable this feature after tracing the build command.

* If your computer hibernates during the build process, Polyspace might not be able to
trace your build.

Note Your environment variables are preserved when Polyspace traces your build
command.

See Also

polyspaceConfigure

Related Examples

. “Add Source Files for Analysis in Polyspace User Interface” on page 3-2

More About
. “Slow Build Process When Polyspace Traces the Build” on page 23-36

Language Extensions Supported by Default

Language Extensions Supported by Default

Polyspace analysis can interpret a subset of common C/C++ language constructs and
extended keywords by default. The default analysis follows these standards:

* Clanguage: C99 Standard (ISO/IEC 9899:1999)

If you select Respect C90 standard (-no-language-extensions), the analysis
follows the C90 Standard.

* C++ language: C++03 Standard (ISO/IEC 14882:2003)

If you select C++11 extensions (-cppll-extension), the analysis allows C++11
extensions.

In addition, the default analysis can also interpret language extensions that are supported
by many compilers. For other compiler-specific constructs, explicitly specify your
compiler.

The analysis can interpret the following constructs, irrespective of your choice of

compiler.

* Designated initializers (labeling initialized elements)

* Compound literals (structs or arrays as values)

* Boolean type (_Bool)

* Statement expressions (statements and declarations inside expressions)

* typeof constructs

* Case ranges

* Empty structures

* Cast to union

* Local labels (_ label)

* Hexadecimal floating-point constants

+ Extended keywords, operators, and identifiers (Pragma, func_, const
asm)

The list is not complete.

In some cases, the analysis supports the construct semantically and fully emulates its run-
time behavior. In other cases, the analysis only supports the construct syntactically, but

11-11

11 Configure Target and Compiler Options

11-12

does not emulate its run-time behavior fully. For instance, the analysis recognizes the
construct asm as introduction of assembly code, but does not interpret the assembly code
encapsulated in the construct. As a result, values modified by the assembly code are
considered to have all possible values allowed by their data type.

See Also

Related Examples

. “Specify Target Environment and Compiler Behavior” on page 11-2

More About

. “Supported Keil or IAR Language Extensions” on page 11-13
. “Supported C++ 2011 Language Extensions” on page 11-15

Supported Keil or IAR Language Extensions

Supported Keil or IAR Language Extensions

Polyspace analysis can interpret a subset of common C/C++ language constructs and
extended keywords by default. For compiler-specific keywords, you must specify your
choice of compiler. If you specify keil or iar for Compiler (-compiler), the
Polyspace verification allows language extensions specific to the Keil or IAR compilers.

Special Function Register Data Type

Embedded control applications frequently read and write port data, set timer registers,
and read input captures. To deal with these requirements without using assembly
language, some microprocessor compilers define special data types such as sfr and
sbit. Typical declarations are:

sfr AO 0x80;
sfr Al 0x81;
sfr ADCUP = OxDE;
sbit EI = 0x80;

The declarations reside in header files such as regxx. h for the basic 80Cxxx micro
processor. The declarations customize the compiler to the target processor.

You access a register or a port by using the sfr and sbit data as follows. However, these
data types are not part of the C99 Standard.

int status,PO;

void main (void) {

ADCUP = 0x08; /* Write data to register */

Al = OxFF; /* Write data to Port */

status = PO; /* Read data from Port */

EI = 1; /* Set a bit (enable all interrupts) */
}

To analyze this type of code, use these options:

* Compiler (-compiler): Specify keil or iar.
 Sfr type support (-sfr-types): Specify the data type and size in bits.

The analysis then supports the Keil or IAR language extensions even if some structures,
keywords, and syntax are not part of the C99 standard.

11-13

11 Configure Target and Compiler Options

11-14

Keywords Removed During Preprocessing

Once you specify the Keil or IAR compiler, the analysis recognizes compiler-specific
keywords in your code. If a keyword is not relevant for the analysis, it is removed from
the source code during preprocessing.

If you disable the keyword and use it as an identifier instead, you can encounter a
compilation error when you compile your code with Polyspace. See “Errors Related to Keil
or IAR Compiler” on page 23-61.

These keywords are removed during preprocessing:

+ Keil: bdata, far, idata, huge, sdata

* IAR: saddr, reentrant, reentrant_idata, non banked, plm, bdata, idata,
pdata, code, xdata, xhuge, interrupt, interrupt, intrinsic

The data keyword is not removed.

Supported C++ 2011 Language Extensions

Supported C++ 2011 Language Extensions

This table lists which C++ 2011 standards Polyspace can analyze. If your code contains
non-supported constructions, Polyspace reports a compilation error.

Standard Description Supported
C++2011-N2118 |[Rvalue references Yes
C++4+2011-N2439 |Rvalue references for *this Yes
C++2011-N1610 |Initialization of class objects by rvalues Yes
C++2011-N2756 |Nonstatic data member initializers Yes
C++42011-N2242 |Variadic templates Yes
C++2011-N2555 |Extending variadic template template parameters Yes
C++2011-N2672 |Initializer lists Yes
C++2011-N1720 |Static assertions Yes
C++2011-N1984 |auto-typed variables Yes
C++4+2011-N1737 |Multi-declarator auto Yes
C++2011-N2546 |Removal of auto as a storage-class specifier Yes
C++2011-N2541 |[New function declarator syntax Yes
C++2011-N2927 |New wording for C++0x lambdas Yes
C++2011-N2343 |Declared type of an expression Yes
C++2011-N3276 |decltype and call expressions Yes
C++2011-N1757 |Right angle brackets Yes
C++2011-DR226 |Default template arguments for function templates Yes
C++2011-DR339 |Solving the SFINAE problem for expressions Yes
C++2011-N2258 |Template aliases Yes
C++2011-N1987 |Extern templates Yes
C++2011-N2431 |Null pointer constant Yes
C++2011-N2347 |Strongly typed enums Yes
C++2011-N2764 |Forward declarations for enums Yes
C++2011-N2761 |Generalized attributes Yes

11-15

11 Configure Target and Compiler Options

11-16

Standard Description Supported
C++2011-N2235 |Generalized constant expressions Yes
C++2011-N2341 |Alignment support Yes
C++2011-N1986 |Delegating constructors Yes
C++2011-N2540 |Inheriting constructors Yes
C++2011-N2437 |Explicit conversion operators Yes
C++2011-N2249 |New character types Yes
C++2011-N2442 |Unicode string literals Yes
C++2011-N2442 |Raw string literals Yes
C++4+2011-N2170 |Universal character name literals No
C++4+2011-N2765 |User-defined literals Yes
C++2011-N2342 |Standard Layout Types No
C++2011-N2346 |Defaulted and deleted functions Yes
C++4+2011-N1791 |Extended friend declarations No
C++2011-N2253 |Extending sizeof Yes
C++2011-N2535 |Inline namespaces Yes
C++2011-N2544 |Unrestricted unions Yes
C++2011-N2657 |Local and unnamed types as template arguments Yes
C++2011-N2930 |Range-based for Yes
C++2011-N2928 |Explicit virtual overrides Yes
C++2011-N3050 |Allowing move constructors to throw [noexcept] Yes
C++2011-N3053 |Defining move special member functions Yes
C++2011-N2239 |[Concurrency: Sequence points No
C++2011-N2427 |Concurrency: Atomic operations No
C++2011-N2748 |Concurrency: Strong Compare and Exchange No
C++2011-N2752 |Concurrency: Bidirectional Fences No
C++2011-N2429 |Concurrency: Memory model No
Concurrency: Data-dependency ordering: atomics and memory
C++4+2011-N2664 |model No

See Also

Standard Description Supported
C++2011-N2179 |[Concurrency: Propagating exceptions No
C++2011-N2440 |Concurrency: Abandoning a process and at_quick exit Yes
C++2011-N2547 |Concurrency: Allow atomics use in signal handlers No
C++2011-N2659 |Concurrency: Thread-local storage No
Concurrency: Dynamic initialization and destruction with
C++2011-N2660 |concurrency No
C++4+2011-N2340 | func_predefined identifier Yes
C++4+2011-N1653 |[C99 preprocessor Yes
C++2011-N1811 |long long Yes
C++2011-N1988 |Extended integral types No

See Also

C++11 extensions (-cppll-extension)

11-17

11 Configure Target and Compiler Options

Remove or Replace Keywords Before Compilation

11-18

The Polyspace compiler strictly follows the ANSI C99 Standard (ISO/IEC 9899:1999). If
your compiler allows deviation from the Standard, the Polyspace compilation using
default options cannot emulate your compiler. For instance, your compiler can allow
certain non-ANSI keyword, which Polyspace does not recognize by default.

To emulate your compiler closely, you specify the Target & Compiler options. If you still
get compilation errors from unrecognized keywords, you can remove or replace them only
for the purposes of verification. The option Preprocessor definitions (-D) allows
you to make simple substitutions. For complex substitutions, for instance to remove a
group of space-separated keywords such as a function attribute, use the option Command/
script to apply to preprocessed files (-post-preprocessing-command).

Remove Unrecognized Keywords

You can remove unsupported keywords from your code for the purposes of analysis. For
instance, follow these steps to remove the far and Ox keyword from your code (0x
precedes an absolute address).

1 Save the following template as C: \Polyspace\myTpl.pl.
Content of myTpl.pl
#!/usr/bin/perl

HUHHHHHHHHHBHHHBHHHHR BRI S S
Post Processing template script

#

HUHHHHH BB BHHHBHHHHR BRI S S S A 4
Usage from GUI:

#

1) Linux: /usr/bin/perl PostProcessingTemplate.pl

2) Windows: matlabroot\sys\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl

#

HUHHHHH BB HHHHBHHH R S S 4

$version = 0.1;

$INFILE = STDIN;
$OUTFILE = STDOUT;

Remove or Replace Keywords Before Compilation

while (<$INFILE>)

{
Remove far keyword
s/far//;
Remove "@ OxFE1" address constructs
s/\@\sOx[A-FO-91*//q;
Remove "@OXFE1l" address constructs
s/\@Ox[A-FO-9]1*//qg;
Remove "@ ((unsigned)&LATD*8)+2" type constructs
s/\@\s\ (\ (unsigned\)\&[A-Z0-9]+*8\)\+\d//g;
Print the current processed line
print $OUTFILE $;
}

For reference, see a summary of Perl regular expressions.

Perl Regular Expressions

B e
Metacharacter What it matches
B B
Single Characters

. Any character except newline

[a-z0-9] Any single character in the set

[*a-z0-9] Any character not in set

\d A digit same as

\D A non digit same as ["0-9]

\w An Alphanumeric (word) character

\W Non Alphanumeric (non-word) character

Whitespace Characters

\s Whitespace character

\S Non-whitespace character
\n newline

\r return

\t tab

\f formfeed

\b backspace

HHHFHFHHFHFEHRBHHFHEHEHRR

11-19

11 Configure Target and Compiler Options

11-20

Anchored Characters

\B word boundary when no inside []
\B non-word boundary

~ Matches to beginning of line

$ Matches to end of line

Repeated Characters

x? 0 or 1 occurrence of x

x* 0 or more x's

X+ 1 or more x's

x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively

to|be|great One of "to", "be" or "great"

Remembered Characters

(string) Used for back referencing see below

\1 or $1 First set of parentheses

\2 or $2 First second of parentheses

\3 or $3 First third of parentheses
B

Back referencing

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

red cat -> cat red

#
#
e.g. swap first two words around on a line
#
#s/(\wt) (\w+)/$2 $1/;

H*

B e et e
2 On the Configuration pane, select Environment Settings.

To the right of Command/script to apply to preprocessed files, click "
Use the Open File dialog box to navigate to C:\Polyspace.
5 In the File name field, enter myTpl.pl.
Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to apply to

preprocessed files field.

Remove Unrecognized Function Attributes

You can remove unsupported function attributes from your code for the purposes of
analysis.

If you run verification on this code specifying a generic compiler, you can see compilation
errors from the noreturn attribute. The code compiles using a GNU compiler.

See Also

void fatal () _ attribute ((noreturn));

void fatal (/* ... */)

{
/* ... */ /* Print error message. */ /* ... */
exit (1);

}

If the software does not recognize an attribute and the attribute does not affect the code
analysis, you can remove it from your code for the purposes of verification. For instance,
you can use this Perl script to remove the noreturn attribute.

while ($line = <STDIN>)
{

attribute ((noreturn))

Remove far keyword
$line =~ s/ attribute \ \(\(noreturn\)\)//g;

Print the current processed line to STDOUT
print $line;

}

Specify the script using the option Command/script to apply to preprocessed
files (-post-preprocessing-command).

See Also

Polyspace Analysis Options
Command/script to apply to preprocessed files (-post-preprocessing-
command) | Compiler (-compiler) |Preprocessor definitions (-D)

Related Examples
. “Troubleshooting in Polyspace Code Prover”

11-21

11 Configure Target and Compiler Options

Gather Compilation Options Efficiently

11-22

Polyspace verification can sometimes stop in the compilation or linking phase due to the
following reasons:

* The Polyspace compiler strictly follows the ANSI C99 Standard (ISO/IEC 9899:1999).
If your compiler allows deviation from the Standard, the Polyspace compilation using
default options cannot emulate your compiler.

* Your compiler declares standard library functions with argument or return types
different from the standard types. Unless you also provide the function definition, for
efficient verification, Polyspace uses its own definitions of standard library functions,
which have the usual prototype. The mismatch in types causes a linking error.

You can easily work around the compilation and standard library function errors. To work
around the errors, you typically specify certain analysis options. In some cases, you might
have to add a few lines to your code. For instance:

* To emulate your compiler behavior more closely, you specify the Target & Compiler
options. If you still face compilation errors, you might have to remove or replace
certain unrecognized keywords using the option Preprocessor definitions (-
D). However, the option allows only simple substitution of a string with another string.
For more complex replacements, you might have to add #define statements to your
code.

» To avoid errors from stubbing standard library functions, you might have to #define
certain Polyspace-specific macros so that Polyspace does not use its own definition of
standard library functions.

For more information, see “Troubleshoot Compilation and Linking Errors” on page 23-
7.

Instead of adding these modifications to your original code, create a single
polyspace.h file that contains all modifications. Use the option Include (-include)
to force inclusion of the polyspace. h file in all source files under verification.

Benefits of this approach include:

* The error detection is much faster since it will be detected during compilation rather
than in the link or subsequent phases.

* There will be no need to modify original source files.

Gather Compilation Options Efficiently

» The file is automatically included as the very first file in the original . c files.
* The file is reusable for other projects developed under the same environment.

Example 11.1. Example

This is an example of a file that can be used with the option Include (-include).

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdlib.h>
#include "another file.h"

// Workarounds for compilation errors
#define far
#define at(x)

// Workarounds for errors due to redefining standard library functions

#define POLYSPACE _NO_ STANDARD_ STUBS // use this flag to prevent the
//automatic stubbing of std functions

#define _ polyspace no_sscanf

#define _ polyspace no_ fgetc

void sscanf(int, char, char, char, char, char);

void fgetc(void);

11-23

Configure Inputs and Stubbing
Options

12 Configure Inputs and Stubbing Options

Specify External Constraints

12-2

This example shows how to specify constraints (also known data range specifications or
DRS) on variables in your code. Polyspace uses the code that you provide to make
assumptions about items such as variable ranges and allowed buffer size for pointers.
Sometimes the assumptions are broader than what you expect because:

* You have not provided the complete code. For example, you did not provide some of
the function definitions.

* Some of the information about variables is available only at run time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions, Polyspace can consider more execution paths than

those paths that occur at run time. If an operation fails along one of the execution paths,
Polyspace places an orange check on the operation. If that execution path does not occur
at run time, the orange check indicates a false positive.

To reduce the number of such false positives, you can specify additional constraints on
global variables, function inputs, and return values of stubbed functions. After you specify
your constraints, you can save them as an XML file to use them for subsequent analyses.
If your source code changes, you can update the previous constraints. You do not have to
create a new constraint template.

Note In Bug Finder, you can only constrain global variables. You cannot constrain
function inputs or return values of stubbed functions.

Create Constraint Template

1 On the Configuration pane, select Inputs & Stubbing.
2 To the right of Constraint setup, click the Edit button.

Specify External Constraints

|L.]] Constraint Specification I&

¢ [l B | [» Generate [Stop Search - -

Mo constraint file specified. To specify this file:

a Click Generate, which creates a new constraint file.
Click the folder icon and navigate to an existing constraint file.

L

OK | | Cancel | IJ

In the Constraint Specification dialog box, create a blank constraint template. The
template contains a list of all variables on which you can provide constraints.

If you have run analysis once and not changed your code since that analysis,
instead of generating a new constraint template, use the folder icon to navigate to
the previous results folder. Open the template file drs template.xml from that
folder. Save the file in another location, in case you delete the previous results
folder.

. . [) Generate .
Otherwise, to create a new template, click . The software compiles
your project and creates a template. The new template is stored in a file

Module number Project name drs_template.xml in your project folder.

Specify your constraints and save the template as an XML file. For more information,
see “External Constraints for Polyspace Analysis” on page 12-6.

Click OK.

You see the full path to the template XML file in the Constraint setup field. If you
run an analysis, Polyspace uses this template for extracting variable constraints.

Create Constraint Template After Analysis

When you create a template based on analysis results, you know which variables you
must constrain to avoid false positives.

12-3

12 Configure Inputs and Stubbing Options

Open your results. Browse orange checks.

If the software can trace an orange check to a root cause, a -=J icon becomes
available on the Result Details pane. Click this icon.

You see the full list of variables (function inputs or return values of stubbed
functions) that can cause orange checks. In your project configuration, constrain the
ranges of these variables. Follow the same steps as the previous section.

To use the template file for a subsequent analysis, in the project configuration, select
Inputs & Stubbing. In the Constraint setup field, enter the full path to the file.

Update Existing Template

If you remove some variables or functions from your code, constraints on them are not
applicable any more. Instead of regenerating a constraint template and respecifying the
constraints, you can update an existing template and remove the variables that are not
present in your code.

1 On the Configuration pane, select Inputs & Stubbing.
2 Open the existing template in one of the following ways:

* In the Constraint setup field, enter the path to the template XML file. Click Edit.

Click Edit. In the Constraint Specification dialog box, click the “Jicon to
navigate to your template file.

3 Click Update.

a Variables that are no longer present in your source code appear under the Non
Applicable node. To remove an entry under the Non Applicable node or the
node itself, right-click and select Remove This Node.

b Specify your new constraints for any of the other variables.

Specify Constraints in Code

Specifying constraints outside your code allows for more precise analysis. However, you
must use the code within the specified constraints because the constraints are outside
your code. Otherwise, the results might not apply. For example, if you use function inputs
outside your specified range, a run-time error can occur on an operation even though
checks on the operation are green.

12-4

See Also

To specify constraints inside your code, you can use:

* Appropriate error handling tests in your code.
Polyspace checks to determine if the errors can actually occur. If they do not occur, the
test blocks appear as Unreachable code.

* The assert macro. For example, to constrain a variable var in the range [0,10], you

can use assert(var >= 0 && var <=10);.

Polyspace checks your assert statements to see if the condition can be false.
Following the assert statement, Polyspace considers that the assert condition is
true. Using assert statements, you can constrain your variables for the remaining
code in the same scope. For examples, see User assertion.

See Also

Constraint setup (-data-range-specifications)

Related Examples

. “External Constraints for Polyspace Analysis” on page 12-6
. “Constrain Global Variable Range” on page 12-11

. “Constrain Function Inputs” on page 12-13

. “Constrain Stubbed Functions” on page 12-15

. “XML File Format for Constraints” on page 12-17

12-5

http://www.cplusplus.com/reference/cassert/assert/

12 Configure Inputs and Stubbing Options

External Constraints for Polyspace Analysis

12-6

The Polyspace Constraint Specification interface allows you to specify constraints for:

* Global Variables.
* User-defined Functions.

You cannot constrain user-defined functions in Bug Finder.
» Stubbed Functions.

You cannot constrain stubbed functions in Bug Finder.
For more information, see “Specify External Constraints” on page 12-2.

The following table lists the constraints that can be specified through this interface.

Column Settings

Name Displays the list of variables and functions in your Project for which
you can specify data ranges.

This Column displays three expandable menu items:

* Globals - Displays global variables in the project.

* User defined functions - Displays user-defined functions in the
project. Expand a function name to see its inputs.

* Stubbed functions - Displays a list of stub functions in the
project. Expand a function name to see the inputs and return

values.
File Displays the name of the source file containing the variable or
function.
Attributes Displays information about the variable or function.

For example, static variables display static.

Data Type Displays the variable type.

External Constraints for Polyspace Analysis

Column

Settings

Main Generator
Called

Applicable only for user-defined functions.

Specifies whether the main generator calls the function:

MAIN GENERATOR - Main generator may call this function,
depending on the value of the - functions-called-in-1loop (C)
or -main-generator-calls (C++) parameter.

NO - Main generator will not call this function.
YES - Main generator will call this function.

Init Mode

Specifies how the software assigns a range to the variable:

MAIN GENERATOR - Variable range is assigned depending on the
settings of the main generator options -variables-written-
before-1loop and -no-def-init-glob. (For C++, the options
are -main-generator-writes-variables, and -no-def-
init-glob.)

IGNORE - Variable is not assigned to any range, even if a range is
specified.

INIT - Variable is assigned to the specified range only at
initialization, and keeps the range until first write.

PERMANENT - Variable is permanently assigned to the specified
range. If the variable is assigned outside this range during the
program, no warning is provided. Use the globalassert mode if
you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

For C verifications, global pointers support MAIN GENERATOR,
IGNORE, or INIT mode.

MAIN GENERATOR - Pointer follows the options of the main
generator.

IGNORE - Pointer is not initialized

INIT - Specify if the pointer is NULL, and how the pointed object
is allocated (Initialize Pointer and Init Allocated options).

12-7

12 Configure Inputs and Stubbing Options

12-8

Column

Settings

Init Range

Specifies the minimum and maximum values for the variable.

You can use the keywords min and max to denote the minimum and
maximum values of the variable type. For example, for the type long,
min and max correspond to -2°31 and 27" 31-1 respectively.

You can also use hexadecimal values. For example: 0x12..0x100

For enum variables, you cannot specify ranges directly using the
enumerator constants. Instead use the values represented by the
constants.

For enum variables, you can also use the keywords enum_min and
enum_max to denote the minimum and maximum values that the
variable can take. For example, for an enum variable of the type
defined below, enum_min is 0 and enum_max is 5:

enum week{ sunday, monday=0, tuesday,
wednesday, thursday, friday, saturday};

Initialize Pointer

Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies whether the pointer should be NULL:

* May-be NULL - The pointer could potentially be a NULL pointer
(or not).
* Not Null - The pointer is never initialized as a null pointer.

* Null - The pointer is initialized as NULL.

Note Not applicable for C++ projects.

External Constraints for Polyspace Analysis

Column Settings
Init Allocated Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.
Specifies how the pointed object is allocated:
* MAIN GENERATOR - The pointed object is allocated by the main
generator.
* None - Pointed object is not written.
* SINGLE - Write the pointed object or the first element of an array.
(This setting is useful for stubbed function parameters.)
* MULTI - All objects (or array elements) are initialized.
Note Not applicable for C++ projects.
Allocated Applicable only to pointers.
Objects
Specifies how many objects are pointed to by the pointer (the pointed
object is considered as an array).
Note: The Init Allocated parameter specifies how many allocated
objects are actually initialized.
Note Not applicable for C++ projects.
Global Assert Specifies whether to perform an assert check on the variable at global
initialization, and after each assignment.
Global Assert Specifies the minimum and maximum values for the range you want
Range to check.
Comment Remarks that you enter, for example, justification for your DRS

values.

12-9

12 Configure Inputs and Stubbing Options

See Also

More About

. “Specify External Constraints” on page 12-2

12-10

Constrain Global Variable Range

Constrain Global Variable Range

You can impose constraints (also known as data range specifications or DRS) on the range
of a global variable and check whether write operations on the variable violate the
constraint. For the general workflow, see “Specify External Constraints” on page 12-2.

To constrain a global variable range and also check for violation of the constraint:

1

Edit

In your project configuration, select Inputs & Stubbing. Click the button

next to the Constraint setup field.

. > G te
In the Constraint Specification window, click P> Genera .

Under the Global Variables node, you see a list of global variables.
For the global variable that you want to constrain:

* From the drop-down list in the Global Assert column, select YES.

* In the Global Assert Range column, enter the range in the format min. .max.
min is the minimum value and max the maximum value for the global variable.

To save your specifications, click the button.

In Save a Constraint File window, save your entries as an xml file.
Run verification and open the results.

For every write operation on the global variable, you see a green, orange, or red
Correctness condition check. If the check is:

* Green, the variable is within the range that you specified.

* Orange, the variable can be outside the range that you specified.

* Red, the variable is outside the range that you specified.

When two or more tasks write to the same global variable, the Correctness

condition check can appear orange on all write operations to the variable even when
only one write operation takes the variable outside the Global Assert range.

12-11

12 Configure Inputs and Stubbing Options

See Also

Polyspace Analysis Options
Constraint setup (-data-range-specifications)

Polyspace Results
Correctness condition

Related Examples

. “Constrain Function Inputs” on page 12-13

. “Constrain Stubbed Functions” on page 12-15

More About

. “External Constraints for Polyspace Analysis” on page 12-6

12-12

Constrain Function Inputs

Constrain Function Inputs

You can specify constraints (also known as data range specifications or DRS) on function
inputs. Polyspace checks your function definition for run-time errors in relation to the
constrained inputs. For the general workflow, see “Specify External Constraints” on page
12-2.

For instance, for a function defined as follows, you can specify that the argument val has
values in the range [1..10]. You can also specify that the argument ptr points to a 3-
element array where each element is initialized:

int func(int val, int* ptr) {

}

To specify constraints on function inputs:

1

Edit

In your project configuration, select Inputs & Stubbing. Click the button

for Constraint setup.

. > G te
In the Constraint Specification window, click P> Genera .

Under the User Defined Functions node, you see a list of functions that Polyspace
does not stub. For information on stubbed functions, see “Constrain Stubbed
Functions” on page 12-15.

Expand the node for each function.

You see each function input on a separate row. The inputs have the syntax

function name.argl, function name.arg2, etc.

Specify your constraints on one or more of the function inputs. For more information,

see “External Constraints for Polyspace Analysis” on page 12-6.

For example, in the preceding code:

* To constrain val to the range [1..10], select INIT for Init Mode and enter
1..10 for Init Range.

» To specify that ptr points to a 3-element array where each element is initialized,
select MULTI for Init Allocated and enter 3 for # Allocated Objects.

12-13

12 Configure Inputs and Stubbing Options

5 Run verification and open the results. On the Source pane, place your cursor on the
function inputs.

The tooltips display the constraints. For example, in the preceding code, the tooltip
displays that val has valuesin 1..10.

See Also

Polyspace Analysis Options
Constraint setup (-data-range-specifications)

Related Examples
. “Constrain Global Variable Range” on page 12-11
. “Constrain Stubbed Functions” on page 12-15

More About

. “External Constraints for Polyspace Analysis” on page 12-6

12-14

Constrain Stubbed Functions

Constrain Stubbed Functions

Polyspace provides a function stub if you do not define a function or override a function
definition using an analysis option.

Polyspace makes certain assumptions about the arguments and return values of stubbed
functions. See “Stubbed Functions”. To work around the Polyspace assumptions, you can
specify constraints (also known as data range specifications or DRS) on arguments and
return values of stubbed functions.

For example, Polyspace assumes that variables returned from undefined functions take
full range of values allowed by their type. You can specify that the variable returned by a
certain undefined function lies in a specific range.

To specify a constraint, do one of the following:

» Before verification, create a constraint template. Specify this template for verification.

If you want to specify constraints for all undefined functions, use this approach. For
more information, see “Create Constraint Template” on page 12-2.

* Create a constrain template from your verification results. Specify this template for
the next verification.

If you want to constrain only those undefined functions that cause noncritical orange
checks, use this approach. For more information, see “Create Constraint Template
After Analysis” on page 12-3.

See Also

Polyspace Analysis Options
Constraint setup (-data-range-specifications)

Related Examples
. “Constrain Global Variable Range” on page 12-11
. “Constrain Function Inputs” on page 12-13

12-15

12 Configure Inputs and Stubbing Options

More About

. “External Constraints for Polyspace Analysis” on page 12-6

12-16

XML File Format for Constraints

XML File Format for Constraints

If you run a verification, the software automatically generates a constraint file drs -
template.xml in your results folder. Edit this XML file to specify your constraints.

You can also see the information in this topic and the underlying XML schema in
matlabroot\polyspace\drs. Here, matlabroot is the MATLAB installation folder, for
instance, C:\Program Files\MATLAB\R2017a.

Note Instead of editing the constraint XML file directly, use the Polyspace user interface
to specify your constraints and save the constraints as an XML file. For more information,
see “Specify External Constraints” on page 12-2.

Syntax Description — XML Elements

The DRS file contains the following XML elements:

<global> element — Declares the global scope, and is the root element of the XML
file.

<file> element — Declares a file scope. Must be enclosed in the <global> element.
May enclose any variable or function declaration. Static variables must be enclosed in
a file element to avoid conflicts.

<scalar> element— Declares an integer or a floating point variable. May be enclosed
in any recognized element, but cannot enclose any element. Sets init/permanent/global
asserts on variables.

<pointer> element — Declares a pointer variable. May enclose any other variable
declarations (including itself), to define the pointed objects. Specifies what value is
written into pointer (NULL or not), how many objects are allocated and how the
pointed objects are initialized.

<array> element — Declares an array variable. May enclose any other variable
definition (including itself), to define the members of the array.

<struct> element — Declares a structure variable or object (instance of class). May
enclose any other variable definition (including itself), to define the fields of the
structure.

<function> element — Declares a function or class method scope. May enclose any
variable definition, to define the arguments and the return value of the function.

12-17

12 Configure Inputs and Stubbing Options

Arguments should be named argl, arg2, ..argn and the return value should be
called return.

The following notes apply to specific fields in each XML element:

12-18

(*) — Fields used only by the GUI. These fields are not mandatory for verification to
accept the ranges. The field line contains the line number where the variable is
declared in the source code, complete type contains a string with the complete
variable type, and base type is used by the GUI to compute the min and max values.
The field comment is used to add information about any node.

(**) — The field name is mandatory for scope elements <file>and <function>
(except for function pointers). For other elements, the name must be specified when
declaring a root symbol or a struct field.

(***) — If more than one attribute applies to the variable, the attributes must be
separated by a space. Only the static attribute is mandatory, to avoid conflicts between
static variables having the same name. An attribute can be defined multiple times
without impact.

(**) — This element is used only by the GUI, to determine which init modes are
allowed for the current element (according to its type). The value works as a mask,
where the following values are added to specify which modes are allowed:

* 1: The mode “NO” is allowed.

e 2 :The mode “INIT” is allowed.

* 4: The mode “PERMANENT” is allowed.

* 8: The mode “MAIN GENERATOR” is allowed.

For example, the value “10” means that modes “INIT” and “MAIN GENERATOR” are
allowed. To see how this value is computed, refer to “Valid Modes and Default Values”
on page 12-22.

(ekx) — A sub-element of a pointer (i.e. a pointed object) will be taken into account

onlyif init pointed is equal to SINGLE, MULTI, SINGLE CERTAIN WRITE or
MULTI CERTAIN WRITE.

(eprkrky — SINGLE CERTAIN WRITE or MULTI CERTAIN WRITE are available for
parameters and return values of stubbed functions only if they are pointers. If the
parameter or return value is a structure and the structure has a pointer field, they are
also available for the pointer field.

XML File Format for Constraints

<file> Element

Field Syntax

name filepath or filename

comment string

<scalar> Element

Field Syntax

name (**) name

line (*) line

base type (*) intx
uintx
floatx

Attributes (***) volatile
extern
static
const

complete type (¥) type

init mode MAIN GENERATOR
IGNORE
INIT
PERMANENT
disabled
unsupported

init modes allowed (*)

single value (¥*¥*)

init range

range
disabled
unsupported

global assert

YES

NO

disabled
unsupported

12-19

12 Configure Inputs and Stubbing Options

Field Syntax
assert_range range
disabled
unsupported
comment(¥*) string
<pointer> Element
Field Syntax
Name (**) name
line (*) line
Attributes (*+¥) volatile
extern
static
const
complete type (*¥) type

init mode

MAIN GENERATOR
IGNORE

INIT

PERMANENT
disabled
unsupported

init modes allowed (*)

single value (¥+¥¥)

initialize pointer

May be:
NULL

Not NULL
NULL

number allocated

single value
disabled
unsupported

12-20

XML File Format for Constraints

Field

Syntax

init pointed (¥¥¥k¥k)

MAIN GENERATOR

NONE

SINGLE

MULTI

SINGLE CERTAIN WRITE
MULTI CERTAIN WRITE

disabled
comment string
<array> and <struct> Elements
Field Syntax
Name (**) name
line (*) line
complete type (¥) type
attributes (**¥) volatile
extern
static
const
comment string
<function> Element
Field Syntax
Name (**) name
line (¥) line

12-21

12 Configure Inputs and Stubbing Options

Field Syntax
main_generator called MAIN GENERATOR
YES
NO
disabled
attributes (¥**) static
extern
unused
comment string
Valid Modes and Default Values
Scope Type Init modes |Gassert |Initialize |Init Default
mode pointer allocated
Global Base Unqualifie |[MAIN YES Main
variables |type d/ GENERATOR |NO generator
static/ IGNORE dependant
const INIT
scalar PERMANENT
Volatile PERMANENT |disabled PERMANEN
scalar T min..max
Extern INIT YES INIT
scalar PERMANENT |NO min..max
Struct |Struct field |Refer to field type
Array |Array Refer to element type
element
Global Pointer |Unqualifie |MAIN May be NONE Main
variables d/ GENERATOR NULL SINGLE generator
static/ IGNORE Not NULL |[MULTI dependant
const INIT NULL
scalar
Volatile un- un- un-
pointer supported supported |supported

12-22

XML File Format for Constraints

Scope Type Init modes |Gassert |Initialize |Init Default
mode pointer allocated
Extern IGNORE May be NONE INIT May be
pointer INIT NULL SINGLE NULL max
Not NULL |MULTI MULTI
NULL
Pointed un- un-
volatile supported supported
scalar
Pointed INIT un- INIT
extern supported min..max
scalar
Pointed MAIN un- MAIN
other GENERATOR (supported GENERATO
scalars INIT R
dependant
Pointed MAIN un- May be NONE MAIN
pointer GENERATOR |supported [NULL SINGLE GENERATO
INIT/ Not NULL |MULTI R
NULL dependant
Pointed un- un-
function |supported supported
Function |Userdef |Scalar MAIN un- INIT
parameter |functio |parameter | GENERATOR |supported min..max
S n S INIT
Pointer MAIN un- May be NONE INIT May be
parameter | GENERATOR |supported [INULL SINGLE NULL max
S INIT Not NULL |MULTI MULTI
NULL
Other Refer to parameter type
parameter
S
Stubbe |Scalar disabled un-
d parameter supported
functio

n

12-23

12 Configure Inputs and Stubbing Options

Scope Type Init modes |[Gassert |Initialize |[Init Default
mode pointer allocated
Pointer disabled disabled NONE MULTI
parameter
S SINGLE
MULTI
SINGLE _
CERTAIN
WRITE
MULTT_
CERTAIN
WRITE
Pointed PERMANENT |un- PERMANEN
parameter supported T
S min..max
Pointed disabled un-
const supported
parameter
S
Function |Userdef |Return disabled un- disabled disabled
return functio supported
n
Stubbe |Scalar PERMANENT |un- PERMANEN
d return supported T
functio min..max
n

12-24

XML File Format for Constraints

Scope Type Init modes |Gassert |Initialize |Init Default
mode pointer allocated
Pointer PERMANENT |un- May be NONE PERMANEN
return supported |NULL T
Not NULL |SINGLE May be
NULL NULL max
MULTI MULTI
SINGLE
CERTAIN
WRITE
MULTT_
CERTAIN
WRITE

12-25

Configure Multitasking Analysis

13 Configure Multitasking Analysis

Analyze Multitasking Programs in Polyspace

With Polyspace, you can analyze programs where multiple threads (tasks) run

concurrently.

i int var;

Hwoid reset{void) {
var=0;

7 [Hwvoid inc(void) {

vart+=:2;
}
11 {* Task 1 */
Hveoid signal handler(void) {
]J volatile int randomValue = (
1 [while({randomValue) {
inc():
1 }
1 f* Task 2 *f

volatile int randomValue =
—~] while (randomValue) {
23 reset() -

}

20 jfvc;d signal_interrupt(void) {

25 L}
Hwvoid main{) {

28 L}

Task 1 Task 2
signal handler signal interrupt
inc reset

var

(shared variable)

In addition to regular run-time checks, the analysis looks for issues specific to concurrent

execution:

» Data races, deadlocks, consecutive or missing locks and unlocks (Bug Finder)
* Unprotected shared variables (Code Prover)

13-2

Analyze Multitasking Programs in Polyspace

Configure Analysis

%

Code_Prover_Example X 4 F B
El---'l:arget&Compller Multitasking
- Macros
- Environment Settings
----- Inputs & Stubbing A
® Multitasking Automatic Configuration
'''' Coding Rules & Code Metrics [] Enable automatic concurrency detection for Code Prover
----- Bug Finder Analysis
2 Code Prover Verification [External multitasking configuration | osek
-Verification ﬁ?ssumptlons Manual Configuration
- Check Behavior
- Precision Configure multitasking manually
- Scaling —
Tasks Task =
----- Reporting EII}I Elﬁ = ¥ ﬁ'
----- Run Settings procl
----- Advanced Settings proc2
serverl
server?
tregulate

If your code uses multitasking primitives from certain families, for instance,
pthread create for thread creation:

* In Bug Finder, the analysis detects them and extracts your multitasking model from

the code.

* In Code Prover, you must enable this automatic detection explicitly.

See “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 13-

6.

Alternatively, define your multitasking model through the analysis options. In the
Polyspace user interface, the options are on the Multitasking node in the Configuration
pane. For more information, see “Configuring Polyspace Multitasking Analysis Manually”

on page 13-14.

13-3

13 Configure Multitasking Analysis

Review Analysis Results

Bug Finder

e | [variable trace

=] Result Review
Status Unreviewed

Severity Unset

w | [Enter comment here...

O pata race ({Impact: High) (?)

Certain operations on varizble 'bad_glob1' can interfere with each other and cause unpredictable values.

All results
Family =F Information = Detail
[=-Defect 249
Q--Cunmrrency 9
Q--Daia race 2
L. * Impact High Certain ope
ata race through standard library function call 1
Deadlock 1
Destruction of locked mutex 1
Double lock 1

Access Access Protections Task File Scope Line
°€ |Write ‘No protection |bug7dataraoejask1{} |ccncurrency.c |bug7dataraoejask1{} |5?
|Read ‘No protection |bug_dataraoe_task2{} |ccncurrency.c |bug_dataraoe_task2{} |62

The Bug Finder analysis shows concurrency defects such as data races and deadlocks.
See “Concurrency Defects” (Polyspace Bug Finder).

Code Prover

13-4

See Also

Used non-shared variable

S Results Lis @ 2% § B Result Details a3
All results ~ % New v <7 5> Showing 397/397 v @| De ﬂ\l,_ﬂ @| Jx tasks1.c/ _init_globals
Family #F Information = File [l Result Review
(=-Run-time Check 5 6 2} | Stetus Unreviewed w | |Enter comment here...
[#-Red Check 5 . 3 Toes
v Check = everity Insef B
[-Green Chedk * Potentially unprotected variable 2
2 Global Variable . Variable 'tasks1.PowerLevel' is shared among several tasks. Some operations on variable 'tasks 1.PowerLevel' have no common protection|
= - Read by task: server server2 trequlate
=]
T Written by task: server1 server? tregulate
! - ariable: oevel [e— Event File Scope Line
% * Variable: SHR4 tasks1.| || 4 Written value: -10000 main.c main() 36
. 7 (% * Variable: SHR2 tasks1.| || 4 Written value: O tasks1.c _init_globals () 2%
E)-Protected variable 4 written value: [-2147483639 ., 231-1] tasks2.c Increase_Powerlevel() 19
| L[5 Variable: SHR tasksl) || P Readvalue: [-2147483640 .. 27%.q] taskslc orderregulate() 40
-+ [x ¥ Variable: SHRS tasksl.| || » Readvalue: [-2147483640 .. 2°1-1) tasks2.c Increase_PowerLevel() 19
El-Not shared 1 P Readvalue: [-2147483640 ., 231-1] tasks2.c Compute_Injection]) 34
-Unused variable 1 P Read value: [-2147433640 .. 231_1] tasks2.c Get_PowerLevel() 41

The Code Prover analysis exhaustively checks if shared global variables are protected
from concurrent access. See “Global Variables”.

Review the results using the message on the Result Details pane. See a visual

representation of conflicting operations using the (graph) icon.

See Also

More About

. “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 13-

6

. “Configuring Polyspace Multitasking Analysis Manually” on page 13-14
. “Protections for Shared Variables in Multitasking Code” on page 13-19

13-5

13 Configure Multitasking Analysis

Auto-Detection of Thread Creation and Critical Section
in Polyspace

13-6

With Polyspace, you can analyze programs where multiple threads run concurrently.
Polyspace can analyze your multitasking code for data races, deadlocks and other
concurrency defects, if the analysis is aware of the concurrency model in your code. In
some situations, Polyspace can detect thread creation and critical sections in your code
automatically. Bug Finder detects them by default. In Code Prover, you enable automatic
detection using the option Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection).

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in
Polyspace” on page 13-2.

If your thread creation function is not detected automatically:

* You can also map the function to a thread-creation function that Polyspace can detect
automatically. Use the option - function-behavior-specifications.

* Otherwise, you must manually model your multitasking threads by using configuration
options. See “Configuring Polyspace Multitasking Analysis Manually” on page 13-14.

Multitasking Routines that Polyspace Can Detect

Polyspace can detect thread creation and critical sections if you use primitives from these
groups. Polyspace recognizes calls to these routines as the creation of a new thread or as
the beginning or end of a critical section.

POSIX
Thread creation: pthread create
Critical section begins: pthread mutex lock

Critical section ends: pthread mutex unlock

VxWorks

Thread creation: taskSpawn

Auto-Detection of Thread Creation and Critical Section in Polyspace

Critical section begins: semTake
Critical section ends: semGive

To activate automatic detection of concurrency primitives for VxWorks®, use the
VxWorks template. For more information on templates, see “Create Project Using
Configuration Template” on page 3-19.

Concurrency detection is possible only if the multitasking functions are created from an
entry point named main. If the entry point has a different name, such as
vxworks entry point, do one of the following:

e Provide a main function.

* Preprocessor definitions (-D): In preprocessor definitions, set
vxworks entry point=main.

Windows
Thread creation: CreateThread
Critical section begins: EnterCriticalSection

Critical section ends: LeaveCriticalSection

HC/0S 1l
Thread creation: 0STaskCreate
Critical section begins: 0SMutexPend

Critical section ends: OSMutexPost

C++11
Thread creation: std: :thread: :thread

Critical section begins: std: :mutex: :lock

13-7

13 Configure Multitasking Analysis

13-8

Critical section ends: std: :mutex: :unlock

For autodetection of C++11 threads, explicitly specify paths to your compiler header files
or use polyspace-configure.

For instance, if you use std: : thread for thread creation, explicitly specify the path to
the folder containing thread. h.

Example of Automatic Thread Detection

The following multitasking code models five philosophers sharing five forks. The example
uses POSIX® thread creation routines and illustrates a classic example of a deadlock. Run
Bug Finder on this code to see the deadlock

#include "pthread.h"
#include <stdio.h>
#include <unistd.h>

pthread mutex t forks[5];

void* philol(void* args) {

while(1l) {
printf("Philosopher 1 is thinking\n");
sleep(l);
pthread mutex lock(&forks[0]);
printf("Philosopher 1 takes left fork\n");
pthread mutex lock(&forks[1]);
printf("Philosopher 1 takes right fork\n");
printf("Philosopher 1 is eating\n");
sleep(l);
pthread mutex unlock(&forks[1]);
printf("Philosopher 1 puts down right fork\n");
pthread mutex unlock(&forks[0]);
printf("Philosopher 1 puts down left fork\n");

}
return NULL;
}

void* philo2(void* args) {
while(1l) {
printf("Philosopher 2 is thinking\n");

Auto-Detection of Thread Creation and Critical Section in Polyspace

sleep(l);

pthread mutex lock(&forks[1]);
printf("Philosopher 2 takes left fork\n");
pthread mutex lock(&forks[2]);
printf("Philosopher 2 takes right fork\n");
printf("Philosopher 2 is eating\n");

sleep(l);

pthread mutex unlock(&forks[2]);
printf("Philosopher 2 puts down right fork\n");
pthread mutex unlock(&forks[1]);
printf("Philosopher 2 puts down left fork\n");

}
return NULL;
}

void* philo3(void* args) {

while(1l) {
printf("Philosopher 3 is thinking\n");
sleep(l);
pthread mutex lock(&forks[2]);
printf("Philosopher 3 takes left fork\n");
pthread mutex lock(&forks[31);
printf("Philosopher 3 takes right fork\n");
printf("Philosopher 3 is eating\n");
sleep(l);
pthread mutex unlock(&forks[3]);
printf("Philosopher 3 puts down right fork\n");
pthread mutex unlock(&forks[2]);
printf("Philosopher 3 puts down left fork\n");

}
return NULL;
}

void* philo4(void* args) {

while(1l) {
printf("Philosopher 4 is thinking\n");
sleep(l);
pthread mutex lock(&forks[3]);
printf("Philosopher 4 takes left fork\n");
pthread mutex lock(&forks[4]);
printf("Philosopher 4 takes right fork\n");
printf("Philosopher 4 is eating\n");
sleep(l);
pthread mutex unlock(&forks[4]);

13-9

13 Configure Multitasking Analysis

printf("Philosopher 4 puts down right fork\n");
pthread mutex unlock(&forks[3]);
printf("Philosopher 4 puts down left fork\n");

}
return NULL;
}

void* philo5(void* args) {

while(1l) {
printf("Philosopher 5 is thinking\n");
sleep(l);
pthread mutex lock(&forks[4]);
printf("Philosopher 5 takes left fork\n");
pthread mutex lock(&forks[0]);
printf("Philosopher 5 takes right fork\n");
printf("Philosopher 5 is eating\n");
sleep(l);
pthread mutex unlock(&forks[0]);
printf("Philosopher 5 puts down right fork\n");
pthread mutex unlock(&forks[4]);
printf("Philosopher 5 puts down left fork\n");

}
return NULL;
}

int main(void)

{
pthread t ph[5];
pthread create(&ph[0],NULL,philol,NULL);
pthread create(&ph[1],NULL,philo2,NULL);
pthread create(&ph[2],NULL,philo3,NULL);
pthread create(&ph[3],NULL,philo4,NULL);
pthread create(&ph[4],NULL,philo5,NULL);

pthread join(ph[0],NULL);
pthread join(ph[1],NULL);
pthread join(ph[2],NULL);
pthread join(ph[3],NULL);
pthread join(ph[4],NULL);
return 1;

}

Each philosopher needs two forks to eat, a right and a left fork. The functions philol,
philo2, philo3, philo4, and philo5 represent the philosophers. Each function

13-10

Auto-Detection of Thread Creation and Critical Section in Polyspace

requires two pthread mutex t resources, representing the two forks required to eat.
All five functions run at the same time in five concurrent threads.

However, a deadlock occurs in this example. When each philosopher picks up their first
fork (each thread locks one pthread mutex t resource), all the forks are being used.
So, the philosophers (threads) wait for their second fork (second pthread mutex t
resource) to become available. However, all the forks (resources) are being held by the
waiting philosophers (threads), causing a deadlock.

Naming Convention for Automatically Detected Threads

If you use a function such as pthread create() to create new threads (tasks), each
thread is associated with an unique identifier. For instance, in this example, two threads
are created with identifiers id1 and id2.

pthread t* idl,id2;

void main()

{
pthread create(idl,NULL,start routine,NULL);
pthread create(id2,NULL,start routine,NULL);

}

If a data race occurs between the threads, the analysis can detect it. When displaying the
results, the threads are indicated as task id, where id is the identifier associated with
the thread. In the preceding example, the threads are identified as task id1 and

task id2.

If a thread identifiers is:
e Local to a function, the thread name shows the function.

For instance, the thread created below appears as task f:id

void f (void) {

pthread t* id;

pthread create(id,NULL,start routine,NULL);
}

* A field of a structure, the thread name shows the structure.

For instance, the thread created below appears as task a#id

13-11

13 Configure Multitasking Analysis

13-12

struct {pthread t* id; int x;} a;
pthread create(a.id,NULL,start routine,NULL);

An array member, the thread name shows the array.

For instance, the thread created below appears as task tab[1].

pthread t* tab[10];
pthread create(tab[1],NULL,start routine,NULL);

Limitations of Automatic Thread Detection

The multitasking model extracted by Polyspace does not include some features. Polyspace
cannot model:

Thread priorities and attributes — Ignored by Polyspace.

Recursive semaphores.

Unbounded thread identifiers, such as extern pthread t ids[] — Warning.
Calls to concurrency primitive through high-order calls — Warning.

Aliases on thread identifiers — Polyspace over-approximates when the alias is used.

Termination of threads — Polyspace ignores pthread join, and replaces
pthread exit by a standard exit.

(Bug Finder only) Creation of multiple threads through multiple calls to the same
function with different pointer arguments.

For instance, in this example, Polyspace considers that only one thread is created.

pthread t id1,id2;
void start(pthread t* id)

{
pthread create(id,NULL,start routine,NULL);
}

void main()
{
start(&idl);
start(&id2);
}

See Also

See Also

Enable automatic concurrency detection for Code Prover (-enable-
concurrency-detection)

More About

. “Analyze Multitasking Programs in Polyspace” on page 13-2
. “Configuring Polyspace Multitasking Analysis Manually” on page 13-14

13-13

13 Configure Multitasking Analysis

Configuring Polyspace Multitasking Analysis Manually

13-14

With Polyspace, you can analyze programs where multiple threads run concurrently. In
some situations, Polyspace can detect thread creation and critical sections in your code
automatically. See “Auto-Detection of Thread Creation and Critical Section in Polyspace”
on page 13-6.

If your code has functions that are intended for concurrent execution, but that cannot be
detected automatically, you must specify them before analysis. If these functions operate
on a common variable, you must also specify protection mechanisms for those operations.

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in
Polyspace” on page 13-2.

Specify Options for Multitasking Analysis

Use these options to specify cyclic tasks, interrupts and protections for shared variables.
In the Polyspace user interface, the options are on the Multitasking node in the
Configuration pane.

* Tasks (-entry-points): Specify noncyclic entry point functions.

Do not specify main. Polyspace implicitly considers main as an entry point function.

* Cyclic tasks (-cyclic-tasks): Specify functions that are scheduled at periodic
intervals.

* Interrupts (-interrupts): Specify functions that can run asynchronously.

* Disabling all interrupts (-routine-disable-interrupts -routine-
enable-interrupts): Specify functions that disable and reenable interrupts (Bug
Finder only).

* Critical section details (-critical-section-begin -critical-
section-end): Specify functions that begin and end critical sections.

* Temporally exclusive tasks (-temporal-exclusions-file): Specify
groups of functions that are temporally exclusive.

* -preemptable-interrupts: Specify functions that have lower priority than
interrupts, but higher priority than tasks (preemptable or non-preemptable).

Only the Bug Finder analysis considers priorities.

Configuring Polyspace Multitasking Analysis Manually

* -non-preemptable-tasks: Specify functions that have higher priority than tasks,
but lower priority than interrupts (preemptable or non-preemptable).

Only the Bug Finder analysis considers priorities.

Adapt Code for Code Prover Multitasking Analysis

The multitasking analysis in Code Prover is more exhaustive about finding potentially
unprotected shared variables and therefore follows a strict model.

Tasks and interrupts must be void-void functions.

Functions that you specify as tasks and interrupts must have the prototype:
void func(void);

Suppose you want to specify a function func that takes int arguments:
void func(int);

Define a wrapper void-void function that calls func with a volatile value. Specify this
wrapper function as a task or interrupt.

void func_wrapper() {
volatile int arg;
func(arg);

}

The main function must end.

Code Prover assumes that the main function ends before all tasks and interrupts begin. If
the main function contains an infinite loop or run-time error, the tasks and interrupts are
not analyzed.

Suppose you want to specify the main function as a cyclic task.

void performTasklCycle(void);
void performTask2Cycle(void);

void main() {

13-15

13 Configure Multitasking Analysis

13-16

while(1l) {
performTasklCycle();
}
}

void task2() {
while(1) {
performTask2Cycle();
}
}

Replace the definition of main with:

#ifdef POLYSPACE
void main() {

}
void taskl() {
while(1l) {
performTasklCycle();
}
}

#else
void main() {
while(1l) {
performTasklCycle();
}

}
#endif

The replacement defines an empty main and places the content of main into another
function task1l if a macro POLYSPACE is defined. Define the macro POLYSPACE using the
option Preprocessor definitions (-D).

This assumption does not apply to automatically detected threads. For instance, a main
function can create threads using pthread create.

All tasks and interrupts can interrupt each other.

The Bug Finder analysis considers priorities of tasks. A function that you specify as a task
cannot interrupt a function that you specify as an interrupt because an interrupt has

higher priority.

Configuring Polyspace Multitasking Analysis Manually

The Code Prover analysis considers that all tasks and interrupts can interrupt each other.

All tasks and interrupts can run any number of times in any sequence.

The Code Prover analysis considers that all tasks and interrupts can run any number of
times in any sequence.

Suppose in this example, you specify reset and inc as cyclic tasks. The analysis shows
an overflow on the operation var+=2.

void reset(void) {
var=0;

}

void inc(void) {
var+=2;

}

Suppose you want to model a scheduling of tasks such that reset executes after inc has
executed five times. Write a wrapper function that implements this sequence. Specify this
new function as a cyclic task instead of reset and inc.

void task() {
volatile int randomValue = 0;
while(randomValue) {

}

Suppose you want to model a scheduling of tasks such that reset executes after inc has
executed zero to five times. Write a wrapper function that implements this sequence.
Specify this new function as a cyclic task instead of reset and inc.

void task() {

volatile int randomValue = 0;

while(randomValue) {
if(randomValue)

13-17

13 Configure Multitasking Analysis

inc();
if(randomValue)
inc();
if(randomValue)
inc();
if(randomValue)
inc();
if(randomValue)
inc();
reset();
}
}

See Also

More About

. “Analyze Multitasking Programs in Polyspace” on page 13-2
. “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 13-6

13-18

Protections for Shared Variables in Multitasking Code

Protections for Shared Variables in Multitasking Code

If your code is intended for multitasking, tasks in your code can access a common shared
variable. To prevent data races, you can protect read and write operations on the
variable. This topic shows the various protection mechanisms that Polyspace can
recognize.

Detect Unprotected Access

= Bvi
All results v || e New v <A 5> Showing 3,248/3,248 v @ | [Variable trace
Family “F Information “ Detail = Result Review
B Defect 249 Status Unreviewed w | |Enter comment here...
[=-Concurrency 9
El-Data race 2 Severity Unset ~
I T
. ~0® Impact High Certzin opel || © Data race (Impact: High) (2/

Data race through standard library function call 1 Certain operations on variable ‘bad_glob1' can interfere with each other and cause unpredictable values.

Deadlock 1 Access Access Protections Task File Scope Line
‘Destruction of locked mutex 1 |Wribe ‘No protection |bug_datarace_task1{} |ccncurrency.c |bug_daiarace_task1{} |57
-Double lock 1 D€ |Read ‘No protection |bug_datarace_task2{} |ccncurrency.c |bug_daiarace_task2{} |62
-Double unlock 1
Missing lock 1
| [#-Missing unlock 1

You can detect an unprotected access using either Bug Finder or Code Prover. Code
Prover is more exhaustive and proves if a shared variable is protected from concurrent

access.

* Bug Finder detects an unprotected access using the result Data race. See Data
race.

* Code Prover detects an unprotected access using the result Shared unprotected
global variable. See Shared unprotected global variable.

Suppose you analyze this code, specifying signal handler 1 and signal handler 2
as cyclic tasks. Use the analysis option Cyclic tasks (-cyclic-tasks).

#include <limits.h>
int shared var;

13-19

13 Configure Multitasking Analysis

13-20

void inc() {
shared var+=2;

}

void reset() {
shared var = 0;

}

void signal handler 1(void) {
reset();
inc();
inc();

}

void signal handler 2(void) {
shared var = INT MAX;
}

void main() {

}

Bug Finder shows a data race on shared_var. Code Prover shows that shared varisa
potentially unprotected shared variable. Code Prover also shows that the operation
shared var += 2 can overflow. The overflow occurs if the call to inc in

signal handler 1 immediately follows the operation shared var = INT MAXin
signal handler 2.

Protect Using Critical Sections
One possible solution is to protect operations on shared variables using critical sections.

In the preceding example, modify your code so that operations on shared var are in the
same critical section. Use the functions take semaphore and give semaphore to
begin and end the critical sections. To specify these functions that begin and end critical
sections, use the analysis options Critical section details (-critical-
section-begin -critical-section-end).

#include <limits.h>
int shared var;

void inc() {

Protections for Shared Variables in Multitasking Code

shared var+=2;

}

void reset() {
shared var = 0;

}

/* Declare lock and unlock functions */
void take_semaphore(void);
void give_semaphore(void);

void signal handler 1() {
/* Begin critical section */
take_semaphore();
reset();
inc();
inc();
/* End critical section */
give_semaphore();

}

void signal handler 2() {
/* Begin critical section */
take_semaphore();
shared var = INT MAX;
/* End critical section */
give_semaphore();

}

void main() {

}

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is
protected. You also do not see the overflow because the call to reset () in
signal handler_1 always precedes calls to inc().

Protect Using Temporally Exclusive Tasks

Another possible solution is to specify a group of tasks as temporally exclusive.
Temporally exclusive tasks cannot interrupt each other.

13-21

13 Configure Multitasking Analysis

In the preceding example, specify that signal handler 1 and signal handler 2 are
temporally exclusive. Use the option Temporally exclusive tasks (-temporal-
exclusions-file).

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is
protected. You also do not see the overflow because the call to reset() in
signal handler 1 always precedes calls to inc().

Protect Using Priorities
Another possible solution is to specify that one task has higher priority over another.

In the preceding example, specify that signal handler 1 is an interrupt. Retain
signal handler 2 as a cyclic task. Use the options Cyclic tasks (-cyclic-
tasks) and Interrupts (-interrupts).

Bug Finder does not show the data race defect anymore. The reason is this:

* The operation shared var = INT MAXin signal handler 2 is atomic. Therefore,
the operations in signal handler 1 cannot interrupt it.

* The operations in signal handler 1 cannot be inerrupted by the operation in
signal handler 2 because signal handler 1 has higher priority.

Code Prover does not consider priorities of tasks. Therefore, Code Prover still shows
shared var as a potentially unprotected global variable.

See Also

More About
. “Analyze Multitasking Programs in Polyspace” on page 13-2

13-22

Configure Coding Rules Checking
and Code Metrics Computation

14 Configure Coding Rules Checking and Code Metrics Computation

Check for Coding Rule Violations

With Polyspace, you can check your C/C++ code for violations of coding rules such as
MISRA C:2012 rules. Adhering to coding rules can reduce the number of defects and
improve the quality of your code.

Polyspace can detect the violations of these rules:

* MISRA C: 2004
* MISRA C: 2012
* MISRA C++

+ JSF++

Using Bug Finder, you can also check for security standards such as CWE, CERT C or ISO
17961. See “Check C/C++ Code for Security Standards” (Polyspace Bug Finder).

Configure Coding Rules Checking

(.0 gurang]

Bug_Finder_Fxample | 4 B
[Z-Target & Compiler A
’ Macros

Coding Rules & Code Metrics

" Enviranment Settings
----- Inputs & Stubbing "
---- Multitasking Coding Rules

i Coding Rules & Code Metrics [Check MISRA C: 2004 required-rules Edit

----- Bug Finder Analysis

5 Code Prover Verification [Check MISRA AC AGC OBL-ules Edit
’ Verification Assumptions Chedk MISRA C:2012 mandatory-required fv || Edit
i Check Behavior
: Precision [] use generated code requirements
‘- Sealing [check custom rules Wy
----- Reporting

LAIE 4 >

n i

14-2

Check for Coding Rule Violations

Specify the coding rules through Polyspace analysis options. When you run Bug Finder or
Code Prover, the analysis looks for coding rule violations in addition to other checks. You
can also disable the other checks and look for coding rule violations only.

In the Polyspace user interface, the options are on the Configuration pane under the
Coding Rules & Code Metrics node.

Use one of these options for C code:

e Check MISRA C:2004 (-misra2)
* Check MISRA AC AGC (-misra-ac-agc)
e Check MISRA (C:2012 (-misra3)

Use one of these options for C++ code:

* Check MISRA C++ rules (-misra-cpp)
* Check JSF++ rules (-jsf-coding-rules)

You can specify a predefined subsets of rules, for instance, mandatory for MISRA C:
2012. Alternatively, you can specify your own subset in one of these ways:

¢ Click the Edit button. Select the rules to enable.

When you save, the rules are saved in a text file that you can reuse for multiple
analyses.

» Specify a text file that lists one rule per line using the syntax:
Rule number on|off #Comments
For example:

10.5 off # rule 10.5: essential type model
17.2 on # rule 17.2: functions

You can only enter the rules that you want to turn off. When you run an analysis,
Polyspace automatically turns on the other rules and populates the file.

To check for coding rules only:

* In Bug Finder, disable checking of defects. Use the option Find defects (-
checkers).

14-3

14 Configure Coding Rules Checking and Code Metrics Computation

* In Code Prover, check for source compliance only. Use the option Verification
level (-to).

These rules are checked in the later stages of a Code Prover analysis: MISRA C:2004
rules 9.1, 13.7 and 21.1, and MISRA C:2012 rules 2.2, 9.1, 14.3, and 18.1. If you stop

Code Prover at source compliance checking, the analysis might not find all violations
of these rules.

Review Coding Rule Violations

14-4

Check for Coding Rule Violations

Wrmiorms
c | [] variable trace

= Result Review

Status |To fix |

Severity |Meci..rn v |

¥ MISRA C:2012 5.1 (Required) 2/
External identifiers shall be distinct.
External function demo_corrected_sighandlerasyncunsafestrict conflicts with the external identifier demo_corrected_sighandlerasyncunsafe {(programming.c line 1171),

Event File Scope Line

1 Vieolation site programming.c pregramming.c 1171
MISRA C:2012 5.1 programming.c File Scope

& Configuration Result Details

Source
programming.c X

7
void corrected sighandlerasyncunsafestrict{int signum) {

int 30 = gignum; f* Fix: awvoid raise() */
}
it fero_corrected_sighandlerasynounsafestrict(vald) [
M if (signal (SIGTERM, demo term handler) == SIG ERR) |
/* Handle error */
N
Ll if (3ignal {SIGINT, corrected sighandlerasyncunsafestrict) == S5IG ERR) |

/* Handle error */
}
/* Program code */
M it [raise (SIGINT) != 0) |

/* Handle error */

}
/* More code */

return 07

After analysis, you see the coding rule violations on the Results List pane. Select a
violation to see further details on the Result Details pane and the source code on the
Source pane.

14-5

14 Configure Coding Rules Checking and Code Metrics Computation

Violations of MISRA or JSF rules are indicated by the + icon.

For further steps, see:

» “Interpret Polyspace Bug Finder Results” (Polyspace Bug Finder) or “Interpret
Polyspace Code Prover Results” on page 17-2

“Address Polyspace Results Through Bug Fixes or Comments” on page 19-2
+ “Filter and Group Results” on page 20-2

14-6

Avoid Violations of MISRA C 2012 Rules 8.x

Avoid Violations of MISRA C 2012 Rules 8.x

MISRA C:2012 rules 8.1-8.14 enforce good coding practices surrounding declarations and
definitions. If you follow these practices, you are less likely to have conflicting
declarations or to unintentionally modify variables.

If you do not follow these practices during coding, your code might require major changes
later to be MISRA C-compliant. You might have too many MISRA C violations. Sometimes,
in fixing a violation, you might violate another rule. Instead, keep these rules in mind
when coding. Use the MISRA C:2012 checker to spot any issues that you might have
missed.

Explicitly specify all data types in declarations.
Avoid implicit data types like this declaration of k:
extern void foo (char c, const k);

Instead use:

extern void foo (char c, const int k);

That way, you do not violate MISRA C:2012 Rule 8.1.
When declaring functions, provide names and data types for all parameters.

Avoid declarations without parameter names like these declarations:

extern int func(int);
extern int func2();

Instead use:

extern int func(int arg);
extern int func2(void);

That way, you do not violate MISRA C:2012 Rule 8.2.
If you want to use an object or function in multiple files, declare the object or
function once in only one header file.

To use an object in multiple source files, declare it as extern in a header file. Include
the header file in all the source files where you need the object. In one of those source
files, define the object. For instance:

14-7

14 Configure Coding Rules Checking and Code Metrics Computation

14-8

/* header.h */
extern int var;

/* filel.c */
#include "header.h"
/* Some usage of var */

/* file2.c */
#include "header.h"
int var=l;

To use a function in multiple source files, declare it in a header file. Include the header
file in all the source files where you need the function. In one of those source files,
define the function.

That way, you do not violate MISRA C:2012 Rule 8.3, MISRA C:2012 Rule 8.4,
MISRA C:2012 Rule 8.5, or MISRA C:2012 Rule 8.6.

If you want to use an object or function in one file only, declare and define the
object or function with the static specifier.

Make sure that you use the static specifier in all declarations and the definition. For
instance, this function func is meant to be used only in the current file:

static int func(void);
static int func(void){

}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule
8.8.

If you want to use an object in one function only, declare the object in the
function body.

Avoid declaring the object outside the function.

For instance, if you use var in func only, do declare it outside the body of func:
int var;

void func(void) {
var=1;
}

Instead use:

Avoid Violations of MISRA C 2012 Rules 8.x

void func(void) {
int var;
var=1l;

}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule
8.9.

If you want to inline a function, declare and define the function with the
static specifier.

Every time you add inline to a function definition, add static too:

static inline double func(int val);
static inline double func(int val) {

}

That way, you do not violate MISRA C:2012 Rule 8.10
When declaring arrays, explicitly specify their size.

Avoid implicit size specifications like this:
extern int32 t arrayl[];
Instead use:

#define MAXSIZE 10
extern int32 t array[MAXSIZE];

That way, you do not violate MISRA C:2012 Rule 8.11.

When declaring enumerations, try to avoid mixing implicit and explicit
specifications.

Avoid mixing implicit and explicit specifications. You can specify the first enumeration
constant explicitly, but after that, use either implicit or explicit specifications. For
instance, avoid this type of mix:

enum color {red = 2, blue, green = 3, yellow};

Instead use:

enum color {red = 2, blue, green, yellow};

That way, you do not violate MISRA C:2012 Rule 8.12.

14-9

14 Configure Coding Rules Checking and Code Metrics Computation

14-10

When declaring pointers, point to a const-qualified type unless you want to
use the pointer to modify an object.

Point to a const-qualified type by default unless you intend to use the pointer for

modifying the pointed object. For instance, in this example, ptr is not used to modify
the pointed object:

char last char(const char * const ptr){

}

That way, you do not violate MISRA C:2012 Rule 8.13.

Create Custom Coding Rules

Create Custom Coding Rules

This example shows how to create a custom coding rules file. You can use this file to
check names or text patterns in your source code against custom rules that you specify.
For each rule, you specify a pattern in the form of a regular expression. The software
compares the pattern against identifiers in the source code and determines whether the
custom rule is violated.

The tutorial uses the following code stored in a file printInitialValue.c:
#include <stdio.h>
typedef struct {
int a;
int b;
} collection;

void main()

{
collection myCollection= {0,0};
printf("Initial values in the collection are %d and %d.",
myCollection.a,myCollection.b);
}

1 Create a Polyspace project. Add printInitialValue. c to the project.

2 On the Configuration pane, select Coding Rules & Code Metrics. Select the
Check custom rules box.

Click | Ed*
The New File window opens, displaying a table of rule groups.

4 Specify the rules to check for.

a First, clear the Custom rules check box to turn off checking of custom rules.

b Expand the 4 Structs node. For the option 4.3 All struct fields must follow
the specified pattern:

Column Title Action

Status Select ¥/,

14-11

14 Configure Coding Rules Checking and Code Metrics Computation

Column Title Action

Convention Enter ALl struct fields must
begin with s and have
capital letters or digits

Pattern Enter s [A-Z0-9]+

Comment Leave blank. This column is for
comments that appear in the
coding rules file alone.

5 Save the file and run the analysis. On the Results List pane, you see two violations
of rule 4.3. Select the first violation.
a Onthe Source pane, the line int a; is marked.

b On the Result Details pane, you see the error message you had entered, Al1l
struct fields must begin with s and have capital letters

6 Right-click on the Source pane and select Open Editor. The file
printInitialValue.c opens in the Code Editor pane or an external text editor
depending on your Preferences.

7 In the file, replace all instances of a with s A and b with s B. Rerun the analysis.

The custom rule violations no longer appear on the Results List pane.

See Also

Polyspace Analysis Options
Check custom rules (-custom-rules)

More About
. “Format of Custom Coding Rules File” on page 14-13

14-12

Format of Custom Coding Rules File

Format of Custom Coding Rules File

In a custom coding rules file, each rule appears in the following format:

N.n off|on
convention=violation message
pattern=regular_expression

N.n — Custom rule number, for example, 1.2.
off — Rule is not considered.

on — The software checks for violation of the rule. After analysis, it displays the
coding rule violation on the Results List pane.

violation message — Software displays this text in an XML file within the
Results/Polyspace-Doc folder.

regular _expression — Software compares this text pattern against a source code
identifier that is specific to the rule. See “Custom Coding Rules”.

The keywords convention= and pattern= are optional. If present, they apply to the
rule whose number immediately precedes these keywords. If convention= is not
given for a rule, then a standard message is used. If pattern= is not given for a rule,
then the default regular expression is used, that is, . *.

Use the symbol # to start a comment. Comments are not allowed on lines with the
keywords convention=and pattern=.

The following example contains three custom rules: 1.1, 8.1, and 9.1.

Custom rules configuration file

1.1 off # Disable custom rule number 1.1

8.1 on # Violation of custom rule 8.1 produces a warning
convention=Global constants must begin by G and must be in capital letters.
pattern=G_[A-Z0-9]*

9.1 on # Non-adherence to custom rule 9.1 produces a warning
convention=Global variables should begin by g .

pattern=g .*

See Also

Related Examples

“Create Custom Coding Rules” on page 14-11

14-13

14 Configure Coding Rules Checking and Code Metrics Computation

Compute Code Complexity Metrics

This example shows how to review the code complexity metrics that Polyspace computes.
For information on the individual metrics, see “Code Metrics”.

Polyspace does not compute code complexity metrics by default. To compute them during
analysis, do the following:

* User interface: On the Configuration pane, select Coding Rules & Code Metrics.
Select Calculate Code Metrics.

* Command line: With the polyspace-bug-finder-nodesktop or
polyspaceBugFinder command, use the option -code-metrics.

After analysis, the software displays code complexity metrics on the Results List pane.
You can:

* Specify limits for the metric values through Tools > Preferences.

If you impose limits on metrics, the Results List pane displays only those metric
values that violate the limits. Use predefined limits or assign your own limits. If you
assign your own limits, you can share the limits file to enforce coding standards in
your organization.

* Justify the value of a metric.

If a metric value exceeds specified limits and appears red, you can add a comment
with the rationale.

You can also suppress code metrics from the Results List display. Select Show >
Defects & Rules.
Impose Limits on Metrics

1 Select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

* To use a predefined limit, select Include Quality Objectives Scopes.

The Scope Name list shows the additional option HIS. The option HIS displays
the HIS code metrics on page 14-18 only. Select the option to see the limit
values.

14-14

Compute Code Complexity Metrics

To define your own limits, select New. Save your limits file.

On the left pane, select Code Metric. On the right, select a metric and specify a
limit value for the metric. Other than Comment Density, limit values are upper
limits.

To select all metrics in a category such as Function Metrics, select the box next
to the category name. For more information on the metrics categories, see “Code
Metrics”. If only a fraction of metrics in a category are selected, the check box

next to the category name displays a [H symbol.

14-15

14 Configure Coding Rules Checking and Code Metrics Computation

14-16

" Polyspace Preferences

Server Configuration

| Project and Results Folder |

Tools Menu Review Statuses

| Miscellaneous

Manage Show menu on Results Summary

[7] Indude Quality Objectives Scopes

Scope Mame [My_scope

v][MNew H Remave H

Open] [Save as

Review Scope

@ Defect (56 / 142)
E-Code Metric (3 / 18)

tH-MISRA C:2004 (Unset)
H-MISRA C:2012 (Unset)
H-MISRA AC AGC (Unset)
t-MISRA C++ (Unset)
th-J5F C++ (Unset)
t-Custom (Unset)

oy OO RO O g OO e OO

Code Metric

Your scope controls the defects you review

Status Threshold
- [Project Metrics
=[] File Metrics

ilefele

[H| Function Metrics

=

H!DDDDDDDDHDD

Marme

Mumber of Lines
Mumber of Lines Without Comment

& Comment Density
Estimated Function Coupling

Mumber of Lines Within Body
Mumber of Executable Lines
Cydomatic Complexity
Language Scope

Mumber of Paths

Mumber of Calling Functions
Mumber of Called Functions
Mumber of Call Dccurrences
Mumber of Instructions
Mumber of Call Levels
Mumber of Function Parameters

Mumber of Goto Statements
Mumber of Return Statements

[o J[_ acol

3 Select Apply or OK.

Compute Code Complexity Metrics

The drop-down list in the left of the Results List pane toolbar displays additional
options.

* Ifyou use predefined limits, the option HIS appears. This option displays code
metrics only.

* Ifyou define your own limits, the option corresponding to your limits file name
appears.

Select the option corresponding to the limits that you want. Only metric values that
violate your limits appear on the Results List pane.

Note To enforce coding standards across your organization, share your limits file that
you saved in XML format.

People in your organization can use the Open button on the Review Scope tab and
navigate to the location of the XML file.

Comment and Justify Limit Violations

Once you use the Show menu to display only metrics that violate limits, you can review
each violation.

1

On the Results List pane, from the ik list, select Family.

The code metrics appear together under one node.

Expand the node. Select each violation.

* On the Results List pane, in the Information column, you can see the metric
value.

* On the Result Details pane, you can see the metric value and a brief description
of the metric.

For more detailed descriptions and examples, select the “& icon.

On the Results List pane, add a comment and justification describing why the
violation occurs. For more information, see “Address Polyspace Results Through Bug
Fixes or Comments” on page 19-2.

14-17

14 Configure Coding Rules Checking and Code Metrics Computation

HIS Code Complexity Metrics

The following list shows the Hersteller Initiative Software (HIS) standard metrics that
Polyspace evaluates. These metrics and the recommended limits for their values are part
of a standard defined by a major group of Original Equipment Manufacturers or OEMs.
For more information on how to focus your review to this subset of code metrics, see
“Compute Code Complexity Metrics” on page 14-14.

Project

Polyspace evaluates the following HIS metrics at the project level.

Metric Recommended Upper Limit
Number of Direct Recursions 0

Number of Recursions 0

File

Polyspace evaluates the HIS metric, comment density, at the file level. The recommended
lower limit is 20.

Function

Polyspace evaluates the following HIS metrics at the function level.

Metric Recommended Upper Limit

Cyclomatic Complexity 10

Language Scope

Number of Call Levels

Number of Called Functions

Number of Function Parameters

4
4
Number of Calling Functions 5
7
5
0

Number of Goto Statements

Number of Instructions 50

14-18

HIS Code Complexity Metrics

Number of Paths 80
Number of Return Statements 1

14-19

Coding Rule Sets and Concepts

* “Polyspace MISRA C 2004 and MISRA AC AGC Checkers” on page 15-2
+ “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 15-3
* “Software Quality Objective Subsets (C:2004)” on page 15-47

* “Software Quality Objective Subsets (AC AGC)” on page 15-53

* “Polyspace MISRA C:2012 Checkers” on page 15-57

* “Software Quality Objective Subsets (C:2012)” on page 15-59

* “Coding Rule Subsets Checked Early in Analysis” on page 15-64
* “Unsupported MISRA C:2012 Guidelines” on page 15-84

* “Polyspace MISRA C++ Checkers” on page 15-85

¢ “MISRA C++ Coding Rules” on page 15-86

» “Software Quality Objective Subsets (C++)” on page 15-116

* “Polyspace JSF C++ Checkers” on page 15-123

* “JSF C++ Coding Rules” on page 15-124

15 Coding Rule Sets and Concepts

Polyspace MISRA C 2004 and MISRA AC AGC Checkers

15-2

The Polyspace MISRA C:2004 checker helps you comply with the MISRA C 2004 coding
standard.?

When MISRA C rules are violated, the MISRA C checker enables Polyspace software to
provide messages with information about the rule violations. Most messages are reported
during the compile phase of an analysis.

The MISRA C checker can check nearly all of the 142 MISRA C:2004 rules.

The MISRA AC AGC checker checks rules from the OBL (obligatory) and REC
(recommended) categories specified by MISRA AC AGC Guidelines for the Application of
MISRA-C:2004 in the Context of Automatic Code Generation.

There are subsets of MISRA coding rules that can have a direct or indirect impact on the
selectivity (reliability percentage) of your results. When you set up rule checking, you can
select these subsets directly. These subsets are defined in:

* “Software Quality Objective Subsets (C:2004)” on page 15-47

* “Software Quality Objective Subsets (AC AGC)” on page 15-53

Note The Polyspace MISRA checker is based on MISRA C:2004, which also incorporates
MISRA C Technical Corrigendum.

See Also

More About
. “Check for Coding Rule Violations” on page 14-2
. “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 15-3

2. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

MISRA C:2004 and MISRA AC AGC Coding Rules

MISRA C:2004 and MISRA AC AGC Coding Rules

In this section...
“Supported MISRA C:2004 and MISRA AC AGC Rules” on page 15-3
“Troubleshooting” on page 15-4

“List of Supported Coding Rules” on page 15-4
“Unsupported MISRA C:2004 and MISRA AC AGC Rules” on page 15-44

Supported MISRA C:2004 and MISRA AC AGC Rules

The following tables list MISRA C:2004 coding rules that the Polyspace coding rules
checker supports. Details regarding how the software checks individual rules and any
limitations on the scope of checking are described in the “Polyspace Specification”
column.

Note The Polyspace coding rules checker:
* Supports MISRA-C:2004 Technical Corrigendum 1 for rules 4.1, 5.1, 5.3, 6.1, 6.3, 7.1,
9.2,10.5, 12.6, 13.5, and 15.0.

* Checks rules specified by MISRA AC AGC Guidelines for the Application of MISRA-C:
2004 in the Context of Automatic Code Generation.

The software reports most violations during the compile phase of an analysis. However,
the software detects violations of rules 9.1 (Non-initialized variable), 12.11 (one
of the overflow checks) using -scalar-overflows-checks signed-and-unsigned),
13.7 (dead code), 14.1 (dead code), 16.2 and 21.1 during code analysis, and reports these
violations as run-time errors.

Note Some violations of rules 13.7 and 14.1 are reported during the compile phase of
analysis.

15-3

15 Coding Rule Sets and Concepts

Troubleshooting

If you expect a rule violation but do not see it, check out “Coding Rule Violations Not
Displayed” on page 23-95.

List of Supported Coding Rules

* “Environment” on page 15-5

* “Language Extensions” on page 15-7

* “Documentation” on page 15-8

* “Character Sets” on page 15-8

* “Identifiers” on page 15-9

* “Types” on page 15-10

* “Constants” on page 15-12

* “Declarations and Definitions” on page 15-12
* “Initialization” on page 15-15

» “Arithmetic Type Conversion” on page 15-16
* “Pointer Type Conversion” on page 15-21

* “Expressions” on page 15-22

* “Control Statement Expressions” on page 15-26
* “Control Flow” on page 15-29

* “Switch Statements” on page 15-32

* “Functions” on page 15-33

* “Pointers and Arrays” on page 15-34

* “Structures and Unions” on page 15-35

* “Preprocessing Directives” on page 15-36

* “Standard Libraries” on page 15-40

* “Runtime Failures” on page 15-44

15-4

MISRA C:2004 and MISRA AC AGC Coding Rules

Environment

MISRA Definition

Messages in report file

Polyspace Specification

All code shall conform to ISO
9899:1990 “Programming
languages - C”, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC
9899/COR2:1996.

The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
CORZ2:1996 precedes each of
the following messages:

¢ ANSI C does not allow
‘#include next'

e ANSI C does not allow
macros with variable
arguments list

¢ ANSI C does not allow
‘#assert’

¢ ANSI C does not allow
'#unassert’

* ANSI C does not allow
testing assertions

¢ ANSI C does not allow
'#ident'

¢ ANSI C does not allow
'#sccs'

+ text following '#else'
violates ANSI standard.

* text following '#endif'
violates ANSI standard.

* text following '#else' or
'#endif' violates ANSI
standard.

All the supported extensions
lead to a violation of this
MISRA rule. Standard
compilation error messages
do not lead to a violation of
this MISRA rule and remain
unchanged.

15-5

15 Coding Rule Sets and Concepts

15-6

Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

* ANSI C90 forbids 'long
long int' type.

* ANSI C90 forbids 'long
double' type.

* ANSI C90 forbids long
long integer constants.

* Keyword 'inline' should
not be used.

* Array of zero size should
not be used.

* Integer constant does not
fit within unsigned long
int.

* Integer constant does not
fit within long int.

* Too many nesting levels
of #includes: N;. The
limit is N,

* Too many macro
definitions: N;. The limit
is No.

* Too many nesting levels
for control flow: N;. The
limit is N,

N. MISRA Definition Messages in report file Polyspace Specification
1.1 The text All code shall
(cont.) conform to ISO 9899:1990

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
* Too many enumeration
constants: N;. The limit is
Np.
Language Extensions
N. MISRA Definition Messages in report file Polyspace Specification
2.1 Assembly language shall be |Assembly language shall be |No warnings if code is
encapsulated and isolated. encapsulated and isolated. encapsulated in the
following:
* asm functions or asm
pragma
* Macros
2.2 Source code shall only use /* |C++ comments shall not be |C++ comments are handled
*/ style comments used. as comments but lead to a
violation of this MISRA rule
Note: This rule cannot be
annotated in the source
code.
2.3 The character sequence /* The character sequence /* This rule violation is also

shall not be used within a
comment

shall not appear within a
comment.

raised when the character
sequence /* inside a C++
comment.

Note: This rule cannot be
annotated in the source
code.

15-7

15 Coding Rule Sets and Concepts

Documentation

Rule

MISRA Definition

Messages in report file

Polyspace Specification

3.4

All uses of the #pragma
directive shall be documented
and explained.

All uses of the #pragma
directive shall be documented
and explained.

To check this rule, you must
list the pragmas that are
allowed in source files by
using the option Allowed
pragmas (-allowed-
pragmas). If Polyspace finds
a pragma not in the allowed
pragma list, a violation is
raised.

Character Sets

MISRA Definition

Messages in report file

Polyspace Specification

Only those escape sequences
which are defined in the ISO
C standard shall be used.

\<character> is not an ISO C
escape sequence Only those
escape sequences which are
defined in the ISO C
standard shall be used.

4.2

Trigraphs shall not be used.

Trigraphs shall not be used.

Trigraphs are handled and
converted to the equivalent
character but lead to a
violation of the MISRA rule

15-8

MISRA C:2004 and MISRA AC AGC Coding Rules

Identifiers
N. MISRA Definition Messages in report file Polyspace Specification
5.1 Identifiers (internal and Identifier 'XX' should not rely |All identifiers (global, static
external) shall not rely on the |on the significance of more |and local) are checked.
significance of more than 31 |than 31 characters.
characters For easier review, the rule
checker shows all identifiers
that have the same first 31
characters as one rule
violation. You can see all
instances of conflicting
identifier names in the event
history of that rule violation.
5.2 Identifiers in an inner scope |* Local declaration of XX is |Assumes that rule 8.1 is not
shall not use the same name hiding another identifier. |violated.
as an identifier in an outer + Declaration of parameter
scope, and therefore hide that XX is hiding another
identifier. identifier.
5.3 A typedef name shall be a {typedef name}'%s' should |Warning when a typedef
unique identifier not be reused. (already used |name is reused as another
as {typedef name} at %s:%d) |identifier name.
5.4 A tag name shall be a unique |{tag name}'%s' should not |Warning when a tag name is
identifier be reused. (already used as |reused as another identifier
{tag name} at %s:%d) name
5.5 No object or function {static identifier/parameter |Warning when a static name

identifier with a static storage
duration should be reused.

name}’%s’ should not be
reused. (already used as
{static identifier/parameter
name} with static storage
duration at %s:%d)

is reused as another
identifier name

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

15-9

15 Coding Rule Sets and Concepts

MISRA Definition

Messages in report file

Polyspace Specification

No identifier in one name {member name}'%s' should |[Warning when an idf in a
space should have the same |not be reused. (already used |namespace is reused in
spelling as an identifier in as {member name} at %s: another namespace
another name space, with the |%d)
exception of structure and
union member names.
5.7 No identifier name should be |{identifier}'%s' should not |No violation reported when:
reused. be reused. (already used as .)
{identifier} at %s:%d) + Different functions have
parameters with the same
name
» Different functions have
local variables with the
same name
* A function has a local
variable that has the
same name as a
parameter of another
function
Types
N. MISRA Definition Messages in report file Polyspace Specification
6.1 The plain char type shall be |Only permissible operators |Warning when a plain char is

used only for the storage and
use of character values

on plain chars are '=', '==
or '!="'operators, explicit
casts to integral types and '?'
(for the 2nd and 3rd
operands)

used with an operator other
than =, ==, !=, explicit casts
to integral types, or as the
second or third operands of
the ? operator.

15-10

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
6.2 Signed and unsigned char * Value of type plain char is |Warning if value of type plain
type shall be used only for the implicitly converted to char is implicitly converted
storage and use of numeric signed char. to value of type signed char
values. « Value of type plain char is |°F unsigned char.
implicitly converted to
unsigned char.
* Value of type signed char
is implicitly converted to
plain char.
* Value of type unsigned
char is implicitly
converted to plain char.
6.3 typedefs that indicate size and |typedefs that indicate size No warning is given in
signedness should be used in |and signedness should be typedef definition.
place of the basic types used in place of the basic
types.
6.4 Bit fields shall only be defined |Bit fields shall only be
to be of type unsigned int or |defined to be of type
signed int. unsigned int or signed int.
6.5 Bit fields of type signed int Bit fields of type signed int |No warning on anonymous

shall be at least 2 bits long.

shall be at least 2 bits long.

signed int bitfields of width
0 - Extended to all signed
bitfields of size <=1 (if Rule
6.4 is violated).

15-11

15

Coding Rule Sets and Concepts

Constants
N. MISRA Definition Messages in report file Polyspace Specification
7.1 Octal constants (other than e QOctal constants other than
zero) and octal escape zero and octal escape
sequences shall not be used. sequences shall not be
used.
* Octal constants (other
than zero) should not be
used.
* Octal escape sequences
should not be used.
Declarations and Definitions
N. MISRA Definition Messages in report file Polyspace Specification
8.1 Functions shall have * Function XX has no Prototype visible at call must
prototype declarations and complete prototype visible |be complete.
the prototype shall be visible at call.
at both the function definition |, pynction XX has no
and call. prototype visible at
definition.
8.2 Whenever an object or Whenever an object or
function is declared or function is declared or
defined, its type shall be defined, its type shall be
explicitly stated explicitly stated.
8.3 For each function parameter |Definition of function 'XX' Assumes that rule 8.1 is not

the type given in the
declaration and definition
shall be identical, and the
return types shall also be
identical.

incompatible with its
declaration.

violated. The rule is restricted
to compatible types. Can be
turned to Off

15-12

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
8.4 If objects or functions are » If objects or functions are |Violations of this rule might
declared more than once declared more than once |be generated during the link
their types shall be their types shall be phase.
compatible. compatible.
. Global declaration of 'XX' Bug Finder and Code Prover
f . : . check this coding rule
unction has incompatible diff
type with its definition. ! erentlyr e
yp produce different results.
* Global declaration of 'XX'
variable has incompatible
type with its definition.
8.5 There shall be no definitions |¢ Object 'XX' should not be |Tentative definitions are
of objects or functions in a defined in a header file. considered as definitions. For
header file Function 'XX' should not objects with file scope,
be defined in a header file, |tentative definitions are
) declarations that:
* Fragment of function
should not be defined ina |« Do not have initializers.
header file. * Do not have storage class
specifiers, or have the
static specifier
8.6 Functions shall always be Function 'XX' should be This rule maps to ISO/IEC TS
declared at file scope. declared at file scope. 17961 ID addrescape.
8.7 Objects shall be defined at Object 'XX' should be Restricted to static objects.

block scope if they are only
accessed from within a single
function

declared at block scope.

15-13

15 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification
8.8 An external object or function |Function/Object 'XX' has Restricted to explicit extern
shall be declared in one file |external declarations in declarations (tentative
and only one file multiple files. definitions are ignored).
Polyspace considers that
variables or functions
declared extern in a non-
header file violate this rule.
Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.
8.9 Definition: An identifier with |* Procedure/Global variable |The checker flags multiple
external linkage shall have XX multiply defined. definitions only if the
exact}y one external « Forbidden multiple definitions occur in different
definition. tentative definitions for |files-
object XX N .
0 warnings appear on
* Global variable has predeﬁned Symbo]S.
multiple tentative
definitions Bug Finder and Code Prover
« Undefined global variable |check this coding rule
XX differently. The analyses can
produce different results.
8.10 |All declarations and Function/Variable XX should [Assumes that 8.1 is not
definitions of objects or have internal linkage. violated. No warning if 0
functions at file scope shall uses.
have internal linkage unless .
external linkage is required Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.
8.11 |The static storage class static storage class specifier

specifier shall be used in
definitions and declarations
of objects and functions that
have internal linkage

should be used on internal
linkage symbol XX.

15-14

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
8.12 |When an array is declared Size of array 'XX' should be
with external linkage, its size |explicitly stated.
shall be stated explicitly or
defined implicitly by
initialization
Initialization
N. MISRA Definition Messages in report file Polyspace Specification
9.1 All automatic variables shall Checked during code
have been assigned a value analysis.
before being used.
Violations displayed as Non-
initialized variable results.
Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.
9.2 Braces shall be used to Braces shall be used to
indicate and match the indicate and match the
structure in the nonzero structure in the nonzero
initialization of arrays and initialization of arrays and
structures. structures.
9.3 In an enumerator list, the = |In an enumerator list, the =

construct shall not be used to
explicitly initialize members

other than the first, unless all
items are explicitly initialized.

construct shall not be used to
explicitly initialize members
other than the first, unless
all items are explicitly

initialized.

15-15

15 Coding Rule Sets and Concepts

Arithmetic Type Conversion

MISRA Definition

Messages in report file

Polyspace Specification

10.1

15-16

The value of an expression of
integer type shall not be
implicitly converted to a
different underlying type if:

¢ itis not a conversion to a
wider integer type of the
same signedness, or

* the expression is complex,
or

* the expression is not
constant and is a function
argument, or

* the expression is not
constant and is a return
expression

* Implicit conversion of the
expression of underlying
type XX to the type XX
that is not a wider integer
type of the same
signedness.

e Implicit conversion of one
of the binary operands
whose underlying types
are XX and XX

* Implicit conversion of the
binary right hand
operand of underlying
type XX to XX that is not
an integer type.

* Implicit conversion of the
binary left hand operand
of underlying type XX to
XX that is not an integer
type.

* Implicit conversion of the
binary right hand
operand of underlying
type XX to XX that is not a
wider integer type of the
same signedness or
Implicit conversion of the
binary ? left hand
operand of underlying
type XX to XX, but it is a
complex expression.

* Implicit conversion of
complex integer
expression of underlying
type XX to XX.

ANSI C base types order
(signed char, short, int, long)
defines that T2 is wider than
T1 if T2 is on the right hand
of T1 or T2 = T1. The same
interpretation is applied on
the unsigned version of base

types.

An expression of bool or
enum types has int as
underlying type.

Plain char may have signed
or unsigned underlying type
(depending on Polyspace
target configuration or
option setting).

The underlying type of a
simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield width
is not token into account and
it assumes that only signed |
unsigned int are used for
bitfield (Rule 6.4).

This rule violation is not
produced on operations
involving pointers.

No violation reported when:

* The implicit conversion is
a type widening, without

MISRA C:2004 and MISRA AC AGC Coding Rules

MISRA Definition

Messages in report file

Polyspace Specification

* Implicit conversion of
non-constant integer
expression of underlying
type XX in function return
whose expected type is
XX.

* Implicit conversion of
non-constant integer
expression of underlying
type XX as argument of
function whose
corresponding parameter
type is XX.

change of signedness of
integer

* The expression is an
argument expression or a
return expression

No violation reported when
the following are true:

Implicit conversion
applies to a constant
expression and is a type
widening, with a possible
change of signedness of
integer.

* The conversion does not
change the
representation of the
constant value or the
result of the operation.

» The expression is an
argument expression or a
return expression or an
operand expression of a
non-bitwise operator.

Conversions of constants are
not reported for these cases
to avoid flagging too many
violations. If the constant can
be represented in both the
original and converted type,
the conversion is less of an
issue.

15-17

15 Coding Rule Sets and Concepts

MISRA Definition

Messages in report file

Polyspace Specification

10.2

The value of an expression of
floating type shall not be
implicitly converted to a
different type if

¢ itis not a conversion to a
wider floating type, or

* the expression is complex,
or

* the expression is a
function argument, or

* the expression is a return
expression

* Implicit conversion of the
expression from XX to XX
that is not a wider
floating type.

* Implicit conversion of the
binary ? right hand
operand from XX to XX,
but it is a complex
expression.

* Implicit conversion of the
binary ? right hand
operand from XX to XX
that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from
XX to XX, butitis a
complex expression.

* Implicit conversion of
complex floating
expression from XX to XX.

* Implicit conversion of
floating expression of XX
type in function return
whose expected type is
XX.

* Implicit conversion of
floating expression of XX
type as argument of
function whose
corresponding parameter
type is XX.

ANSI C base types order
(float, double) defines that
T2 is wider than T1 if T2 is
on the right hand of T1 or T2
=TI1.

No violation reported when:
* The implicit conversion is

a type widening

* The expression is an
argument expression or a
return expression.

15-18

MISRA C:2004 and MISRA AC AGC Coding Rules

MISRA Definition

Messages in report file

Polyspace Specification

10.3

The value of a complex
expression of integer type
may only be cast to a type
that is narrower and of the
same signedness as the
underlying type of the
expression

Complex expression of

underlying type XX may only

be cast to narrower integer
type of same signedness,

however the destination type

is XX.

* The rule checker raises a
defect only if the result of
a composite expression is
cast to a different or
wider essential type.

For instance, in this
example, a violation is
shown in the first
assignment to i but not
the second. In the first
assignment, a composite
expression i+1 is directly
cast from a signed to an
unsigned type. In the
second assignment, the
composite expression is
first cast to the same type
and then the result is cast
to a different type.

typedef int int32 T;
typedef unsigned char U

int32 T i;

i = (uint8 T)(i+1);

/* Noncompliant */

i = (uint8 T)((int32. T
/* Compliant */

* ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2 is
on the right hand of T1 or
T1 = T2. The same
methodology is applied on
the unsigned version of

base types.

15-19

int8 T;

(i+1));

15 Coding Rule Sets and Concepts

MISRA Definition

Messages in report file

Polyspace Specification

* An expression of bool or
enum types has int as
underlying type.

* Plain char may have
signed or unsigned
underlying type
(depending on target
configuration or option
setting).

* The underlying type of a
simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield
width is not token into
account and it assumes
that only signed,
unsigned int are used for
bitfield (Rule 6.4).

10.4

The value of a complex
expression of float type may
only be cast to narrower
floating type

Complex expression of XX
type may only be cast to
narrower floating type,
however the destination type
is XX.

ANSI C base types order
(float, double) defines that
T1 is narrower than T2 if T2
is on the right hand of T1 or
T2 = T1.

10.5

If the bitwise operator ~ and
<< are applied to an operand
of underlying type unsigned
char or unsigned short, the
result shall be immediately
cast to the underlying type of
the operand

Bitwise [<<|~] is applied to
the operand of underlying
type [unsigned char|
unsigned short], the result
shall be immediately cast to
the underlying type.

15-20

MISRA C:2004 and MISRA AC AGC Coding Rules

MISRA Definition

Messages in report file

Polyspace Specification

10.6

The “U” suffix shall be applied
to all constants of unsigned

types

No explicit 'U suffix on
constants of an unsigned

type.

Warning when the type
determined from the value
and the base (octal, decimal
or hexadecimal) is unsigned
and there is no suffix u or U.

For example, when the size
of the int and long int
data types is 32 bhits, the
coding rule checker will
report a violation of rule 10.6
for the following line:

int a = 2147483648;

There is a difference
between decimal and
hexadecimal constants when
int and long int are not
the same size.

Pointer Type Conversion

MISRA Definition

Messages in report file

Polyspace Specification

111

Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type

Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type.

Casts and implicit
conversions involving a
function pointer.

Casts or implicit conversions
from NULL or (void*)0 do
not give any warning.

Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void

Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void.

There is also a warning on
qualifier loss

This rule maps to ISO/IEC
TS 17961 ID alignconv.

15-21

15 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification
11.3 |A cast should not be A cast should not be Exception on zero constant.
performed between a pointer |performed between a pointer |Extended to all conversions
type and an integral type type and an integral type.
This rule maps to ISO/IEC
TS 17961 ID alignconv.
11.4 |A cast should not be A cast should not be
performed between a pointer |performed between a pointer
to object type and a different |to object type and a different
pointer to object type. pointer to object type.
11.5 |A cast shall not be performed |A cast shall not be performed | Extended to all conversions
that removes any const or that removes any const or
volatile qualification from the |volatile qualification from the
type addressed by a pointer |type addressed by a pointer
Expressions
N. MISRA Definition Messages in report file Polyspace Specification
12.1 Limited dependence should |Limited dependence should
be placed on C's operator be placed on C's operator
precedence rules in precedence rules in
expressions expressions
12.2 The value of an expression e The value of 'sym' Rule 12.2 check assumes that
shall be the same under any depends on the order of |no assignment in expressions
order of evaluation that the evaluation. that yield a Boolean values
standard permits. o e e of vl (rule 13.1).
sy depends on g The expression is a simple
order of evaluation ion of s i = i
because of multiple expression o ;ymbo s.1.=1
AC0ESSES ++; is a violation, but tab[2]
' = tab[2]++; isnota
violation.
12.3 The sizeof operator should |The sizeof operator should |No warning on volatile

not be used on expressions
that contain side effects.

not be used on expressions
that contain side effects.

accesses

15-22

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
12.4 The right hand operand of a |The right hand operand of a |No warning on volatile
logical && or || operator shall |logical && or || operator shall |accesses
not contain side effects. not contain side effects.
12.5 The operands of a logical && |¢ operand of logical && is |During preprocessing,

or || shall be primary-
expressions.

not a primary expression
» operand of logical || is not
a primary expression

* The operands of a logical
&& or || shall be primary-
expressions.

violations of this rule are
detected on the expressions
in #if directives.

Allowed exception on
associatively (a && b && c),
(@|[b c).

15-23

15 Coding Rule Sets and Concepts

MISRA Definition

Messages in report file

Polyspace Specification

12.6

15-24

Operands of logical operators
(&&, || and !) should be
effectively Boolean.
Expression that are
effectively Boolean should not
be used as operands to
operators other than (&&, ||
or!).

Operand of '!" logical
operator should be
effectively Boolean.

* Left operand of '%s'
logical operator should be
effectively Boolean.

* Right operand of '%s'
logical operator should be
effectively Boolean.

* %s operand of '%s' is
effectively Boolean.
Boolean should not be
used as operands to
operators other than '&&!',
05", =", '==", '1="and
"B,

The operand of a logical
operator should be a Boolean
data type. Although the C
standard does not explicitly
define the Boolean data type,
the standard implicitly
assumes the use of the
Boolean data type.

Some operators may return
Boolean-like expressions, for
example, (var == 0).

Consider the following code:

unsigned char flag;
if (!flag)

The rule checker reports a
violation of rule 12.6:

Operand of '!' logical
operator should be
effectively Boolean.

The operand flag is not a
Boolean but an unsigned
char.

To be compliant with rule
12.6, the code must be
rewritten either as

if (1(flag '= 0))
or
if (flag == 0)

The use of the option -
boolean-types may
increase or decrease the

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
number of warnings
generated.

12.7 Bitwise operators shall not be [* [~/Left Shift/Right shift/&] | The underlying type for an
applied to operands whose operator applied on an integer is signed when:
underlying type is signed expression whose ‘

underlying type is signed. |* it does not haveauor U
* Bitwise ~ on operand of 'su'fflx
signed underlying type XX.|* 1t is small enough to fit
* Bitwise [<<|>>] on left ;nlf&ge? bits signed
hand operand of signed
underlying type XX.
* Bitwise [& | ~] on two
operands of s

12.8 The right hand operand ofa | shift amount is negative = |The numbers that are
shift operator shall lie « shift amount is bigger manipulated in preprocessing
between zero and one less than 64 directives are 64 bits wide so
than the width in bits of the o that valid shift range is
underlying type of the left * Bitwise [<< >>] count out |hetyeen 0 and 63
hand operand. of range [0 :.X] (width of

the underlying type XX of |Check is also extended onto

the left hand operand - 1).. |bitfields with the field width
or the width of the base type
when it is within a complex
expression

12.9 The unary minus operator * Unary - on operand of The underlying type for an
shall not be applied to an unsigned underlying type |integer is signed when:
expression whose underlying XX. .
type is unsigned. - Minus operator applied to | I %fqes not have a u or U

an expression whose .su. X

underlying type is * itis small enough to fit

unsigned into a 64 bits signed
number

12.10 |The comma operator shall not |The comma operator shall not

be used.

be used.

15-25

15 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification
12.11 |Evaluation of constant Evaluation of constant
unsigned expression should |unsigned integer expressions
not lead to wraparound. should not lead to wrap-
around.
12.12 |The underlying bit The underlying bit Warning when:
representations of floating- |representations of floating- . _
point values shall not be used. |point values shall not be used.|* A float pointer is cast as a
pointer to another data
type. Casting a float
pointer as a pointer to
void does not generate a
warning.

* Afloat is packed with
another data type. For
example:
union {

float f;
int i;
} o
12.13 |The increment (++) and The increment (++) and Warning when ++ or --
decrement (--) operators decrement (--) operators operators are not used alone.
should not be mixed with should not be mixed with
other operators in an other operators in an
expression expression
Control Statement Expressions
N. MISRA Definition Messages in report file Polyspace Specification
13.1 Assignment operators shall |Assignment operators shall

not be used in expressions
that yield Boolean values.

not be used in expressions
that yield Boolean values.

15-26

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
13.2 Tests of a value against zero |Tests of a value against zero |No warning is given on
should be made explicit, should be made explicit, integer constants. Example: if
unless the operand is unless the operand is (2)
effectively Boolean effectively Boolean
The use of the option -
boolean-types may
increase or decrease the
number of warnings
generated.
13.3 Floating-point expressions Floating-point expressions Warning on directs tests only.
shall not be tested for shall not be tested for
equality or inequality. equality or inequality.
13.4 The controlling expression of |The controlling expression of |If for index is a variable

a for statement shall not
contain any objects of floating

type

a for statement shall not
contain any objects of floating

type

symbol, checked that it is not
a float.

15-27

15 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification
13.5 The three expressions of a for | 1st expression should be |Checked if the for loop index
statement shall be concerned an assignment. (V) is a variable symbol;
only with loop control « Bad type for loop counter chepked if V‘is the. last
(XX). assigned variable in the first
) expression (if present).
e 2nd expression should be Checked if, in first
G NP s, expression, if present, is
* 2nd expression should be |assignment of V; checked if in
a comparison with loop 2nd expression, if present,
counter (XX). must be a comparison of V;
« 3rd expression should be Checked if in 3rd expression,
an assignment of loop if present, must be an
counter (XX). assignment of V.
* 3rd expression: assigned
variable should be the
loop counter (XX).
* The following kinds of for
loops are allowed:
(a) all three expressions
shall be present;
(b) the 2nd and 3rd
expressions shall be
present with prior
initialization of the loop
counter;
(c) all three expressions
shall be empty for a
deliberate infinite loop.
13.6 Numeric variables being used | Numeric variables being used |Detect only direct

within a for loop for iteration
counting should not be
modified in the body of the
loop.

within a for loop for iteration
counting should not be
modified in the body of the
loop.

assignments if the for loop
index is known and if it is a
variable symbol.

15-28

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
13.7 Boolean operations whose * Boolean operations whose |During compilation, check
results are invariant shall not results are invariant shall |comparisons with at least one
be permitted not be permitted. constant operand.
Expression is always true.
. Bug Finder and Code Prover
* Boolean operations whose . .
- . check this coding rule
results are invariant shall | .
. differently. The analyses can
not be permitted. ;
A produce different results.
Expression is always false.
+ Boolean operations whose |* Bug Finder flags some
results are invariant shall violations of this rule
not be permitted. through the Dead code
and Useless if
checkers.

* Code Prover does not use
gray code to flag violations
of this rule.

Control Flow
N. MISRA Definition Messages in report file Polyspace Specification
14.1 There shall be no unreachable|There shall be no Bug Finder and Code Prover
code. unreachable code. check this coding rule
differently. The analyses can
produce different results.
14.2 All non-null statements shall |¢ All non-null statements

either have at least one side
effect however executed, or
cause control flow to change

shall either:

* have at least one side
effect however executed,
or

* cause control flow to
change

15-29

15 Coding Rule Sets and Concepts

body of a switch, while, do
while or for statement shall
be a compound statement

statement shall be a
compound statement.

* The body of a for
statement shall be a
compound statement.

* The body of a switch
statement shall be a

compound statement

N. MISRA Definition Messages in report file Polyspace Specification
14.3 All non-null statements shall |A null statement shall We assume that a ';' is a null
either appear on a line by itself statement when it is the first
) character on a line
* have at least one side (excluding comments). The
effect however executed, rule is violated when:
or
« cause control flow to e there a_re some comments
change before it on the same
line.
* there is a comment
immediately after it
* there is something else
than a comment after the
';' on the same line.
14.4 The goto statement shall not |The goto statement shall not
be used. be used.
14.5 The continue statement shall |The continue statement shall
not be used. not be used.
14.6 For any iteration statement |For any iteration statement
there shall be at most one there shall be at most one
break statement used for loop |break statement used for
termination loop termination
14.7 A function shall have a single |A function shall have a
point of exit at the end of the |single point of exit at the end
function of the function
14.8 The statement forming the * The body of a do while

15-30

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
14.9 An if (expression) construct |¢ An if (expression)

shall be followed by a construct shall be

compound statement. The followed by a compound

else keyword shall be statement.

followed by either a + The else keyword shall be

compound statement, or followed by either a

another if statement compound statement, or

another if statement

14.10 |All if else if constructs should |All if else if constructs

contain a final else clause.

should contain a final else
clause.

15-31

15 Coding Rule Sets and Concepts

Switch Statements

N. MISRA Definition Messages in report file Polyspace Specification
15.0 Unreachable code is detected |switch statements syntax Warning on declarations or
between switch statement normative restrictions. any statements before the
and first case. first switch case.
Warning on label or jump
Note This is not a MISRA statements in the body of
C2004 rule. switch cases.
On the following example, the
rule is displayed in the log file
at line 3:
1 ...
2 switch(index) {
3 var = var + 1;
// RULE 15.0
// violated
4case 1:
The code between switch
statement and first case is
checked as dead code by
Polyspace. It follows ANSI
standard behavior.
15.1 A switch label shall only be |A switch label shall only be
used when the most closely- |used when the most closely-
enclosing compound enclosing compound
statement is the body of a statement is the body of a
switch statement switch statement
15.2 An unconditional break An unconditional break Warning for each non-
statement shall terminate statement shall terminate compliant case clause.
every non-empty switch every non-empty switch
clause clause
15.3 The final clause of a switch The final clause of a switch

statement shall be the default
clause

statement shall be the default
clause

15-32

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

15.4 A switch expression should |A switch expression should |The use of the option -
not represent a value that is |[not represent a value thatis |boolean-types may
effectively Boolean effectively Boolean increase the number of

warnings generated.

15.5 Every switch statement shall |Every switch statement shall
have at least one case clause |have at least one case clause

Functions

N. MISRA Definition Messages in report file Polyspace Specification

16.1 Functions shall not be defined | Function XX should not be
with variable numbers of defined as varargs.
arguments.

16.2 Functions shall not call Function %s should not call |Done by Polyspace software
themselves, either directly or |itself. (Use the call graph in
indirectly. Polyspace Code Prover).

Polyspace also partially
checks this rule during the
compilation phase.

16.3 Identifiers shall be given for |Identifiers shall be given for |Assumes Rule 8.6 is not
all of the parameters in a all of the parameters in a violated.
function prototype function prototype
declaration. declaration.

16.4 The identifiers used in the The identifiers used in the Assumes that rules 8.8, 8.1
declaration and definition of a |declaration and definition of a |{and 16.3 are not violated.
function shall be identical. function shall be identical.

All occurrences are detected.

16.5 Functions with no parameters | Functions with no parameters | Definitions are also checked.
shall be declared with shall be declared with
parameter type void. parameter type void.

16.6 The number of arguments * Too many arguments to Assumes that rule 8.1 is not

passed to a function shall
match the number of
parameters.

XX.

* Insufficient number of
arguments to XX.

violated.

This rule maps to ISO/IEC TS
17961 ID argcomp.

15-33

15 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

16.7 A pointer parameter in a Pointer parameter in a Warning if a non-const
function prototype should be |function prototype should be |pointer parameter is either
declared as pointer to const |declared as pointer to const |not used to modify the
if the pointer is not used to if the pointer is not used to addressed object or is passed
modify the addressed object. |modify the addressed object. [to a call of a function that is

declared with a const
pointer parameter.

16.8 All exit paths from a function |Missing return value for non- |Warning when a non-void
with non-void return type void function XX. function is not terminated
shall have an explicit return with an unconditional return
statement with an expression. with an expression.

16.9 A function identifier shall only | Function identifier XX should
be used with either a be preceded by a & or
preceding &, or with a followed by a parameter list.
parenthesized parameter list,
which may be empty.

16.10 |If a function returns error If a function returns error Warning if a non-void
information, then that error |information, then that error |function is called and the
information shall be tested. |information shall be tested. |returned value is ignored.

No warning if the result of
the call is cast to void.
No check performed for calls
of memcpy, memmove,
memset, strcpy, strncpy,
strcat, or strncat.
Pointers and Arrays
N. MISRA Definition Messages in report file Polyspace Specification
17.1 Pointer arithmetic shall only |Pointer arithmetic shall only

be applied to pointers that
address an array or array
element.

be applied to pointers that
address an array or array
element.

15-34

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
17.2 Pointer subtraction shall only |Pointer subtraction shall only
be applied to pointers that be applied to pointers that
address elements of the same |address elements of the same
array array.
17.3 >, >=, <, <= shall not be >, >=, <, <= shall not be
applied to pointer types applied to pointer types
except where they point to except where they point to
the same array. the same array.
17.4 Array indexing shall be the Array indexing shall be the Warning on:
only allowed form of pointer |only allowed form of pointer) .
arithmetic. arithmetic. * Operations on pointers. (p
+I, I+p, and p-I, where p
is a pointer and I an
integer).
* Array indexing on
nonarray pointers.
17.5 A type should not contain A type should not contain
more than 2 levels of pointer |more than 2 levels of pointer
indirection indirection
17.6 The address of an object with |Pointer to a parameter is an |Warning when assigning
automatic storage shall not |illegal return value. Pointer to |address to a global variable,
be assigned to an object that |a local is an illegal return returning a local variable
may persist after the object |value. address, or returning a
has ceased to exist. parameter address.
This rule maps to ISO/IEC TS
17961 ID accfree.
Structures and Unions
N. MISRA Definition Messages in report file Polyspace Specification
18.1 All structure or union types |All structure or union types |Warning for all incomplete

shall be complete at the end
of a translation unit.

shall be complete at the end
of a translation unit.

declarations of structs or
unions.

15-35

15 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification
18.2 An object shall not be * An object shall not be
assigned to an overlapping assigned to an overlapping
object. object.
* Destination and source of
XX overlap, the behavior is
undefined.
18.4 Unions shall not be used Unions shall not be used.
Preprocessing Directives
N. MISRA Definition Messages in report file Polyspace Specification
19.1 #include statements in a file |#include statements in a file |A message is displayed when
shall only be preceded by shall only be preceded by a #include directive is
other preprocessors other preprocessors preceded by other things than
directives or comments directives or comments preprocessor directives,
comments, spaces or “new
lines”.
19.2 Nonstandard characters * A message is displayed on
should not occur in header characters ', " or /*
file names in #include between < and > in
directives #include <filename>
* A message is displayed on
characters ', or /* between
"and " in #include
"filename"
19.3 The #include directive shall | '#include' expects

be followed by either a
<filename> or "filename"
sequence.

"FILENAME" or
<FILENAME>

* '#include next' expects
"FILENAME" or
<FILENAME>

15-36

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
19.4 C macros shall only expand to [Macro '<name>' does not We assume that a macro
a braced initializer, a expand to a compliant definition does not violate this
constant, a parenthesized construct. rule when it expands to:
expression, a type qualifier, a
storage class specifier, or a * abraced construct (not

* a parenthesized construct
(not necessarily an
expression)

* anumber

* acharacter constant

* a string constant (can be
the result of the
concatenation of string
field arguments and literal
strings)

+ the following keywords:
typedef, extern, static,
auto, register, const,
volatile, asm and
__inline

* a do-while-zero construct

19.5 Macros shall not be #defined |* Macros shall not be
and #undefd within a block. #define’d within a block.
* Macros shall not be
#undef’d within a block.
19.6 #undef shall not be used. #undef shall not be used.
19.7 A function should be used in |A function should be used in |Message on all function-like

preference to a function like-
macro.

preference to a function like-
macro

macro definitions.

15-37

15 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification
19.8 A function-like macro shall * arguments given to macro
not be invoked without all of '<name>'
Its arguments + macro '<name>' used
without args.
* macro '<name>' used with
just one arg.
* macro '<name>' used with
too many (<number>)
args.
19.9 Arguments to a function-like |Macro argument shall not This rule is detected as
macro shall not contain look like a preprocessing violated when the '#'
tokens that look like directive. character appears in a macro
preprocessing directives. argument (outside a string or
character constant)
19.10 |In the definition of a function- | Parameter instance shall be |If x is a macro parameter, the

like macro each instance of a
parameter shall be enclosed
in parentheses unless it is
used as the operand of # or
##.

enclosed in parentheses.

following instances of x as an
operand of the # and ##
operators do not generate a
warning: #x, ##x, and x##.
Otherwise, parentheses are
required around Xx.

The software does not
generate a warning if a
parameter is reused as an
argument of a function or
function-like macro. For
example, consider a
parameter x. The software
does not generate a warning
if x appears as (x) or (x,
or ,X) or ,X,.

15-38

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
19.11 |All macro identifiers in '<name>' is not defined.
preprocessor directives shall
be defined before use, except
in #ifdef and #ifndef
preprocessor directives and
the defined() operator.
19.12 |There shall be at most one More than one occurrence of
occurrence of the # or ## the # or ## preprocessor
preprocessor operators ina |operators.
single macro definition.
19.13 |The # and ## preprocessor |Message on definitions of
operators should not be used |macros using # or ##
operators
19.14 |The defined preprocessor 'defined' without an identifier.
operator shall only be used in
one of the two standard
forms.
19.15 |Precautions shall be taken in |Precautions shall be taken in |When a header file is

order to prevent the contents
of a header file being
included twice.

order to prevent multiple
inclusions.

formatted as,

#ifndef <control macro>
#define <control macro>
<contents> #endif

or,

#ifndef <control macro>
#error ...

#else

#define <control macro>
<contents> #endif

it is assumed that precautions
have been taken to prevent
multiple inclusions.
Otherwise, a violation of this
MISRA rule is detected.

15-39

15 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification
19.16 |Preprocessing directives shall |directive is not syntactically
be syntactically meaningful |meaningful.
even when excluded by the
Preprocessor.
19.17 |All #else, #elif and #endif o '#elif' not within a
preprocessor directives shall conditional.
reside in the same file as the |, el sl v A
#if or #ifdef directive to conditional:
which they are related.] o
o '#elif' not within a
conditional.
* '#endif' not within a
conditional.
e unbalanced '#endif'.
e unterminated '#if'
conditional.
e unterminated '#ifdef'
conditional.
e unterminated '#ifndef'
conditional.
Standard Libraries
N. MISRA Definition Messages in report file Polyspace Specification
20.1 Reserved identifiers, macros |¢ The macro '<name> shall

and functions in the standard
library, shall not be defined,
redefined or undefined.

not be redefined.

* The macro '<name> shall
not be undefined.

15-40

MISRA C:2004 and MISRA AC AGC Coding Rules

MISRA Definition

Messages in report file

Polyspace Specification

20.2

The names of standard library
macros, objects and functions
shall not be reused.

Identifier XX should not be
used.

In case a macro whose name
corresponds to a standard
library macro, object or
function is defined, the rule
that is detected as violated is
20.1.

Tentative definitions are
considered as definitions. For
objects with file scope,
tentative definitions are
declarations that:

* Do not have initializers.

* Do not have storage class
specifiers, or have the
static specifier

15-41

15 Coding Rule Sets and Concepts

MISRA Definition

Messages in report file

Polyspace Specification

20.3

The validity of values passed
to library functions shall be
checked.

Validity of values passed to
library functions shall be
checked

Warning for argument in
library function call if the
following are all true:

* Argument is a local
variable

* Local variable is not tested
between last assignment
and call to the library
function

» Library function is a
common mathematical
function

* Corresponding parameter
of the library function has
a restricted input domain.

The library function can be
one of the following : sqrt,
tan, pow, log, Logl0, fmod,
acos, asin, acosh, atanh,
or atan2.

20.4

Dynamic heap memory
allocation shall not be used.

* The macro '<name> shall
not be used.

* Identifier XX should not be
used.

In case the dynamic heap
memory allocation functions
are actually macros and the
macro is expanded in the
code, this rule is detected as
violated. Assumes rule 20.2 is
not violated.

20.5

The error indicator errno
shall not be used

The error indicator errno
shall not be used

Assumes that rule 20.2 is not
violated

20.6

The macro offsetof, in library
<stddef.h>, shall not be used.

The macro '<name> shall
not be used.

» Identifier XX should not be
used.

Assumes that rule 20.2 is not
violated

15-42

MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification
20.7 The setjmp macro and the * The macro '<name> shall |In case the longjmp function
longjmp function shall not be not be used. is actually a macro and the
used. o e e 0% el el e | HEEED I expanded in the
— code, this rule is detected as
violated. Assumes that rule
20.2 is not violated
20.8 The signal handling facilities |*¢ The macro '<name> shall |In case some of the signal
of <signal.h> shall not be not be used. functions are actually macros
used. o gl e 5o dheitiel el e and are expanded in the code,
. this rule is detected as
violated. Assumes that rule
20.2 is not violated
20.9 The input/output library * The macro '<name> shall |In case the input/output
<stdio.h> shall not be used in not be used. library functions are actually
production code. + Identifier XX should not be |macros and are expanded in
— the code, this rule is detected
as violated. Assumes that rule
20.2 is not violated
20.10 |The library functions atof, * The macro '<name> shall |In case the atof, atoi and atoll
atoi and atoll from library not be used. functions are actually macros
<stdlib.h> shall not be used. |, [gentifier XX should not be |22d are expanded, this rule is
used. detected as violated. Assumes
that rule 20.2 is not violated
20.11 |The library functions abort, |¢ The macro '<name> shall |In case the abort, exit, getenv
exit, getenv and system from not be used. and system functions are
library <stdlib.h> shall not be|, 1qentifier XX should not be |@ctually macros and are
used. — expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated
20.12 |The time handling functions |¢ The macro '<name> shall |In case the time handling

of library <time.h> shall not
be used.

not be used.

e Identifier XX should not be
used.

functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

15-43

15 Coding Rule Sets and Concepts

Runtime Failures

N. MISRA Definition

Messages in report file

Polyspace Specification

21.1

Minimization of runtime
failures shall be ensured by
the use of at least one of:

» static verification tools/
techniques;

* dynamic verification tools/
techniques;

* explicit coding of checks
to handle runtime faults.

Done by Polyspace. Bug
Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

Unsupported MISRA C:2004 and MISRA AC AGC Rules

The Polyspace coding rules checker does not check the following MISRA C:2004 coding
rules. These rules cannot be enforced because they are outside the scope of Polyspace
software. They may concern documentation, dynamic aspects, or functional aspects of
MISRA rules. The “Polyspace Specification” column describes the reason each rule is
not checked.

Environment

Rule

Description

Polyspace Specification

1.2 (Required)

No reliance shall be placed on
undefined or unspecified behavior

Not statically checkable unless the data
dynamic properties is taken into
account

1.3 (Required)

Multiple compilers and/or languages
shall only be used if there is a common
defined interface standard for object
code to which the language/compilers/
assemblers conform.

It is a process rule method.

15-44

MISRA C:2004 and MISRA AC AGC Coding Rules

Rule

Description

Polyspace Specification

1.4 (Required)

The compiler/linker/Identifiers (internal
and external) shall not rely on
significance of more than 31 characters.
Furthermore the compiler/linker shall
be checked to ensure that 31 character
significance and case sensitivity are
supported for external identifiers.

To observe this rule, check your
compiler documentation.

1.5 (Advisory)

Floating point implementations should
comply with a defined floating point
standard.

To observe this rule, check your
compiler documentation.

Language Extensions

Rule

Description

Polyspace Specification

2.4 (Advisory)

Sections of code should not be
“commented out”

One way a tool can check this rule is to
determine if the code compiles when
commented out sections are
uncommented. However, such checking
can be expensive and inaccurate.

Docum

entation

Rule

Description

Polyspace Specification

3.1 (Required)

All usage of implementation-defined
behavior shall be documented.

To observe this rule, check your
compiler documentation. Error
detection is based on undefined
behavior, according to choices made for
implementation- defined constructions.

3.2 (Required)

The character set and the
corresponding encoding shall be
documented.

To observe this rule, check your
compiler documentation.

3.3 (Advisory)

The implementation of integer division
in the chosen compiler should be
determined, documented and taken into
account.

To observe this rule, check your
compiler documentation.

15-45

15 Coding Rule Sets and Concepts

Rule

Description

Polyspace Specification

3.5 (Required)

The implementation-defined behavior
and packing of bitfields shall be
documented if being relied upon.

To observe this rule, check your
compiler documentation.

3.6 (Required)

All libraries used in production code
shall be written to comply with the
provisions of this document, and shall
have been subject to appropriate
validation.

To observe this rule, check your
compiler documentation.

Structures and Unions

Rule

Description

Polyspace Specification

18.3 (Required)

An area of memory shall not be reused
for unrelated purposes.

"purpose" is functional design issue.

15-46

Software Quality Objective Subsets (C:2004)

Software Quality Objective Subsets (C:2004)

In this section...

“Rules in SQO-Subsetl1” on page 15-47
“Rules in SQO-Subset2” on page 15-48

Rules in SQO

In Polyspace Code

-Subsetl

Prover, the following set of coding rules will typically reduce the

number of unproven results.

Rule number |Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an integral
type.

12.12 The underlying bit representations of floating-point values shall not be
used.

13.3 Floating-point expressions shall not be tested for equality or inequality.

13.4 The controlling expression of a for statement shall not contain any
objects of floating type.

13.5 The three expressions of a for statement shall be concerned only with
loop control.

14.4 The goto statement shall not be used.

14.7 A function shall have a single point of exit at the end of the function.

16.1 Functions shall not be defined with variable numbers of arguments.

15-47

15 Coding Rule Sets and Concepts

15-48

Rule number

Description

16.2 Functions shall not call themselves, either directly or indirectly.

16.7 A pointer parameter in a function prototype should be declared as
pointer to const if the pointer is not used to modify the addressed
object.

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.

17.5 The declaration of objects should contain no more than 2 levels of
pointer indirection.

17.6 The address of an object with automatic storage shall not be assigned
to an object that may persist after the object has ceased to exist.

18.3 An area of memory shall not be reused for unrelated purposes.

18.4 Unions shall not be used.

20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQ0-subset2 option checks the rules in SQO-
subsetl and some additional rules.

Rule number

Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

6.3 typedefs that indicate size and signedness should be used in place of
the basic types

8.7 Objects shall be defined at block scope if they are only accessed from

within a single function

Software Quality Objective Subsets (C:2004)

Rule number

Description

8.11

The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

9.2 Braces shall be used to indicate and match the structure in the
nonzero initialization of arrays and structures

9.3 In an enumerator list, the = construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized

10.3 The value of a complex expression of integer type may only be cast to
a type that is narrower and of the same signedness as the underlying
type of the expression

10.5 Bitwise operations shall not be performed on signed integer types

11.1 Conversion shall not be performed between a pointer to a function
and any type other than an integral type

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used

12.1 Limited dependence should be placed on C's operator precedence
rules in expressions

12.2 The value of an expression shall be the same under any order of
evaluation that the standard permits

12.5 The operands of a logical && or || shall be primary-expressions

12.6 Operands of logical operators (&&, || and !) should be effectively
Boolean. Expression that are effectively Boolean should not be used
as operands to operators other than (&&, || or!)

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned

12.10 The comma operator shall not be used

15-49

15 Coding Rule Sets and Concepts

15-50

Rule number Description

12.12 The underlying bit representations of floating-point values shall not
be used.

13.1 Assignment operators shall not be used in expressions that yield
Boolean values

13.2 Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean

13.3 Floating-point expressions shall not be tested for equality or
inequality.

13.4 The controlling expression of a for statement shall not contain any
objects of floating type.

13.5 The three expressions of a for statement shall be concerned only with
loop control.

13.6 Numeric variables being used within a “for” loop for iteration
counting should not be modified in the body of the loop

14.4 The goto statement shall not be used.

14.7 A function shall have a single point of exit at the end of the function.

14.8 The statement forming the body of a switch, while, do while or for
statement shall be a compound statement

14.10 All if else if constructs should contain a final else clause

15.3 The final clause of a switch statement shall be the default clause

16.1 Functions shall not be defined with variable numbers of arguments.

16.2 Functions shall not call themselves, either directly or indirectly.

16.3 Identifiers shall be given for all of the parameters in a function
prototype declaration

16.7 A pointer parameter in a function prototype should be declared as
pointer to const if the pointer is not used to modify the addressed
object.

16.8 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

16.9 A function identifier shall only be used with either a preceding &, or

with a parenthesized parameter list, which may be empty

Software Quality Objective Subsets (C:2004)

Rule number Description

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.

17.5 The declaration of objects should contain no more than 2 levels of
pointer indirection.

17.6 The address of an object with automatic storage shall not be assigned
to an object that may persist after the object has ceased to exist.

18.3 An area of memory shall not be reused for unrelated purposes.

18.4 Unions shall not be used.

19.4 C macros shall only expand to a braced initializer, a constant, a

parenthesized expression, a type qualifier, a storage class specifier, or
a do-while-zero construct

19.9 Arguments to a function-like macro shall not contain tokens that look
like preprocessing directives

19.10 In the definition of a function-like macro each instance of a parameter
shall be enclosed in parentheses unless it is used as the operand of #
or ##

19.11 All macro identifiers in preprocessor directives shall be defined

before use, except in #ifdef and #ifndef preprocessor directives and
the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.

20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my system library call(int in) {assert (in>1); if random \
return -1 else return 0; }

15-51

15 Coding Rule Sets and Concepts

See Also

More About
. “Check for Coding Rule Violations” on page 7-16

15-52

Software Quality Objective Subsets (AC AGC)

Software Quality Objective Subsets (AC AGC)

In this section...

“Rules in SQO-Subsetl1” on page 15-53
“Rules in SQO-Subset2” on page 15-54

Rules in SQO-Subsetl

In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

12.12 The underlying bit representations of floating-point values shall not
be used.

14.7 A function shall have a single point of exit at the end of the function.

16.1 Functions shall not be defined with variable numbers of arguments.

16.2 Functions shall not call themselves, either directly or indirectly.

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.6 The address of an object with automatic storage shall not be assigned
to an object that may persist after the object has ceased to exist.

18.4 Unions shall not be used.

15-53

15 Coding Rule Sets and Concepts

15-54

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQ0-subset?2 option checks the rules in SQO-
subsetl and some additional rules.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

6.3 typedefs that indicate size and signedness should be used in place of
the basic types

8.7 Objects shall be defined at block scope if they are only accessed from
within a single function

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

9.3 In an enumerator list, the = construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized

11.1 Conversion shall not be performed between a pointer to a function
and any type other than an integral type

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used

12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits

Software Quality Objective Subsets (AC AGC)

Rule number

Description

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned

12.10 The comma operator shall not be used

12.12 The underlying bit representations of floating-point values shall not
be used.

14.7 A function shall have a single point of exit at the end of the function.

16.1 Functions shall not be defined with variable numbers of arguments.

16.2 Functions shall not call themselves, either directly or indirectly.

16.3 Identifiers shall be given for all of the parameters in a function
prototype declaration

16.8 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

16.9 A function identifier shall only be used with either a preceding &, or
with a parenthesized parameter list, which may be empty

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.6 The address of an object with automatic storage shall not be assigned
to an object that may persist after the object has ceased to exist.

18.4 Unions shall not be used.

19.9 Arguments to a function-like macro shall not contain tokens that look
like preprocessing directives

19.10 In the definition of a function-like macro each instance of a parameter
shall be enclosed in parentheses unless it is used as the operand of #
or ##

19.11 All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives and
the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.

15-55

15 Coding Rule Sets and Concepts

15-56

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my system library call(int in) {assert (in>1); if random \
return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

See Also

More About
. “Check for Coding Rule Violations” on page 7-16

Polyspace MISRA C:2012 Checkers

Polyspace MISRA C:2012 Checkers

The Polyspace MISRA C:2012 checker helps you to comply with the MISRA C 2012 coding
standard.?

When MISRA C:2012 guidelines are violated, the Polyspace MISRA C:2012 checker
provides messages with information about the violated rule or directive. Most violations
are found during the compile phase of an analysis.

Polyspace Bug Finder can check all the MISRA C:2012 rules and most MISRA C:2012
directives. Polyspace Code Prover does not support checking of the following:

* MISRA C:2012 Directive 4.7, 4.13 and 4.14
* MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
¢ MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

Each guideline is categorized into one of these three categories: mandatory, required, or
advisory. When you set up rule checking, you can select subsets of these categories to
check. For automatically generated code, some rules change categories, including to one
additional category: readability. The Use generated code requirements (-
misra3-agc-mode) option activates the categorization for automatically generated
code.

There are additional subsets of MISRA C:2012 guidelines defined by Polyspace called
Software Quality Objectives (SQO) that can have a direct or indirect impact on the
precision of your results. When you set up checking, you can select these subsets. These
subsets are defined in “Software Quality Objective Subsets (C:2012)” on page 15-59.

See Also

Check MISRA C:2012 (-misra3) |Use generated code requirements (-
misra3-agc-mode)

3. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

15-57

15 Coding Rule Sets and Concepts

See Also
More About

. “Check for Coding Rule Violations” on page 7-16
. “MISRA C:2012 Directives and Rules”

15-58

Software Quality Objective Subsets (C:2012)

Software Quality Objective Subsets (C:2012)

In this section...

“Guidelines in SQO-Subset1” on page 15-59
“Guidelines in SQO-Subset2” on page 15-60

These subsets of MISRA C:2012 guidelines can have a direct or indirect impact on the
precision of your Polyspace results. When you set up coding rules checking, you can
select these subsets.

Guidelines in SQO-Subsetl

The following set of MISRA C:2012 coding guidelines typically reduces the number of
unproven results.

Rule

Description

8.8

The static storage class specifier shall be used in all declarations of
objects and functions that have internal linkage

8.11

When an array with external linkage is declared, its size should be
explicitly specified

8.13

A pointer should point to a const-qualified type whenever possible

111

Conversions shall not be performed between a pointer to a function and
any other type

11.2

Conversions shall not be performed between a pointer to an incomplete
type and any other type

11.4

A conversion should not be performed between a pointer to object and
an integer type

11.5

A conversion should not be performed from pointer to void into pointer
to object

11.6

A cast shall not be performed between pointer to void and an arithmetic
type

11.7

A cast shall not be performed between pointer to object and a non-
integer arithmetic type

14.1

A loop counter shall not have essentially floating type

15-59

15 Coding Rule Sets and Concepts

15-60

Rule Description

14.2 A for loop shall be well-formed

15.1 The goto statement should not be used

15.2 The goto statement shall jump to a label declared later in the same
function

15.3 Any label referenced by a goto statement shall be declared in the same
block, or in any block enclosing the goto statement

15.5 A function should have a single point of exit at the end

17.1 The features of <starg.h> shall not be used

17.2 Functions shall not call themselves, either directly or indirectly

18.3 The relational operators >, >=, < and <= shall not be applied to objects
of pointer type except where they point into the same object

18.4 The +, -, += and -= operators should not be applied to an expression of
pointer type

18.5 Declarations should contain no more than two levels of pointer nesting

18.6 The address of an object with automatic storage shall not be copied to
another object that persists after the first object has ceased to exist

19.2 The union keyword should not be used

21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

Guidelines in SQO-Subset?2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQ0-subset2 option checks the rules in SQO-
subsetl and some additional rules.

Rule Description

8.8 The static storage class specifier shall be used in all declarations of
objects and functions that have internal linkage

8.11 When an array with external linkage is declared, its size should be

explicitly specified

Software Quality Objective Subsets (C:2012)

Rule Description

8.13 A pointer should point to a const-qualified type whenever possible

11.1 Conversions shall not be performed between a pointer to a function and
any other type

11.2 Conversions shall not be performed between a pointer to an incomplete
type and any other type

11.4 A conversion should not be performed between a pointer to object and
an integer type

11.5 A conversion should not be performed from pointer to void into pointer
to object

11.6 A cast shall not be performed between pointer to void and an arithmetic
type

11.7 A cast shall not be performed between pointer to object and a non-
integer arithmetic type

11.8 A cast shall not remove any const or volatile qualification from the type
pointed to by a pointer

12.1 The precedence of operators within expressions should be made explicit

12.3 The comma operator should not be used

13.2 The value of an expression and its persistent side effects shall be the
same under all permitted evaluation orders

13.4 The result of an assignment operator should not be used

14.1 A loop counter shall not have essentially floating type

14.2 A for loop shall be well-formed

14.4 The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type

15.1 The goto statement should not be used

15.2 The goto statement shall jump to a label declared later in the same
function

15.3 Any label referenced by a goto statement shall be declared in the same
block, or in any block enclosing the goto statement

15.5 A function should have a single point of exit at the end

15-61

15 Coding Rule Sets and Concepts

15-62

Rule Description

15.6 The body of an iteration- statement or a selection- statement shall be a
compound- statement

15.7 Allif ... else if constructs shall be terminated with an else statement

16.4 Every switch statement shall have a default label

16.5 A default label shall appear as either the first or the last switch label of a
switch statement

17.1 The features of <starg.h> shall not be used

17.2 Functions shall not call themselves, either directly or indirectly

17.4 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

18.3 The relational operators >, >=, < and <= shall not be applied to objects
of pointer type except where they point into the same object

18.4 The +, -, += and -= operators should not be applied to an expression of
pointer type

18.5 Declarations should contain no more than two levels of pointer nesting

18.6 The address of an object with automatic storage shall not be copied to
another object that persists after the first object has ceased to exist

19.2 The union keyword should not be used

20.4 A macro shall not be defined with the same name as a keyword

20.6 Tokens that look like a preprocessing directive shall not occur within a
macro argument

20.7 Expressions resulting from the expansion of macro parameters shall be
enclosed in parentheses

20.9 All identifiers used in the controlling expression of #if or #elif
preprocessing directives shall be #define'd before evaluation

20.11 A macro parameter immediately following a # operator shall not
immediately be followed by a ## operator

21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

See Also

See Also

Check MISRA (C:2012 (-misra3) |Use generated code requirements (-
misra3-agc-mode)

More About
. “Check for Coding Rule Violations” on page 7-16

15-63

15 Coding Rule Sets and Concepts

Coding Rule Subsets Checked Early in Analysis

15-64

In the initial compilation phase of the analysis, Polyspace checks those coding rules that
do not require the run-time error detection part of the analysis. If you want only those
rules checked, you can perform a much quicker analysis.

The software provides two predefined subsets of rules that it checks earlier in the
analysis for Check MISRA C:2004 (-misra2), Check MISRA AC AGC (-misra-ac-
agc), and Check MISRA (C:2012 (-misra3).

Argument Purpose

single-unit- Check rules that apply only to single translation units.

rules

system- Check rules in the single-unit-rules subset and some rules

decidable-rules |[that apply to the collective set of program files. The additional rules

are the less complex rules that apply at the integration level. These
rules can be checked only at the integration level because the rules
involve more than one translation unit.

See also “Check for Coding Rule Violations” on page 14-2.

MISRA C: 2004 and MISRA AC AGC Rules

The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are indicated
by an asterisk.

Environment

Rule

Description

1.1*

All code shall conform to ISO 9899:1990 "Programming languages - C",
amended and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/COR2:1996.

Coding Rule Subsets Checked Early in Analysis

Language Extensions

Rule Description

2.1 Assembly language shall be encapsulated and isolated.

2.2 Source code shall only use /* */ style comments.

2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule

Description

3.4

All uses of the #pragma directive shall be documented and explained.

Character Sets

Rule Description

4.1 Only those escape sequences which are defined in the ISO C standard shall be
used.

4.2 Trigraphs shall not be used.

Identifiers

Rule Description

5.1* Identifiers (internal and external) shall not rely on the significance of more
than 31 characters.

5.2 Identifiers in an inner scope shall not use the same name as an identifier in an
outer scope, and therefore hide that identifier.

5.3% A typedef name shall be a unique identifier.

5.4% A tag name shall be a unique identifier.

5.5% No object or function identifier with a static storage duration should be reused.

5.6* No identifier in one name space should have the same spelling as an identifier
in another name space, with the exception of structure and union member
names.

5.7* No identifier name should be reused.

15-65

15 Coding Rule Sets and Concepts

15-66

Types

Rule Description

6.1 The plain char type shall be used only for the storage and use of character
values.

6.2 Signed and unsigned char type shall be used only for the storage and use of
numeric values.

6.3 typedefs that indicate size and signedness should be used in place of the
basic types.

6.4 Bit fields shall only be defined to be of type unsigned int or signed int.

6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description

7.1 Octal constants (other than zero) and octal escape sequences shall not be
used.

Coding Rule Subsets Checked Early in Analysis

Declarations and Definitions

Rule Description

8.1 Functions shall have prototype declarations and the prototype shall be visible
at both the function definition and call.

8.2 Whenever an object or function is declared or defined, its type shall be
explicitly stated.

8.3 For each function parameter the type given in the declaration and definition
shall be identical, and the return types shall also be identical.

8.4* If objects or functions are declared more than once their types shall be
compatible.

8.5 There shall be no definitions of objects or functions in a header file.

8.6 Functions shall always be declared at file scope.

8.7 Objects shall be defined at block scope if they are only accessed from within a
single function.

8.8* An external object or function shall be declared in one file and only one file.

8.9* An identifier with external linkage shall have exactly one external definition.

8.10* All declarations and definitions of objects or functions at file scope shall have
internal linkage unless external linkage is required.

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage

8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.

Initialization

Rule Description

9.2 Braces shall be used to indicate and match the structure in the nonzero
initialization of arrays and structures.

9.3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.

15-67

15 Coding Rule Sets and Concepts

15-68

Arithmetic Type Conversion

Rule

Description

10.1

The value of an expression of integer type shall not be implicitly converted to a
different underlying type if:

* It is not a conversion to a wider integer type of the same signedness, or

* The expression is complex, or

» The expression is not constant and is a function argument, or

* The expression is not constant and is a return expression

10.2

The value of an expression of floating type shall not be implicitly converted to a
different type if

* It is not a conversion to a wider floating type, or

* The expression is complex, or

* The expression is a function argument, or

* The expression is a return expression

10.3

The value of a complex expression of integer type may only be cast to a type
that is narrower and of the same signedness as the underlying type of the
expression.

10.4

The value of a complex expression of float type may only be cast to narrower
floating type.

10.5

If the bitwise operator ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to
the underlying type of the operand

10.6

The "U" suffix shall be applied to all constants of unsigned types.

Coding Rule Subsets Checked Early in Analysis

Pointer Type Conversion

Rule Description

11.1 Conversion shall not be performed between a pointer to a function and any
type other than an integral type.

11.2 Conversion shall not be performed between a pointer to an object and any type
other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.

11.4 A cast should not be performed between a pointer to object type and a
different pointer to object type.

11.5 A cast shall not be performed that removes any const or volatile

qualification from the type addressed by a pointer

Expressions

Rule Description

12.1 Limited dependence should be placed on C's operator precedence rules in
expressions.

12.3 The sizeof operator should not be used on expressions that contain side
effects.

12.5 The operands of a logical & or | | shall be primary-expressions.

12.6 Operands of logical operators (&&, | | and !) should be effectively Boolean.
Expression that are effectively Boolean should not be used as operands to
operators other than (&&, | | or !).

12.7 Bitwise operators shall not be applied to operands whose underlying type is
signed.

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

12.10 The comma operator shall not be used.

12.11 Evaluation of constant unsigned expression should not lead to wraparound.

12.12 The underlying bit representations of floating-point values shall not be used.

12.13 The increment (++) and decrement (- -) operators should not be mixed with

other operators in an expression

15-69

15 Coding Rule Sets and Concepts

15-70

Control Statement Expressions

Rule Description

13.1 Assignment operators shall not be used in expressions that yield Boolean
values.

13.2 Tests of a value against zero should be made explicit, unless the operand is
effectively Boolean.

13.3 Floating-point expressions shall not be tested for equality or inequality.

13.4 The controlling expression of a for statement shall not contain any objects of
floating type.

13.5 The three expressions of a for statement shall be concerned only with loop
control.

13.6 Numeric variables being used within a for loop for iteration counting should

not be modified in the body of the loop.

Control Flow

Rule Description

14.3 All non-null statements shall either
* have at least one side effect however executed, or
* cause control flow to change.

14.4 The goto statement shall not be used.

14.5 The continue statement shall not be used.

14.6 For any iteration statement, there shall be at most one break statement used
for loop termination.

14.7 A function shall have a single point of exit at the end of the function.

14.8 The statement forming the body of a switch, while, do while or for
statement shall be a compound statement.

14.9 An if (expression) construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement, or another
if statement.

14.10 All if else if constructs should contain a final else clause.

Coding Rule Subsets Checked Early in Analysis

Switch Statements

Rule Description

15.0 Unreachable code is detected between switch statement and first case.

15.1 A switch label shall only be used when the most closely-enclosing compound
statement is the body of a switch statement

15.2 An unconditional break statement shall terminate every non-empty switch
clause.

15.3 The final clause of a switch statement shall be the default clause.

15.4 A switch expression should not represent a value that is effectively Boolean.

15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description

16.1 Functions shall not be defined with variable numbers of arguments.

16.3 Identifiers shall be given for all of the parameters in a function prototype
declaration.

16.4* The identifiers used in the declaration and definition of a function shall be
identical.

16.5 Functions with no parameters shall be declared with parameter type void.

16.6 The number of arguments passed to a function shall match the number of
parameters.

16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.

16.9 A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

Pointers and Arrays

Rule Description

17.4 Array indexing shall be the only allowed form of pointer arithmetic.

17.5 A type should not contain more than 2 levels of pointer indirection.

15-71

15 Coding Rule Sets and Concepts

Structures and Unions

Rule Description

18.1 All structure or union types shall be complete at the end of a translation unit.

18.4 Unions shall not be used.

15-72

Coding Rule Subsets Checked Early in Analysis

Preprocessing Directives

Rule Description

19.1 #include statements in a file shall only be preceded by other preprocessors
directives or comments.

19.2 Nonstandard characters should not occur in header file names in #include
directives.

19.3 The #include directive shall be followed by either a <filename> or "filename"
sequence.

194 C macros shall only expand to a braced initializer, a constant, a parenthesized
expression, a type qualifier, a storage class specifier, or a do-while-zero
construct.

19.5 Macros shall not be #defined and #undefd within a block.

19.6 #undef shall not be used.

19.7 A function should be used in preference to a function like-macro.

19.8 A function-like macro shall not be invoked without all of its arguments.

19.9 Arguments to a function-like macro shall not contain tokens that look like
preprocessing directives.

19.10 In the definition of a function-like macro, each instance of a parameter shall be
enclosed in parentheses unless it is used as the operand of # or ##.

19.11 All macro identifiers in preprocessor directives shall be defined before use,
except in #ifdef and #ifndef preprocessor directives and the defined()
operator.

19.12 There shall be at most one occurrence of the # or ## preprocessor operators in
a single macro definition.

19.13 The # and ## preprocessor operators should not be used.

19.14 |The defined preprocessor operator shall only be used in one of the two
standard forms.

19.15 Precautions shall be taken in order to prevent the contents of a header file
being included twice.

19.16 Preprocessing directives shall be syntactically meaningful even when excluded

by the preprocessor.

15-73

15 Coding Rule Sets and Concepts

Rule Description

19.17 All #else, #elif and #endif preprocessor directives shall reside in the same
file as the #if or #ifdef directive to which they are related.

Standard Libraries

Rule Description

20.1 Reserved identifiers, macros and functions in the standard library, shall not be
defined, redefined or undefined.

20.2 The names of standard library macros, objects and functions shall not be
reused.

20.4 Dynamic heap memory allocation shall not be used.

20.5 The error indicator errno shall not be used.

20.6 The macro offsetof, in library <stddef. h>, shall not be used.

20.7 The setjmp macro and the Longjmp function shall not be used.

20.8 The signal handling facilities of <signal. h> shall not be used.

20.9 The input/output library <stdio. h> shall not be used in production code.

20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall
not be used.

20.11 The library functions abort, exit, getenv and system from library
<stdlib.h> shall not be used.

20.12 The time handling functions of library <time.h> shall not be used.

The rules that are checked at a system level and appear only in the system-decidable-
rules subset are indicated by an asterisk.

MISRA C: 2012 Rules

The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are indicated
by an asterisk.

15-74

Coding Rule Subsets Checked Early in Analysis

Standard C Environment

Rule Description

1.1 The program shall contain no violations of the standard C syntax and
constraints, and shall not exceed the implementation's translation limits.

1.2 Language extensions should not be used.

Unused Code

Rule Description

2.3* A project should not contain unused type declarations.
2.4% A project should not contain unused tag declarations.
2.5% A project should not contain unused macro declarations.
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.
Comments

Rule Description

3.1 The character sequences /* and // shall not be used within a comment.

3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description

4.1 Octal and hexadecimal escape sequences shall be terminated.

4.2 Trigraphs should not be used.

15-75

15 Coding Rule Sets and Concepts

15-76

Identifiers

Rule Description

5.1% External identifiers shall be distinct.

5.2 Identifiers declared in the same scope and name space shall be distinct.

5.3 An identifier declared in an inner scope shall not hide an identifier declared in
an outer scope.

5.4 Macro identifiers shall be distinct.

5.5 Identifiers shall be distinct from macro names.

5.6% A typedef name shall be a unique identifier.

5.7*% A tag name shall be a unique identifier.

5.8* Identifiers that define objects or functions with external linkage shall be
unique.

5.9% Identifiers that define objects or functions with internal linkage should be
unique.

Types

Rule Description

6.1 Bit-fields shall only be declared with an appropriate type.

6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description

7.1 Octal constants shall not be used.

7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented
in an unsigned type.

7.3 The lowercase character "I" shall not be used in a literal suffix.

7.4 A string literal shall not be assigned to an object unless the object's type is

"pointer to const-qualified char".

Coding Rule Subsets Checked Early in Analysis

Declarations and Definitions

Rule Description

8.1 Types shall be explicitly specified.

8.2 Function types shall be in prototype form with named parameters.

8.3*% All declarations of an object or function shall use the same names and type
qualifiers.

8.4 A compatible declaration shall be visible when an object or function with
external linkage is defined.

8.5* An external object or function shall be declared once in one and only one file.

8.6* An identifier with external linkage shall have exactly one external definition.

8.7*% Functions and objects should not be defined with external linkage if they are
referenced in only one translation unit.

8.8 The static storage class specifier shall be used in all declarations of objects
and functions that have internal linkage.

8.9* An object should be defined at block scope if its identifier only appears in a
single function.

8.10 An inline function shall be declared with the static storage class.

8.11 When an array with external linkage is declared, its size should be explicitly
specified.

8.12 Within an enumerator list, the value of an implicitly-specified enumeration
constant shall be unique.

8.14 The restrict type qualifier shall not be used.

Initialization

Rule Description

9.2 The initializer for an aggregate or union shall be enclosed in braces.

9.3 Arrays shall not be partially initialized.

9.4 An element of an object shall not be initialized more than once.

9.5 Where designated initializers are used to initialize an array object the size of

the array shall be specified explicitly.

15-77

15 Coding Rule Sets and Concepts

15-78

The Essential Type Model

Rule Description

10.1 Operands shall not be of an inappropriate essential type.

10.2 Expressions of essentially character type shall not be used inappropriately in
addition and subtraction operations.

10.3 The value of an expression shall not be assigned to an object with a narrower
essential type or of a different essential type category.

10.4 Both operands of an operator in which the usual arithmetic conversions are
performed shall have the same essential type category.

10.5 The value of an expression should not be cast to an inappropriate essential
type.

10.6 The value of a composite expression shall not be assigned to an object with
wider essential type.

10.7 If a composite expression is used as one operand of an operator in which the
usual arithmetic conversions are performed then the other operand shall not
have wider essential type.

10.8 The value of a composite expression shall not be cast to a different essential

type category or a wider essential type.

Coding Rule Subsets Checked Early in Analysis

Pointer Type Conversion

Rule Description

11.1 Conversions shall not be performed between a pointer to a function and any
other type.

11.2 Conversions shall not be performed between a pointer to an incomplete type
and any other type.

11.3 A cast shall not be performed between a pointer to object type and a pointer to
a different object type.

11.4 A conversion should not be performed between a pointer to object and an
integer type.

11.5 A conversion should not be performed from pointer to void into pointer to
object.

11.6 A cast shall not be performed between pointer to void and an arithmetic type.

11.7 A cast shall not be performed between pointer to object and a non-integer
arithmetic type.

11.8 A cast shall not remove any const or volatile qualification from the type pointed
to by a pointer.

11.9 The macro NULL shall be the only permitted form of integer null pointer
constant.

Expressions

Rule Description

12.1 The precedence of operators within expressions should be made explicit.

12.3 The comma operator should not be used.

12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-
around.

15-79

15 Coding Rule Sets and Concepts

15-80

Side Effects
Rule Description
13.3 A full expression containing an increment (++) or decrement (- -) operator

should have no other potential side effects other than that caused by the
increment or decrement operator.

13.4

The result of an assignment operator should not be used.

13.6

The operand of the sizeof operator shall not contain any expression which
has potential side effects.

Control Statement Expressions

Rule

Description

14.4

The controlling expression of an if statement and the controlling expression
of an iteration-statement shall have essentially Boolean type.

Control Flow

Rule Description

15.1 The goto statement should not be used.

15.2 The goto statement shall jump to a label declared later in the same function.

15.3 Any label referenced by a goto statement shall be declared in the same block,
or in any block enclosing the goto statement.

15.4 There should be no more than one break or goto statement used to terminate
any iteration statement.

15.5 A function should have a single point of exit at the end

15.6 The body of an iteration-statement or a selection-statement shall be a
compound statement.

15.7 Allif .. else if constructs shall be terminated with an else statement.

Coding Rule Subsets Checked Early in Analysis

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound
statement is the body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a
switch statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.
Functions
Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit
return statement with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword
between the [].
17.7 The value returned by a function having non-void return type shall be used.
Pointers and Arrays
Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer
type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

15-81

15 Coding Rule Sets and Concepts

15-82

Overlapping Storage

Rule Description

19.2 The union keyword should not be used.

Preprocessing Directives

Rule Description

20.1 #include directives should only be preceded by preprocessor directives or
comments.

20.2 The ', ", or \ characters and the /* or // character sequences shall not occur
in a header file name.

20.3 The #include directive shall be followed by either a <filename> or \"filename
\" sequence.

20.4 A macro shall not be defined with the same name as a keyword.

20.5 #undef should not be used.

20.6 Tokens that look like a preprocessing directive shall not occur within a macro
argument.

20.7 Expressions resulting from the expansion of macro parameters shall be
enclosed in parentheses.

20.8 The controlling expression of a #1f or #e'lif preprocessing directive shall
evaluate to 0 or 1.

20.9 All identifiers used in the controlling expression of #if or #elif
preprocessing directives shall be #define'd before evaluation.

20.10 The # and ## preprocessor operators should not be used.

20.11 A macro parameter immediately following a # operator shall not immediately
be followed by a ## operator.

20.12 A macro parameter used as an operand to the # or ## operators, which is itself
subject to further macro replacement, shall only be used as an operand to
these operators.

20.13 A line whose first token is # shall be a valid preprocessing directive.

20.14 |All #else, #elif and #endif preprocessor directives shall reside in the same

file as the #if, #ifdef or #ifndef directive to which they are related.

Coding Rule Subsets Checked Early in Analysis

Standard Libraries

Rule Description

21.1 #define and #undef shall not be used on a reserved identifier or reserved
macro name.

21.2 A reserved identifier or macro name shall not be declared.

21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be
used.

21.4 The standard header file <setjmp. h> shall not be used.

21.5 The standard header file <signal. h> shall not be used.

21.6 The Standard Library input/output functions shall not be used.

21.7 The atof, atoi, atol, and atoll functions of <stdlib. h> shall not be used.

21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall
not be used.

21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.

21.10 The Standard Library time and date functions shall not be used.

21.11 The standard header file <tgmath.h> shall not be used.

21.12 The exception handling features of <fenv.h> should not be used.

The rules that are checked at a system level and appear only in the system-decidable-
rules subset are indicated by an asterisk.

15-83

15 Coding Rule Sets and Concepts

Unsupported MISRA C:2012 Guidelines

The Polyspace coding rules checker does not check the following MISRA C:2012
directives. These directives are not checked either in Bug Finder or Code Prover. These
directives cannot be enforced because they are outside the scope of Polyspace software.
These guidelines concern documentation, dynamic aspects, or functional aspects of
MISRA rules.

Number |Category AGC Definition
Category
Directive |Required Required [All code shall be traceable to documented requirements
3.1
Directive |Advisory Advisory All usage of assembly language should be documented
4.2
Directive |Advisory Advisory Sections of code should not be “commented out”
4.4
Directive |Required Required |Dynamic memory allocation shall not be used
4.12

15-84

Polyspace MISRA C++ Checkers

Polyspace MISRA C++ Checkers

The Polyspace MISRA C++ checker helps you comply with the MISRA C++:2008 coding
standard.*

When MISRA C++ rules are violated, the Polyspace software provides messages with
information about why the code violates the rule. Most violations are found during the
compile phase of an analysis. The MISRA C++ checker can check 202 of the 230 MISRA
C++ coding rules.

There are subsets of MISRA C++ coding rules that can have a direct or indirect impact
on the selectivity (reliability percentage) of your results. When you set up rule checking,
you can select these subsets directly. These subsets are defined in “Software Quality
Objective Subsets (C++)” on page 15-116.

Note The Polyspace MISRA C++ checker is based on MISRA C++:2008 - “Guidelines for
the use of the C++ language in critical systems."

See Also

More About

. “Check for Coding Rule Violations” on page 14-2
. “MISRA C++ Coding Rules” on page 15-86

4, MISRA is a registered trademark of MIRA Ltd., held on behalf of the MISRA Consortium.

15-85

15 Coding Rule Sets and Concepts

MISRA C++ Coding Rules

15-86

In this section...

“Supported MISRA C++ Coding Rules” on page 15-86
“Unsupported MISRA C++ Rules” on page 15-111

Supported MISRA C++ Coding Rules

“Language Independent Issues” on page 15-87
“General” on page 15-88

“Lexical Conventions” on page 15-88

“Basic Concepts” on page 15-90

“Standard Conversions” on page 15-91
“Expressions” on page 15-92

“Statements” on page 15-96

“Declarations” on page 15-99

“Declarators” on page 15-101

“Classes” on page 15-102

“Derived Classes” on page 15-103

“Member Access Control” on page 15-103
“Special Member Functions” on page 15-104
“Templates” on page 15-104

“Exception Handling” on page 15-105
“Preprocessing Directives” on page 15-108
“Library Introduction” on page 15-109
“Language Support Library” on page 15-110
“Diagnostic Library” on page 15-110
“Input/output Library” on page 15-111

MISRA C++ Coding Rules

Language Independent Issues

N. Category MISRA Definition Polyspace Specification

0-1-1 Required A project shall not contain Bug Finder and Code Prover check
unreachable code. this coding rule differently. The

analyses can produce different
results.

0-1-2 Required A project shall not contain infeasible
paths.

0-1-3 Required A project shall not contain unused |The checker flags local or global
variables. variables that are declared or

defined but not used anywhere in
the source files. This also applies to
members of structures and classes.

0-1-5 Required A project shall not contain unused
type declarations.

0-1-7 Required The value returned by a function Bug Finder and Code Prover check
having a non- void return type that is |this coding rule differently. The
not an overloaded operator shall analyses can produce different
always be used. results.

0-1-9 Required There shall be no dead code. This rule can also be enforced
through detection of dead code
during analysis.

0-1-10 |Required Every defined function shall be Detects if static functions are not

called at least once. called in their translation unit.
Other cases are detected by the
software.

0-1-11 |Required There shall be no unused parameters
(named or unnamed) in nonvirtual
functions.

0-1-12 |Required There shall be no unused parameters | Polyspace checks for unused
(named or unnamed) in the set of parameters in the set of virtual
parameters for a virtual function and |functions within single translation
all the functions that override it. units.

0-2-1 Required An object shall not be assigned to an

overlapping object.

15-87

15 Coding Rule Sets and Concepts

General

N. Category MISRA Definition Polyspace Specification

1-0-1 Required All code shall conform to ISO/IEC Bug Finder and Code Prover check
14882:2003 "The C++ Standard this coding rule differently. The
Incorporating Technical analyses can produce different
Corrigendum 1". results.

Lexical Conventions

N. Category MISRA Definition Polyspace Specification

2-3-1 Required Trigraphs shall not be used.

2-5-1 Advisory Digraphs should not be used.

2-7-1 Required The character sequence /* shall not |This rule cannot be annotated in the
be used within a C-style comment. |source code.

2-10-1 |Required Different identifiers shall be Bug Finder and Code Prover check
typographically unambiguous. this coding rule differently. The

analyses can produce different
results.

2-10-2 |Required Identifiers declared in an inner No detection for logical scopes:
scope shall not hide an identifier fields or member functions hiding
declared in an outer scope. outer scopes identifiers or hiding

ancestors members.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-3 |Required A typedef name (including No detection across namespaces.

qualification, if any) shall be a
unique identifier.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

15-88

MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

2-10-4 |Required A class, union or enum name No detection across namespaces.
(including qualification, if any) shall
be a unique identifier. Bug Finder and Code Prover check

this coding rule differently. The
analyses can produce different
results.

2-10-5 |Advisory The identifier name of a non-member | For functions the detection is only
object or function with static storage [on the definition where there is a
duration should not be reused. declaration.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-6 |Required If an identifier refers to a type, it If the identifier is a function and the
shall not also refer to an object or a |function is both declared and
function in the same scope. defined then the violation is

reported only once.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-13-1 |Required Only those escape sequences that
are defined in ISO/IEC 14882:2003
shall be used.

2-13-2 |Required Octal constants (other than zero)
and octal escape sequences (other
than "\0") shall not be used.

2-13-3 |Required A "U" suffix shall be applied to all
octal or hexadecimal integer literals
of unsigned type.

2-13-4 |Required Literal suffixes shall be upper case.

2-13-5 |Required Narrow and wide string literals shall

not be concatenated.

15-89

15 Coding Rule Sets and Concepts

Basic Concepts

Category

MISRA Definition

Polyspace Specification

3-1-1

Required

It shall be possible to include any
header file in multiple translation
units without violating the One
Definition Rule.

3-1-2

Required

Functions shall not be declared at
block scope.

3-1-3

Required

When an array is declared, its size
shall either be stated explicitly or
defined implicitly by initialization.

3-2-1

Required

All declarations of an object or
function shall have compatible types.

3-2-2

Required

The One Definition Rule shall not be
violated.

Report type, template, and inline
function defined in source file

3-2-3

Required

A type, object or function that is
used in multiple translation units
shall be declared in one and only one
file.

3-2-4

Required

An identifier with external linkage
shall have exactly one definition.

3-3-1

Required

Objects or functions with external
linkage shall be declared in a header
file.

3-3-2

Required

If a function has internal linkage
then all re-declarations shall include
the static storage class specifier.

3-4-1

Required

An identifier declared to be an object
or type shall be defined in a block
that minimizes its visibility.

15-90

MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

3-9-1 Required The types used for an object, a Comparison is done between
function return type, or a function |current declaration and last seen
parameter shall be token-for-token |declaration.

identical in all declarations and re-
declarations.

3-9-2 Advisory typedefs that indicate size and No detection in non-instantiated
signedness should be used in place |templates.
of the basic numerical types.

3-9-3 Required The underlying bit representations of
floating-point values shall not be
used.

Standard Conversions

N. Category MISRA Definition Polyspace Specification

4-5-1 Required Expressions with type bool shall not
be used as operands to built-in
operators other than the assignment
operator =, the logical operators
&&, ||, !, the equality operators ==
and !=, the unary & operator, and
the conditional operator.

4-5-2 Required Expressions with type enum shall not
be used as operands to built- in
operators other than the subscript
operator [], the assignment operator
=, the equality operators == and !=,
the unary & operator, and the
relational operators <, <=, >, >=.

4-5-3 Required Expressions with type (plain) char
and wchar t shall not be used as
operands to built-in operators other
than the assignment operator =, the
equality operators == and !=, and
the unary & operator. N

15-91

15 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification
4-10-1 |Required NULL shall not be used as an integer | The checker flags assignment of
value. NULL to an integer variable or
binary operations involving NULL
and an integer. Assignments can be
direct or indirect such as passing
NULL as integer argument to a
function.
4-10-2 |Required Literal zero (0) shall not be used as |The checker flags assignment of 0
the null-pointer-constant. to a pointer variable or binary
operations involving 0 and a
pointer. Assignments can be direct
or indirect such as passing 0 as
pointer argument to a function.
Expressions
N. Category MISRA Definition Polyspace Specification
5-0-1 Required The value of an expression shall be
the same under any order of
evaluation that the standard permits.
5-0-2 Advisory Limited dependence should be
placed on C++ operator precedence
rules in expressions.
5-0-3 Required A cvalue expression shall not be Assumes that ptrdiff t is signed
implicitly converted to a different integer
underlying type.
5-0-4 Required An implicit integral conversion shall |Assumes that ptrdiff t is signed
not change the signedness of the integer
underlying type.
If the conversion is to a narrower
integer with a different sign then
MISRA C++ 5-0-4 takes precedence
over MISRA C++ 5-0-6.
5-0-5 Required There shall be no implicit floating- | This rule takes precedence over

integral conversions.

5-0-4 and 5-0-6 if they apply at the
same time.

15-92

MISRA C++ Coding Rules

Category

MISRA Definition

Polyspace Specification

5-0-6

Required

An implicit integral or floating-point
conversion shall not reduce the size
of the underlying type.

If the conversion is to a narrower
integer with a different sign then
MISRA C++ 5-0-4 takes precedence
over MISRA C++ 5-0-6.

5-0-7

Required

There shall be no explicit floating-
integral conversions of a cvalue
expression.

5-0-8

Required

An explicit integral or floating-point
conversion shall not increase the
size of the underlying type of a
cvalue expression.

5-0-9

Required

An explicit integral conversion shall
not change the signedness of the
underlying type of a cvalue
expression.

5-0-10

Required

If the bitwise operators ~ and <<
are applied to an operand with an
underlying type of unsigned char or
unsigned short, the result shall be
immediately cast to the underlying
type of the operand.

5-0-11

Required

The plain char type shall only be
used for the storage and use of
character values.

For numeric data, use a type which
has explicit signedness.

5-0-12

Required

Signed char and unsigned char type
shall only be used for the storage
and use of numeric values.

5-0-13

Required

The condition of an if-statement and
the condition of an iteration-
statement shall have type bool.

5-0-14

Required

The first operand of a conditional-
operator shall have type bool.

15-93

15 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

5-0-15 |Required Array indexing shall be the only form [Warning on:
of pointer arithmetic.

* Operations on pointers. (p+I, I
+p and p-I, where p is a pointer
and I an integer, p[i] accepted).

* Array indexing on nonarray
pointers.

5-0-17 |Required Subtraction between pointers shall |Use Bug Finder for this checker.
only be applied to pointers that Code Prover can fail to detect some
address elements of the same array. |violations.

5-0-18 |Required >, >=, <, <= shall not be applied to |Report when relational operator are
objects of pointer type, except where [used on pointers types (casts
they point to the same array. ignored).

5-0-19 |Required The declaration of objects shall
contain no more than two levels of
pointer indirection.

5-0-20 |Required Non-constant operands to a binary
bitwise operator shall have the same
underlying type.

5-0-21 |Required Bitwise operators shall only be
applied to operands of unsigned
underlying type.

5-2-1 Required Each operand of a logical && or || During preprocessing, violations of
shall be a postfix - expression. this rule are detected on the

expressions in #if directives.

Allowed exception on associativity

(a&&b &&c), (a]| b).

5-2-2 Required A pointer to a virtual base class shall
only be cast to a pointer to a derived
class by means of dynamic cast.

5-2-3 Advisory Casts from a base class to a derived

class should not be performed on
polymorphic types.

15-94

MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

5-2-4 Required C-style casts (other than void casts)
and functional notation casts (other
than explicit constructor calls) shall
not be used.

5-2-5 Required A cast shall not remove any const or
volatile qualification from the type of
a pointer or reference.

5-2-6 Required A cast shall not convert a pointer to |No violation if pointer types of
a function to any other pointer type, |operand and target are identical.
including a pointer to function type.

5-2-7 Required An object with pointer type shall not |"Extended to all pointer conversions
be converted to an unrelated pointer |including between pointer to struct
type, either directly or indirectly. object and pointer to type of the

first member of the struct type.
Indirect conversions through non-
pointer type (e.g. int) are not
detected."

5-2-8 Required An object with integer type or Exception on zero constants.
pointer to void type shall not be Objects with pointer type include
converted to an object with pointer |objects with pointer to function
type. type.

5-2-9 Advisory A cast should not convert a pointer
type to an integral type.

5-2-10 |Advisory The increment (++) and decrement
(--) operators should not be mixed
with other operators in an
expression.

5-2-11 |Required The comma operator, && operator
and the || operator shall not be
overloaded.

5-2-12 |Required An identifier with array type passed

as a function argument shall not
decay to a pointer.

15-95

15 Coding Rule Sets and Concepts

Category

MISRA Definition

Polyspace Specification

5-3-1

Required

Each operand of the ! operator, the
logical && or the logical || operators
shall have type bool.

5-3-2

Required

The unary minus operator shall not
be applied to an expression whose
underlying type is unsigned.

5-3-3

Required

The unary & operator shall not be
overloaded.

5-3-4

Required

Evaluation of the operand to the
sizeof operator shall not contain side
effects.

No warning on volatile accesses
and function calls

5-8-1

Required

The right hand operand of a shift
operator shall lie between zero and
one less than the width in bits of the
underlying type of the left hand
operand.

5-14-1

Required

The right hand operand of a logical
&& or || operator shall not contain
side effects.

No warning on volatile accesses
and function calls.

5-18-1

Required

The comma operator shall not be
used.

5-19-1

Required

Evaluation of constant unsigned
integer expressions should not lead
to wrap-around.

Statements

Category

MISRA Definition

Polyspace Specification

6-2-1

Required

Assignment operators shall not be
used in sub-expressions.

6-2-2

Required

Floating-point expressions shall not
be directly or indirectly tested for
equality or inequality.

15-96

MISRA C++ Coding Rules

Category

MISRA Definition

Polyspace Specification

6-2-3

Required

Before preprocessing, a null
statement shall only occur on a line
by itself; it may be followed by a
comment, provided that the first
character following the null
statement is a white - space
character.

6-3-1

Required

The statement forming the body of a
switch, while, do ... while or for
statement shall be a compound
statement.

6-4-1

Required

An if (condition) construct shall be
followed by a compound statement.
The else keyword shall be followed

by either a compound statement, or
another if statement.

6-4-2

Required

All if ... else if constructs shall be
terminated with an else clause.

Also detects cases where the last
if is in the block of the last else
(same behavior as JSF, stricter than
MISRA C).

Example: "if ... else { if ...{}}"
raises the rule

6-4-3

Required

A switch statement shall be a well-
formed switch statement.

Return statements are considered
as jump statements.

6-4-4

Required

A switch-label shall only be used
when the most closely-enclosing
compound statement is the body of a
switch statement.

6-4-5

Required

An unconditional throw or break
statement shall terminate every non
- empty switch-clause.

6-4-6

Required

The final clause of a switch
statement shall be the default-
clause.

15-97

15 Coding Rule Sets and Concepts

Category

MISRA Definition

Polyspace Specification

6-4-7

Required

The condition of a switch statement
shall not have bool type.

6-4-8

Required

Every switch statement shall have at
least one case-clause.

6-5-1

Required

A for loop shall contain a single loop-
counter which shall not have floating

type.

6-5-2

Required

If loop-counter is not modified by --
or ++, then, within condition, the
loop-counter shall only be used as an
operand to <=, <, > or >=.

6-5-3

Required

The loop-counter shall not be
modified within condition or
statement.

Detect only direct assignments if
for index is known (see 6-5-1).

6-5-4

Required

The loop-counter shall be modified
by one of: --, ++, -=n, or +=n;
where n remains constant for the
duration of the loop.

6-5-5

Required

A loop-control-variable other than
the loop-counter shall not be
modified within condition or
expression.

6-5-6

Required

A loop-control-variable other than
the loop-counter which is modified in
statement shall have type bool.

6-6-1

Required

Any label referenced by a goto
statement shall be declared in the
same block, or in a block enclosing
the goto statement.

6-6-2

Required

The goto statement shall jump to a
label declared later in the same
function body.

15-98

MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification
6-6-3 Required The continue statement shall only be |Assumes 6.5.1 to 6.5.6: so it is
used within a well-formed for loop. |implemented only for supported
6 5 x rules.
6-6-4 Required For any iteration statement there
shall be no more than one break or
goto statement used for loop
termination.
6-6-5 Required A function shall have a single point |At most one return not necessarily
of exit at the end of the function. as last statement for void functions.
Declarations
N. Category MISRA Definition Polyspace Specification
7-1-1 Required A variable which is not modified The checker flags function
shall be const qualified. parameters or local variables that
are not const-qualified but never
modified in the function body.
Function parameters of integer,
float, enum and boolean types are
not flagged.
If a variable is passed to another
function by reference or pointers,
the checker assumes that the
variable can be modified. These
variables are not flagged.
7-1-2 Required A pointer or reference parameter in |The checker flags pointers where

a function shall be declared as
pointer to const or reference to const
if the corresponding object is not
modified.

the underlying object is not const-
qualified but never modified in the
function body.

If a variable is passed to another
function by reference or pointers,
the checker assumes that the
variable can be modified. Pointers
that point to these variables are not
flagged.

15-99

15 Coding Rule Sets and Concepts

Category

MISRA Definition

Polyspace Specification

7-3-1

Required

The global namespace shall only
contain main, namespace
declarations and extern "C"
declarations.

7-3-2

Required

The identifier main shall not be used
for a function other than the global
function main.

7-3-3

Required

There shall be no unnamed
namespaces in header files.

7-3-4

Required

using-directives shall not be used.

7-3-5

Required

Multiple declarations for an
identifier in the same namespace
shall not straddle a using-declaration
for that identifier.

7-3-6

Required

using-directives and using-
declarations (excluding class scope
or function scope using-declarations)
shall not be used in header files.

7-4-2

Required

Assembler instructions shall only be
introduced using the asm
declaration.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

7-4-3

Required

Assembly language shall be
encapsulated and isolated.

7-5-1

Required

A function shall not return a
reference or a pointer to an
automatic variable (including
parameters), defined within the
function.

7-5-2

Required

The address of an object with
automatic storage shall not be
assigned to another object that may
persist after the first object has
ceased to exist.

15-100

MISRA C++ Coding Rules

Category

MISRA Definition

Polyspace Specification

7-5-3

Required

A function shall not return a
reference or a pointer to a
parameter that is passed by
reference or const reference.

7-5-4

Advisory

Functions should not call
themselves, either directly or
indirectly.

Declarators

Category

MISRA Definition

Polyspace Specification

8-0-1

Required

An init-declarator-list or a member-
declarator-list shall consist of a
single init-declarator or member-
declarator respectively.

8-3-1

Required

Parameters in an overriding virtual
function shall either use the same
default arguments as the function
they override, or else shall not
specify any default arguments.

8-4-1

Required

Functions shall not be defined using
the ellipsis notation.

8-4-2

Required

The identifiers used for the
parameters in a re-declaration of a
function shall be identical to those in
the declaration.

8-4-3

Required

All exit paths from a function with
non- void return type shall have an
explicit return statement with an
expression.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

8-4-4

Required

A function identifier shall either be
used to call the function or it shall be
preceded by &.

15-101

15 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification
8-5-1 Required All variables shall have a defined Non-initialized variable in results
value before they are used. and error messages for obvious
cases
8-5-2 Required Braces shall be used to indicate and
match the structure in the non- zero
initialization of arrays and
structures.
8-5-3 Required In an enumerator list, the =
construct shall not be used to
explicitly initialize members other
than the first, unless all items are
explicitly initialized.
Classes
N. Category MISRA Definition Polyspace Specification
9-3-1 Required const member functions shall not Class-data for a class is restricted
return non-const pointers or to all non-static member data.
references to class-data.
9-3-2 Required Member functions shall not return |Class-data for a class is restricted
non-const handles to class-data. to all non-static member data.
9-3-3 Required If a member function cannot be The checker flags member
made static then it shall be made functions that are not declared
static, otherwise if it can be made static but do not access a data
const then it shall be made const. member of the class.
The checker flags member
functions that are not declared
const but do not modify a data
member of the class.
9-5-1 Required Unions shall not be used.
9-6-2 Required Bit-fields shall be either bool type or
an explicitly unsigned or signed
integral type.
9-6-3 Required Bit-fields shall not have enum type.

15-102

MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

9-6-4 Required Named bit-fields with signed integer
type shall have a length of more than
one bit.

Derived Classes

N. Category MISRA Definition Polyspace Specification

10-1-1 |Advisory Classes should not be derived from
virtual bases.

10-1-2 |Required A base class shall only be declared |Assumes 10.1.1 not required
virtual if it is used in a diamond
hierarchy.

10-1-3 |Required An accessible base class shall not be
both virtual and nonvirtual in the
same hierarchy.

10-2-1 |Required All accessible entity names within a |[No detection between entities of
multiple inheritance hierarchy different kinds (member functions
should be unique. against data members, ...).

10-3-1 |Required There shall be no more than one Member functions that are virtual
definition of each virtual function on |by inheritance are also detected.
each path through the inheritance
hierarchy.

10-3-2 |Required Each overriding virtual function shall
be declared with the virtual
keyword.

10-3-3 |Required A virtual function shall only be
overridden by a pure virtual function
if it is itself declared as pure virtual.

Member Access Control
N. Category MISRA Definition Polyspace Specification
11-0-1 |Required Member data in non- POD class

types shall be private.

15-103

15 Coding Rule Sets and Concepts

Special Member Functions

Category

MISRA Definition

Polyspace Specification

12-1-1

Required

An object's dynamic type shall not be
used from the body of its constructor
or destructor.

12-1-2

Advisory

All constructors of a class should
explicitly call a constructor for all of
its immediate base classes and all
virtual base classes.

12-1-3

Required

All constructors that are callable
with a single argument of
fundamental type shall be declared
explicit.

12-8-1

Required

A copy constructor shall only
initialize its base classes and the
non- static members of the class of
which it is a member.

12-8-2

Required

The copy assignment operator shall
be declared protected or private in
an abstract class.

Templates

Category

MISRA Definition

Polyspace Specification

14-5-2

Required

A copy constructor shall be declared
when there is a template constructor
with a single parameter that is a
generic parameter.

14-5-3

Required

A copy assignment operator shall be
declared when there is a template
assignment operator with a
parameter that is a generic
parameter.

15-104

MISRA C++ Coding Rules

Category

MISRA Definition

Polyspace Specification

14-6-1

Required

In a class template with a dependent
base, any name that may be found in
that dependent base shall be
referred to using a qualified-id or
this->

14-6-2

Required

The function chosen by overload
resolution shall resolve to a function
declared previously in the
translation unit.

14-7-3

Required

All partial and explicit
specializations for a template shall
be declared in the same file as the
declaration of their primary
template.

14-8-1

Required

Overloaded function templates shall
not be explicitly specialized.

All specializations of overloaded
templates are rejected even if
overloading occurs after the call.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

14-8-2

Advisory

The viable function set for a function
call should either contain no function
specializations, or only contain
function specializations.

Exception Ha

ndling

Category

MISRA Definition

Polyspace Specification

15-0-2

Advisory

An exception object should not have
pointer type.

NULL not detected (see 15-1-2).

15-0-3

Required

Control shall not be transferred into
a try or catch block using a goto or a
switch statement.

15-1-2

Required

NULL shall not be thrown explicitly.

15-105

15 Coding Rule Sets and Concepts

Category

MISRA Definition

Polyspace Specification

15-1-3

Required

An empty throw (throw;) shall only
be used in the compound- statement
of a catch handler.

15-3-2

Advisory

There should be at least one
exception handler to catch all
otherwise unhandled exceptions.

Detect that there is no try/catch in
the main and that the catch does
not handle all exceptions. Not
detected if no "main".

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

15-3-3

Required

Handlers of a function-try-block
implementation of a class
constructor or destructor shall not
reference non-static members from
this class or its bases.

15-3-5

Required

A class type exception shall always
be caught by reference.

15-3-6

Required

Where multiple handlers are
provided in a single try-catch
statement or function-try-block for a
derived class and some or all of its
bases, the handlers shall be ordered
most-derived to base class.

15-3-7

Required

Where multiple handlers are
provided in a single try-catch
statement or function-try-block, any
ellipsis (catch-all) handler shall
occur last.

15-4-1

Required

If a function is declared with an
exception-specification, then all
declarations of the same function (in
other translation units) shall be
declared with the same set of type-
ids.

15-106

MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification
15-5-1 |Required A class destructor shall not exit with |Limit detection to throw and catch
an exception. that are internals to the destructor;
rethrows are partially processed; no
detections in nested handlers.
15-5-2 |Required Where a function's declaration Limit detection to throw that are
includes an exception-specification, |internals to the function; rethrows
the function shall only be capable of |are partially processed; no
throwing exceptions of the indicated |detections in nested handlers.
type(s).
15-5-3 Required The terminate() function shall not be | The checker flags these situations

called implicitly.

when the terminate() function
can be called implicitly:

* An exception escapes uncaught.
This also violates rule 15-3-2.
For instance:

* Before an exception is
caught, it escapes through
another function that throws
an uncaught exception. For
instance, a catch statement
or exception handler invokes
a copy constructor that
throws an uncaught
exception.

* A throw expression with no
operand rethrows an
uncaught exception.

* A class destructor throws an
exception. This also violates rule
15-5-1.

15-107

15 Coding Rule Sets and Concepts

Preprocessing Directives

Category

MISRA Definition

Polyspace Specification

16-0-1

Required

#include directives in a file shall
only be preceded by other
preprocessor directives or
comments.

16-0-2

Required

Macros shall only be #define 'd or
#undef 'd in the global namespace.

16-0-3

Required

#undef shall not be used.

16-0-4

Required

Function-like macros shall not be
defined.

16-0-5

Required

Arguments to a function-like macro
shall not contain tokens that look
like preprocessing directives.

16-0-6

Required

In the definition of a function-like
macro, each instance of a parameter
shall be enclosed in parentheses,
unless it is used as the operand of #
or ##.

16-0-7

Required

Undefined macro identifiers shall not
be used in #if or #elif preprocessor
directives, except as operands to the
defined operator.

16-0-8

Required

If the # token appears as the first
token on a line, then it shall be
immediately followed by a
preprocessing token.

16-1-1

Required

The defined preprocessor operator
shall only be used in one of the two
standard forms.

16-1-2

Required

All #else, #elif and #endif

preprocessor directives shall reside
in the same file as the #if or #ifdef
directive to which they are related.

15-108

MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification
16-2-1 |Required The preprocessor shall only be used |The rule is raised for #ifdef/#define
for file inclusion and include guards. |if the file is not an include file.
16-2-2 |Required C++ macros shall only be used for:
include guards, type qualifiers, or
storage class specifiers.
16-2-3 |Required Include guards shall be provided.
16-2-4 |Required The ', ", /* or // characters shall not
occur in a header file name.
16-2-5 |Advisory The \ character should not occur in a
header file name.
16-2-6 |Required The #include directive shall be
followed by either a <filename> or
"filename" sequence.
16-3-1 |Required There shall be at most one
occurrence of the # or ## operators
in a single macro definition.
16-3-2 |Advisory The # and ## operators should not
be used.
16-6-1 |Document All uses of the #pragma directive To check this rule, you must list the
shall be documented. pragmas that are allowed in source
files by using the option Allowed
pragmas (-allowed-pragmas).
If Polyspace finds a pragma not in
the allowed pragma list, a violation
is raised.
Library Introduction
N. Category MISRA Definition Polyspace Specification
17-0-1 |Required Reserved identifiers, macros and Bug Finder and Code Prover check

functions in the standard library
shall not be defined, redefined or
undefined.

this coding rule differently. The
analyses can produce different
results.

15-109

15 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

17-0-2 |Required The names of standard library
macros and objects shall not be
reused.

17-0-3 |Required The names of standard library
functions shall not be overridden.

17-0-5 |Required The setjmp macro and the longjmp
function shall not be used.

Language Support Library

N. Category MISRA Definition Polyspace Specification

18-0-1 |Required The C library shall not be used.

18-0-2 |Required The library functions atof, atoi and
atol from library <cstdlib> shall not
be used.

18-0-3 |Required The library functions abort, exit, The option -compiler iso must
getenv and system from library be used to detect violations, for
<cstdlib> shall not be used. example, exit.

18-0-4 |Required The time handling functions of
library <ctime> shall not be used.

18-0-5 |Required The unbounded functions of library
<cstring> shall not be used.

18-2-1 |Required The macro offsetof shall not be used.

18-4-1 |Required Dynamic heap memory allocation
shall not be used.

18-7-1 |Required The signal handling facilities of
<csignal> shall not be used.

Diagnostic Library
N. Category MISRA Definition Polyspace Specification
19-3-1 |Required The error indicator errno shall not

be used.

15-110

MISRA C++ Coding Rules

Input/output Library

Category MISRA Definition Polyspace Specification

27-0-1

Required The stream input/output library

<cstdio> shall not be used.

Unsupported MISRA C++ Rules

“Language Independent Issues” on page 15-111
“General” on page 15-112

“Lexical Conventions” on page 15-112
“Expressions” on page 15-113

“Declarations” on page 15-113

“Classes” on page 15-114

“Templates” on page 15-114

“Exception Handling” on page 15-114

“Library Introduction” on page 15-115

Language Independent Issues

Category MISRA Definition Polyspace Specification

0-1-4

Required A project shall not contain non-

volatile POD variables having only
one use.

0-1-6

Required A project shall not contain instances

of non-volatile variables being given
values that are never subsequently
used.

0-1-8

Required All functions with void return type

shall have external side effects.

15-111

15 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

0-3-1 Required Minimization of run-time failures
shall be ensured by the use of at
least one of: (a) static analysis tools/
techniques; (b) dynamic analysis
tools/techniques; (c) explicit coding
of checks to handle run-time faults.

0-3-2 Required If a function generates error
information, then that error
information shall be tested.

0-4-1 Document Use of scaled-integer or fixed-point |To observe this rule, check your
arithmetic shall be documented. compiler documentation.

0-4-2 Document Use of floating-point arithmetic shall |To observe this rule, check your
be documented. compiler documentation.

0-4-3 Document Floating-point implementations shall |To observe this rule, check your
comply with a defined floating-point |compiler documentation.
standard.

General

N. Category MISRA Definition Polyspace Specification

1-0-2 Document Multiple compilers shall only be used | To observe this rule, check your
if they have a common, defined compiler documentation.
interface.

1-0-3 Document The implementation of integer To observe this rule, check your
division in the chosen compiler shall |compiler documentation.
be determined and documented.

Lexical Conventions
N. Category MISRA Definition Polyspace Specification
2-2-1 Document The character set and the To observe this rule, check your

corresponding encoding shall be
documented.

compiler documentation.

15-112

MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

2-7-2 Required Sections of code shall not be One way a tool can check this rule
"commented out" using C-style is to determine if the code compiles
comments. when commented out sections are

uncommented. However, such
checking can be expensive and
inaccurate.

2-7-3 Advisory Sections of code should not be One way a tool can check this rule
"commented out" using C++ is to determine if the code compiles
comments. when commented out sections are

uncommented. However, such
checking can be expensive and
inaccurate.

Expressions

N. Category MISRA Definition Polyspace Specification

5-0-16 |Required A pointer operand and any pointer
resulting from pointer arithmetic
using that operand shall both
address elements of the same array.

5-17-1 |Required The semantic equivalence between a
binary operator and its assignment
operator form shall be preserved.

Declarations

N. MISRA Definition Polyspace Specification

7-2-1 Required An expression with enum underlying
type shall only have values
corresponding to the enumerators of
the enumeration.

7-4-1 Document All usage of assembler shall be To observe this rule, check your

documented.

compiler documentation.

15-113

15 Coding Rule Sets and Concepts

Classes

Category

MISRA Definition

Polyspace Specification

9-3-3

Required

If a member function can be made
static then it shall be made static,
otherwise if it can be made const
then it shall be made const.

9-6-1

Document

When the absolute positioning of bits
representing a bit-field is required,
then the behavior and packing of bit-
fields shall be documented.

To observe this rule, check your
compiler documentation.

Templates

MISRA Definition

Polyspace Specification

14-5-1

Required

A non-member generic function shall
only be declared in a namespace that
is not an associated namespace.

14-7-1

Required

All class templates, function
templates, class template member
functions and class template static
members shall be instantiated at
least once.

14-7-2

Required

For any given template
specialization, an explicit
instantiation of the template with the
template-arguments used in the
specialization shall not render the
program ill-formed.

Exception Ha

ndling

Category

MISRA Definition

Polyspace Specification

15-0-1

Document

Exceptions shall only be used for
error handling.

To observe this rule, check your
compiler documentation.

15-114

MISRA C++ Coding Rules

MISRA C++.

N. Category MISRA Definition Polyspace Specification
15-1-1 |Required The assignment-expression of a
throw statement shall not itself
cause an exception to be thrown.
15-3-1 |Required Exceptions shall be raised only after
start-up and before termination of
the program.
15-3-4 |Required Each exception explicitly thrown in
the code shall have a handler of a
compatible type in all call paths that
could lead to that point.
Library Introduction
N. Category MISRA Definition Polyspace Specification
17-0-3 |Required The names of standard library
functions shall not be overridden.
17-0-4 |Required All library code shall conform to To observe this rule, check your

compiler documentation.

15-115

15 Coding Rule Sets and Concepts

Software Quality Objective Subsets (C++)

In this section...

“SQO Subset 1 - Direct Impact on Selectivity” on page 15-116
“SQO Subset 2 - Indirect Impact on Selectivity” on page 15-118

SQO Subset 1 - Direct Impact on Selectivity

The following set of MISRA C++ coding rules will typically improve the selectivity of your

results.

MISRA C++ Rule

Description

2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an
outer scope.

3-1-3 When an array is declared, its size shall either be stated explicitly or defined
implicitly by initialization.

3-3-2 The One Definition Rule shall not be violated.

3-9-3 The underlying bit representations of floating-point values shall not be used.

5-0-15 Array indexing shall be the only form of pointer arithmetic.

5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they
point to the same array.

5-0-19 The declaration of objects shall contain no more than two levels of pointer
indirection.

5-2-8 An object with integer type or pointer to void type shall not be converted to an
object with pointer type.

5-2-9 A cast should not convert a pointer type to an integral type.

6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality
or inequality.

6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.

6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-
counter shall only be used as an operand to <=, <, > or >=.

6-5-3 The loop-counter shall not be modified within condition or statement.

15-116

Software Quality Objective Subsets (C++)

MISRA C++ Rule

Description

6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n; where n
remains constant for the duration of the loop.

6-6-1 Any label referenced by a goto statement shall be declared in the same block,
or in a block enclosing the goto statement.

6-6-2 The goto statement shall jump to a label declared later in the same function
body.

6-6-4 For any iteration statement there shall be no more than one break or goto
statement used for loop termination.

6-6-5 A function shall have a single point of exit at the end of the function.

7-5-1 A function shall not return a reference or a pointer to an automatic variable
(including parameters), defined within the function.

7-5-2 The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist.

7-5-4 Functions should not call themselves, either directly or indirectly.

8-4-1 Functions shall not be defined using the ellipsis notation.

9-5-1 Unions shall not be used.

10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.

10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same
hierarchy.

10-3-1 There shall be no more than one definition of each virtual function on each
path through the inheritance hierarchy.

10-3-2 Each overriding virtual function shall be declared with the virtual keyword.

10-3-3 A virtual function shall only be overridden by a pure virtual function if it is
itself declared as pure virtual.

15-0-3 Control shall not be transferred into a try or catch block using a goto or a
switch statement.

15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a
catch handler.

15-3-3 Handlers of a function-try-block implementation of a class constructor or
destructor shall not reference non-static members from this class or its bases.

15-3-5 A class type exception shall always be caught by reference.

15-117

15 Coding Rule Sets and Concepts

MISRA C++ Rule

Description

15-3-6 Where multiple handlers are provided in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of
the same function (in other translation units) shall be declared with the same
set of type-ids.

15-5-1 A class destructor shall not exit with an exception.

15-5-2 Where a function's declaration includes an exception-specification, the function
shall only be capable of throwing exceptions of the indicated type(s).

18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 - Indirect Impact on Selectivity

Good design practices generally lead to less code complexity, which can improve the
selectivity of your results. The following set of coding rules may help to address design
issues that impact selectivity. The SQ0-subset2 option checks the rules in SQ0-subsetl
and SQO0-subset2.

MISRA C++ Rule

Description

2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope.

3-1-3 When an array is declared, its size shall either be stated explicitly or defined
implicitly by initialization.

3-3-2 If a function has internal linkage then all re-declarations shall include the
static storage class specifier.

3-4-1 An identifier declared to be an object or type shall be defined in a block that
minimizes its visibility.

3-9-2 typedefs that indicate size and signedness should be used in place of the basic
numerical types.

3-9-3 The underlying bit representations of floating-point values shall not be used.

15-118

Software Quality Objective Subsets (C++)

MISRA C++ Rule

Description

4-5-1 Expressions with type bool shall not be used as operands to built-in operators
other than the assignment operator =, the logical operators &&, ||, !, the
equality operators == and !=, the unary & operator, and the conditional
operator.

5-0-1 The value of an expression shall be the same under any order of evaluation
that the standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.

5-0-8 An explicit integral or floating-point conversion shall not increase the size of
the underlying type of a cvalue expression.

5-0-9 An explicit integral conversion shall not change the signedness of the
underlying type of a cvalue expression.

5-0-10 If the bitwise operators ~ and << are applied to an operand with an
underlying type of unsigned char or unsigned short, the result shall be
immediately cast to the underlying type of the operand.

5-0-13

5-0-15 Array indexing shall be the only form of pointer arithmetic.

5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where
they point to the same array.

5-0-19 The declaration of objects shall contain no more than two levels of pointer
indirection.

5-2-1 Each operand of a logical && or || shall be a postfix - expression.

5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived
class by means of dynamic_cast.

5-2-5 A cast shall not remove any const or volatile qualification from the type of a
pointer or reference.

5-2-6 A cast shall not convert a pointer to a function to any other pointer type,
including a pointer to function type.

5-2-7 An object with pointer type shall not be converted to an unrelated pointer

type, either directly or indirectly.

15-119

15 Coding Rule Sets and Concepts

MISRA C++ Rule |Description

5-2-8 An object with integer type or pointer to void type shall not be converted to an
object with pointer type.

5-2-9 A cast should not convert a pointer type to an integral type.

5-2-11 The comma operator, && operator and the || operator shall not be overloaded.

5-3-2 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

5-3-3 The unary & operator shall not be overloaded.

5-18-1 The comma operator shall not be used.

6-2-1 Assignment operators shall not be used in sub-expressions.

6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality
or inequality.

6-3-1 The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement.

6-4-2 Allif ... else if constructs shall be terminated with an else clause.

6-4-6 The final clause of a switch statement shall be the default-clause.

6-5-1 A for loop shall contain a single loop-counter which shall not have floating
type.

6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-
counter shall only be used as an operand to <=, <, > or >=.

6-5-3 The loop-counter shall not be modified within condition or statement.

6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n
remains constant for the duration of the loop.

6-6-1 Any label referenced by a goto statement shall be declared in the same block,
or in a block enclosing the goto statement.

6-6-2 The goto statement shall jump to a label declared later in the same function
body.

6-6-4 For any iteration statement there shall be no more than one break or goto
statement used for loop termination.

6-6-5 A function shall have a single point of exit at the end of the function.

7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.

15-120

Software Quality Objective Subsets (C++)

MISRA C++ Rule

Description

7-5-2 The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist.

7-5-4 Functions should not call themselves, either directly or indirectly.

8-4-1 Functions shall not be defined using the ellipsis notation.

8-4-3 All exit paths from a function with non- void return type shall have an explicit
return statement with an expression.

8-4-4 A function identifier shall either be used to call the function or it shall be
preceded by &.

8-5-2 Braces shall be used to indicate and match the structure in the non- zero
initialization of arrays and structures.

8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize
members other than the first, unless all items are explicitly initialized.

10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.

10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same
hierarchy.

10-3-1 There shall be no more than one definition of each virtual function on each
path through the inheritance hierarchy.

10-3-2 Each overriding virtual function shall be declared with the virtual keyword.

10-3-3 A virtual function shall only be overridden by a pure virtual function if it is
itself declared as pure virtual.

11-0-1 Member data in non- POD class types shall be private.

12-1-1 An object's dynamic type shall not be used from the body of its constructor or
destructor.

12-8-2 The copy assignment operator shall be declared protected or private in an
abstract class.

15-0-3 Control shall not be transferred into a try or catch block using a goto or a
switch statement.

15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a
catch handler.

15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.

15-121

15 Coding Rule Sets and Concepts

MISRA C++ Rule |Description

15-3-5 A class type exception shall always be caught by reference.

15-3-6 Where multiple handlers are provided in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.

15-5-2 Where a function's declaration includes an exception-specification, the
function shall only be capable of throwing exceptions of the indicated type(s).

16-0-5 Arguments to a function-like macro shall not contain tokens that look like
preprocessing directives.

16-0-6 In the definition of a function-like macro, each instance of a parameter shall
be enclosed in parentheses, unless it is used as the operand of # or ##.

16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor
directives, except as operands to the defined operator.

16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage
class specifiers.

16-3-1 There shall be at most one occurrence of the # or ## operators in a single
macro definition.

18-4-1 Dynamic heap memory allocation shall not be used.

15-122

Polyspace JSF C++ Checkers

Polyspace JSF C++ Checkers

The Polyspace JSF C++ checker helps you comply with the Joint Strike Fighter® Air
Vehicle C++ coding standards (JSF++). These coding standards were developed by
Lockheed Martin® for the Joint Strike Fighter program. They are designed to improve the
robustness of C++ code, and improve maintainability.

5
When JSF++ rules are violated, the Polyspace JSF C++ checker enables Polyspace

software to provide messages with information about the rule violations. Most messages
are reported during the compile phase of an analysis.

Note The Polyspace JSF C++ checker is based on JSF++:2005.

See Also

More About
. “Check for Coding Rule Violations” on page 14-2
. “JSF C++ Coding Rules” on page 15-124

5. JSF and Joint Strike Fighter are Lockheed Martin.

15-123

15 Coding Rule Sets and Concepts

JSF C++ Coding Rules

Supported JSF C++ Coding Rules

Code Size and Complexity

N. JSF++ Definition Polyspace Specification
1 Any one function (or method) will contain no |Message in report file:
more than 200 logical source lines of code
(L-SLOCs). <function name> has <num> logical
source lines of code.
3 All functions shall have a cyclomatic Message in report file:
complexity number of 20 or less.
<function name> has cyclomatic
complexity number equal to <num>.
Environment
N. JSF++ Definition Polyspace Specification
8 All code shall conform to ISO/IEC Reports the compilation error message
14882:2002(E) standard C++.
9 Only those characters specified in the C++
basic source character set will be used.
11 Trigraphs will net be used.
12 The following digraphs will not be used: <%, |Message in report file:
%>, <:, 1>,%:,%:%.:.
The following digraph will not be used:
<digraph>.
Reports the digraph. If the rule level is set to
warning, the digraph will be allowed even if
it is not supported in - compiler iso.
13 Multi-byte characters and wide string literals|Report L'c', L"string", and use of
will not be used. wchar_t.
14 Literal suffixes shall use uppercase rather
than lowercase letters.

15-124

JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification
15 Provision shall be made for run-time Done with checks in the software.
checking (defensive programming).
Libraries
N. JSF++ Definition Polyspace Specification
17 The error indicator errno shall not be errno should not be used as a macro or a
used. global with external "C" linkage.
18 The macro offsetof, in library offsetof should not be used as a macro or
<stddef.h>, shall not be used. a global with external "C" linkage.
19 <locale.h> and the setlocale function |setlocale and localeconv should not be
shall not be used. used as a macro or a global with external "C"
linkage.
20 The setjmp macro and the Longjmp setjmp and longjmp should not be used as
function shall not be used. a macro or a global with external "C"
linkage.
21 The signal handling facilities of <signal.h>|signal and raise should not be used as a
shall not be used. macro or a global with external "C" linkage.
22 The input/output library <stdio.h>shall |all standard functions of <stdio.h> should
not be used. not be used as a macro or a global with
external "C" linkage.
23 The library functions atof, atoi and atol |atof, atoi and atol should not be used as
from library <stdlib.h> shall not be used. |a macro or a global with external "C"
linkage.
24 The library functions abort, exit, getenv |abort, exit, getenv and system should
and system from library <stdlib.h> shall |not be used as a macro or a global with
not be used. external "C" linkage.
25 The time handling functions of library clock, difftime, mktime, asctime,

<time. h> shall not be used.

ctime, gmtime, localtime and strftime
should not be used as a macro or a global
with external "C" linkage.

15-125

15 Coding Rule Sets and Concepts

Pre-Processing Directives

N. JSF++ Definition Polyspace Specification

26 Only the following preprocessor directives
shall be used: #ifndef, #define, #endif,

#include.

27 #ifndef, #define and #endif will be used |Detects the patterns #1if !defined,
to prevent multiple inclusions of the same #pragma once, #ifdef, and missing
header file. Other techniques to prevent the |#define.
multiple inclusions of header files will not
be used.

28 The #ifndef and #endif preprocessor Detects any use that does not comply with
directives will only be used as defined in AV |AV Rule 27. Assuming 35/27 is not violated,
Rule 27 to prevent multiple inclusions of the |reports only #ifndef.
same header file.

29 The #define preprocessor directive shall |Rule is split into two parts: the definition of a
not be used to create inline macros. Inline |macro function (29.def) and the call of a
functions shall be used instead. macrofunction (29.use).

Messages in report file:

e 29.1:The #define preprocessor
directive shall not be used to create inline
macros.

e 29.2 : Inline functions shall be used
instead of inline macros.

30 The #define preprocessor directive shall |Reports #define of simple constants.
not be used to define constant values.

Instead, the const qualifier shall be applied
to variable declarations to specify constant
values.

31 The #define preprocessor directive will Detects use of #define that are not used to
only be used as part of the technique to guard for multiple inclusion, assuming that
prevent multiple inclusions of the same rules 35 and 27 are not violated.
header file.

32 The #include preprocessor directive will

only be used to include header (*.h) files.

15-126

JSF C++ Coding Rules

Header Files

N. JSF++ Definition Polyspace Specification
33 The #include directive shall use the

<filename.h> notation to include header

files.
35 A header file will contain a mechanism that

prevents multiple inclusions of itself.

39 Header files (*. h) will not contain non- Reports definitions of global variables /

const variable definitions or function function in header.
definitions.
Style

N. JSF++ Definition Polyspace Specification

40 Every implementation file shall include the |Reports when type, template, or inline
header files that uniquely define the inline |function is defined in source file.
functions, types, and templates used.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

41 Source lines will be kept to a length of 120
characters or less.

42 Each expression-statement will be on a Reports when two consecutive expression
separate line. statements are on the same line.

43 Tabs should be avoided.

44 All indentations will be at least two spaces |Reports when a statement indentation is not
and be consistent within the same source at least two spaces more than the statement
file. containing it. Does not report bad

indentation between opening braces
following if/else, do/while, for, and while
statements. NB: in final release it will accept
any indentation

46 User-specified identifiers (internal and

external) will not rely on significance of
more than 64 characters.

15-127

15 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification
47 Identifiers will not begin with the
underscore character ' .
48 Identifiers will not differ by: Checked regardless of scope. Not checked
) between macros and other identifiers.
* Only a mixture of case
« The presence/absence of the underscore |Messages in report file:
clisitisiies - Identifier Idf1 (filel.cpp line 11
* The interchange of the letter 'O'; with the column cl)and Idf2 (file2.cpp
number '0" or the letter 'D' line 12 column c2) only differ by the
* The interchange of the letter 'I'; with the presence/absence of the underscore
number '1' or the letter ' character.
+ The interchange of the letter 'S' with the |* Identifier Idfl (filel.cpp line 11
number '5' column c1)and Idf2 (file2.cpp
* The interchange of the letter 'Z' with the l;ne L2 fcolumn 2] onlly it by &
number 2 mixture of case.
. . . o Identifier Idfl (filel.cpp line 11
il;}%tee;nltlirchange of the letter 'n' with the column cI)and Idf2 (file2.cpp
line 12 column c2) only differ by
letter 0, with the number 0.
50 The first word of the name of a class, Messages in report file:

structure, namespace, enumeration, or type
created with typedef will begin with an
uppercase letter. All others letters will be
lowercase.

* The first word of the name of a class will
begin with an uppercase letter.

* The first word of the namespace of a class
will begin with an uppercase letter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

15-128

JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification
51 All letters contained in function and Messages in report file:
variables names will be composed entirely of . , ,
lowercase letters. * All letters contained in variable names
will be composed entirely of lowercase
letters.

» All letters contained in function names
will be composed entirely of lowercase
letters.

52 Identifiers for constant and enumerator Messages in report file:
values shall be lowercase.

» Identifier for enumerator value shall be
lowercase.

» Identifier for template constant
parameter shall be lowercase.

53 Header files will always have file name .H is allowed if you set the option -dos.
extension of ". h".

53.1 The following character sequences shall not
appear in header file names: ', \, /*, //, or

54 Implementation files will always have a file |Not case sensitive if you set the option -dos.
name extension of ".cpp".

57 The public, protected, and private sections of
a class will be declared in that order.

58 When declaring and defining functions with |Detects that two parameters are not on the

more than two parameters, the leading
parenthesis and the first argument will be
written on the same line as the function
name. Each additional argument will be
written on a separate line (with the closing
parenthesis directly after the last argument).

same line, The first parameter should be on
the same line as function name. Does not
check for the closing parenthesis.

15-129

15 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification

59 The statements forming the body of an if, Messages in report file:
else if, else, while, do ... while or for . .
statement shall always be enclosed in * The statements forming the body of an if
block. braces.

* The statements forming the body of an
else statement shall always be enclosed
in braces.

» The statements forming the body of a
while statement shall always be enclosed
in braces.

* The statements forming the body of a
do ... while statement shall always be
enclosed in braces.

* The statements forming the body of a for
statement shall always be enclosed in
braces.

60 Braces ("{}") which enclose a block will be |Detects that statement-block braces should
placed in the same column, on separate lines |be in the same columns.
directly before and after the block.
61 Braces ("{}") which enclose a block will
have nothing else on the line except
comments.
62 The dereference operator * and the Reports when there is a space between type

address-of operator ‘&’ will be directly
connected with the type-specifier.

and "*" "&" for variables, parameters and
fields declaration.

15-130

JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification
63 Spaces will not be used around ‘." or ->’, nor |Reports when the following characters are
between unary operators and operands. not directly connected to a white space:
. >
o |
¢ 4+
Note that a violation will be reported for “.”
used in float/double definition.
Classes

N. JSF++ Definition Polyspace Specification

67 Public and protected data should only be
used in structs - not classes.

68 Unneeded implicitly generated member Reports when default constructor,
functions shall be explicitly disallowed. assignment operator, copy constructor or

destructor is not declared.

71.1 |A class’s virtual functions shall not be Reports when a constructor or destructor
invoked from its destructor or any of its directly calls a virtual function.
constructors.

74 Initialization of nonstatic class members will |All data should be initialized in the

be performed through the member
initialization list rather than through
assignment in the body of a constructor.

initialization list except for array. Does not
report that an assignment exists in ctor
body.

Message in report file:

Initialization of nonstatic class members
"<field>" will be performed through the
member initialization list.

15-131

15 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification
75 Members of the initialization list shall be
listed in the order in which they are declared
in the class.
76 A copy constructor and an assignment Messages in report file:
operator shall be declared for classes that
contain pointers to data items or nontrivial |[* N0 copy constructor and no copy
destructors. assign
* no copy constructor
* NO copy assign
Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.
77.1 |The definition of a member function shall Does not report when an explicit copy
not contain default arguments that produce |constructor exists.
a signature identical to that of the implicitly-
declared copy constructor for the
corresponding class/structure.
78 All base classes with a virtual function shall
define a virtual destructor.
79 All resources acquired by a class shall be Reports when the number of “new” called in

released by the class’s destructor.

a constructor is greater than the number of
“delete” called in its destructor.

Note A violation is raised even if “new” is
done in a “if/else”.

15-132

JSF C++ Coding Rules

JSF++ Definition

Polyspace Specification

81

The assignment operator shall handle self-
assignment correctly

Reports when copy assignment body does
not begin with “if (this != arg)”

A violation is not raised if an empty else
statement follows the if, or the body
contains only a return statement.

A violation is raised when the if statement
is followed by a statement other than the
return statement.

82

An assignment operator shall return a
reference to *this.

The following operators should return *this
on method, and *first arg on plain
function.

operator=operator+=operator-
=operator*=operator >>=operator
<<=gperator /=operator %=operator
|=operator &=operator "=prefix
operator++ prefix operator--

Does not report when no return exists.
No special message if type does not match.
Messages in report file:

* An assignment operator shall return a
reference to *this.

* An assignment operator shall return a
reference to its first arg.

83

An assignment operator shall assign all data
members and bases that affect the class
invariant (a data element representing a
cache, for example, would not need to be
copied).

Reports when a copy assignment does not
assign all data members. In a derived class,
it also reports when a copy assignment does
not call inherited copy assignments.

15-133

15 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification
88 Multiple inheritance shall only be allowed in |Messages in report file:
the following restricted form: n interfaces o . _
plus m private implementations, plus at most |* Multiple inheritance on public
one protected jmplementatjon_ implementation shall not be allowed:
<public base class>isnotan
interface.
e Multiple inheritance on protected
implementation shall not be allowed :
<protected base class 1>.
* <protected base class 2> are not
interfaces.
88.1 |A stateful virtual base shall be explicitly
declared in each derived class that accesses
it.

89 A base class shall not be both virtual and
nonvirtual in the same hierarchy.

94 An inherited nonvirtual function shall not be|Does not report for destructor.

redefined in a derived class.

Message in report file:

Inherited nonvirtual function %s shall not be

redefined in a derived class.

95 An inherited default parameter shall never

be redefined.

96 Arrays shall not be treated polymorphically. |Reports pointer arithmetic and array like
access on expressions whose pointed type is
used as a base class.

97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay. Not
checked on private methods

97.1 |Neither operand of an equality operator (== |Reports == and != on pointer to member

or !=) shall be a pointer to a virtual member
function.

function of polymorphic classes (cannot
determine statically if it is virtual or not),
except when one argument is the null
constant.

15-134

JSF C++ Coding Rules

Namespaces
N. JSF++ Definition Polyspace Specification
98 Every nonlocal name, except main(), Bug Finder and Code Prover check this
should be placed in some namespace. coding rule differently. The analyses can
produce different results.
99 Namespaces will not be nested more than
two levels deep.
Templates
N. JSF++ Definition Polyspace Specification
104 A template specialization shall be declared |Reports the actual compilation error
before its use. message.
Functions

N. JSF++ Definition Polyspace Specification

107 Functions shall always be declared at file
scope.

108 Functions with variable numbers of
arguments shall not be used.

109 A function definition should not be placed in |Reports when "inline" is not in the definition
a class specification unless the function is of a member function inside the class
intended to be inlined. definition.

110 Functions with more than 7 arguments will
not be used.

111 A function shall not return a pointer or Simple cases without alias effect detected.
reference to a non-static local object.

113 Functions will have a single exit point. Reports first return, or once per function.

114 All exit points of value-returning functions

shall be through return statements.

15-135

15 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification
116 Small, concrete-type arguments (two or Report constant parameters references with
three words in size) should be passed by sizeof <= 2 * sizeof(int). Does not
value if changes made to formal parameters |report for copy-constructor.
should not be reflected in the calling
function.
119 Functions shall not call themselves, either |Direct recursion is reported statically.
directly or indirectly (i.e. recursion shall not |Indirect recursion reported through the
be allowed). software.
Message in report file:
Function <F> shall not call directly itself.
121 Only functions with 1 or 2 statements Reports inline functions with more than 2
should be considered candidates for inline |statements.
functions.
Comments
N. JSF++ Definition Polyspace Specification
126 Only valid C++ style comments (//) shall be
used.
133 Every source file will be documented with an |Reports when a file does not begin with two
introductory comment that provides comment lines.
information on the file name, its contents,
and any program-required information (e.g. |Note: This rule cannot be annotated in the
legal statements, copyright information, etc). |source code.
Declarations and Definitions
N. JSF++ Definition Polyspace Specification
135 Identifiers in an inner scope shall not use |Bug Finder and Code Prover check this

the same name as an identifier in an outer
scope, and therefore hide that identifier.

coding rule differently. The analyses can
produce different results.

15-136

JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification
136 Declarations should be at the smallest Reports when:
feasible scope.

* A global variable is used in only one
function.

* Alocal variable is not used in a
statement (expr, return, init ...) of
the same level of its declaration (in the
same block) or is not used in two sub-
statements of its declaration.

Note

* Non-used variables are reported.

» Initializations at definition are ignored
(not considered an access)

137 All declarations at file scope should be static
where possible.
138 Identifiers shall not simultaneously have
both internal and external linkage in the
same translation unit.
139 External objects will not be declared in more |Reports all duplicate declarations inside a
than one file. translation unit. Reports when the
declaration localization is not the same in
all translation units.
140 The register storage class specifier shall not
be used.
141 A class, structure, or enumeration will not
be declared in the definition of its type.
Initialization
N. JSF++ Definition Polyspace Specification
142 All variables shall be initialized before use. |Done with Non-initialized variable checks in

the software.

15-137

15 Coding Rule Sets and Concepts

JSF++ Definition

Polyspace Specification

144

Braces shall be used to indicate and match
the structure in the non-zero initialization of
arrays and structures.

This covers partial initialization.

145

In an enumerator list, the '=' construct shall
not be used to explicitly initialize members
other than the first, unless all items are
explicitly initialized.

Generates one report for an enumerator list.

Types

JSF++ Definition

Polyspace Specification

147

The underlying bit representations of
floating point numbers shall not be used in
any way by the programmer.

Reports on casts with float pointers (except
with void*).

148

Enumeration types shall be used instead of
integer types (and constants) to select from a
limited series of choices.

Reports when non enumeration types are
used in switches.

Constants

JSF++ Definition

Polyspace Specification

149

Octal constants (other than zero) shall not
be used.

150

Hexadecimal constants will be represented
using all uppercase letters.

151

Numeric values in code will not be used;
symbolic values will be used instead.

Reports direct numeric constants (except
integer/float value 1, 0) in expressions, non
- const initializations. and switch cases.
char constants are allowed. Does not report
on templates non-type parameter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

15-138

JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification
151.1 |A string literal shall not be modified. Report when a char*, char[], or string
type is used not as const.
A violation is raised if a string literal (for
example, “ “) is cast as a non const.
Variables
N. JSF++ Definition Polyspace Specification
152 Multiple variable declarations shall not be
allowed on the same line.
Unions and Bit Fields
N. JSF++ Definition Polyspace Specification
153 Unions shall not be used.
154 Bit-fields shall have explicitly unsigned
integral or enumeration types only.
156 All the members of a structure (or class) Reports unnamed bit-fields (unnamed fields
shall be named and shall only be accessed |are not allowed).
via their names.
Operators
N. JSF++ Definition Polyspace Specification
157 The right hand operand of a & or | | Assumes rule 159 is not violated.

operator shall not contain side effects.

Messages in report file:
* The right hand operand of a && operator
shall not contain side effects.

* The right hand operand of a | | operator
shall not contain side effects.

15-139

15 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification
158 The operands of a logical & or | | shall be |Messages in report file:
parenthesized if the operands contain binary .
operators. * The operands of a logical & shall be
parenthesized if the operands contain
binary operators.

* The operands of a logical | | shall be
parenthesized if the operands contain
binary operators.

Exception for: X || Y || Z , Z&&Y &&Z

159 Operators | |, &, and unary & shall not be |Messages in report file:
overloaded.

* Unary operator & shall not be
overloaded.

* Operator | | shall not be overloaded.

e Operator && shall not be overloaded.

160 An assignment expression shall be used only |Only simple assignment, not +=, ++, etc.
as the expression in an expression
statement.
162 Signed and unsigned values shall not be
mixed in arithmetic or comparison
operations.
163 Unsigned arithmetic shall not be used.
164 The right hand operand of a shift operator
shall lie between zero and one less than the
width in bits of the left-hand operand
(inclusive).
164.1 |The left-hand operand of a right-shift Detects constant case +. Found by the
operator shall not have a negative value. software for dynamic cases.
165 The unary minus operator shall not be
applied to an unsigned expression.
166 The sizeof operator will not be used on
expressions that contain side effects.
168 The comma operator shall not be used.

15-140

JSF C++ Coding Rules

Pointers and References

N. JSF++ Definition Polyspace Specification
169 Pointers to pointers should be avoided when |Reports second-level pointers, except for
possible. arguments of main.
170 More than 2 levels of pointer indirection Only reports on variables/parameters.
shall not be used.
171 Relational operators shall not be applied to |Reports when relational operator are used
pointer types except where both operands on pointer types (casts ignored).
are of the same type and point to:
* the same object,
* the same function,
* members of the same object, or
* elements of the same array (including one
past the end of the same array).
173 The address of an object with automatic
storage shall not be assigned to an object
which persists after the object has ceased to
exist.
174 The null pointer shall not be de-referenced. |Done with checks in software.
175 A pointer shall not be compared to NULL or |Reports usage of NULL macro in pointer
be assigned NULL; use plain 0 instead. contexts.
176 A typedef will be used to simplify program |Reports non-typedef function pointers, or

syntax when declaring function pointers.

pointers to member functions for types of
variables, fields, parameters. Returns type of
function, cast, and exception specification.

15-141

15 Coding Rule Sets and Concepts

Type Conversions

N. JSF++ Definition Polyspace Specification
177 User-defined conversion functions should be |Reports user defined conversion function,
avoided. non-explicit constructor with one parameter
or default value for others (even undefined
ones).
Does not report copy-constructor.
Additional message for constructor case:
This constructor should be flagged as
"explicit".
178 Down casting (casting from base to derived |Reports explicit down casting, dynamic cast
class) shall only be allowed through one of |included. (Visitor patter does not have a
the following mechanism: special case.)
» Virtual functions that act like dynamic
casts (most likely useful in relatively
simple cases).
* Use of the visitor (or similar) pattern
(most likely useful in complicated cases).
179 A pointer to a virtual base class shall not be |Reports this specific down cast. Allows

converted to a pointer to a derived class.

dynamic_cast.

15-142

JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification
180 Implicit conversions that may result in a loss |Reports the following implicit casts :
of information shall not be used.
integer => smaller integer
unsigned => smaller or eq signed
signed => smaller or eq un-signed
integer => float float => integer
Does not report for cast to bool reports for
implicit cast on constant done with the
options -scalar-overflows-checks
signed-and-unsignedor -ignore-
constant-overflows
Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.
181 Redundant explicit casts will not be used. |Reports useless cast: cast T to T. Casts
to equivalent typedefs are also reported.
182 Type casting from any type to or from Does not report when Rule 181 applies.
pointers shall not be used.
184 Floating point numbers shall not be Reports float->int conversions. Does not
converted to integers unless such a report implicit ones.
conversion is a specified algorithmic
requirement or is necessary for a hardware
interface.
185 C++ style casts (const cast,

reinterpret cast, and static cast)
shall be used instead of the traditional C-
style casts.

15-143

15 Coding Rule Sets and Concepts

Flow Control Standards

N. JSF++ Definition Polyspace Specification
186 There shall be no unreachable code. Done with gray checks in the software.
Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.
187 All non-null statements shall potentially
have a side-effect.
188 Labels will not be used, except in switch
statements.
189 The goto statement shall not be used.
190 The continue statement shall not be used.
191 The break statement shall not be used
(except to terminate the cases of a switch
statement).
192 All if, else if constructs will contain else if should contain an else clause.
either a final else clause or a comment
indicating why a final else clause is not
necessary.
193 Every non-empty case clause in a switch
statement shall be terminated with a break
statement.
194 All switch statements that do not intend to |Reports only for missing default.
test for every enumeration value shall
contain a final default clause.
195 A switch expression will not represent a
Boolean value.
196 Every switch statement will have at least
two cases and a potential default.
197 Floating point variables shall not be used as |Assumes 1 loop parameter.

loop counters.

15-144

JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification

198 The initialization expression in a for loop Reports if Loop parameter cannot be
will perform no actions other than to determined. Assumes Rule 200 is not
initialize the value of a single for loop violated. The loop variable parameter is
parameter. assumed to be a variable.

199 The increment expression in a for loop will [Assumes 1 loop parameter (Rule 198), with
perform no action other than to change a non class type. Rule 200 must not be violated
single loop parameter to the next value for |for this rule to be reported.
the loop.

200 Null initialize or increment expressions in
for loops will not be used; a while loop
will be used instead.

201 Numeric variables being used within a for Assumes 1 loop parameter (AV rule 198), and
loop for iteration counting shall not be no alias writes.
modified in the body of the loop.

Expressions

N. JSF++ Definition Polyspace Specification

202 Floating point variables shall not be tested |Reports only direct equality/inequality.
for exact equality or inequality. Check done for all expressions.

203 Evaluation of expressions shall not lead to |Done with overflow checks in the software.
overflow/underflow.

204 A single operation with side-effects shall only |Reports when:

be used in the following contexts:

o by itself
* the right-hand side of an assignment
* a condition

* the only argument expression with a side-
effect in a function call

e condition of a loop
* switch condition
* single part of a chained operation

* A side effect is found in a return
statement

* Asside effect exists on a single value, and
only one operand of the function call has
a side effect.

15-145

15 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification
204.1 |The value of an expression shall be the same |Reports when:
under any order of evaluation that the . , , ,
standard permits. * Variable is written more than once in an
expression
» Variable is read and write in sub-
expressions
» Volatile variable is accessed more than
once
Note Read-write operations such as ++, are
only considered as a write.
205 The volatile keyword shall not be used Reports if volatile keyword is used.
unless directly interfacing with hardware.
Memory Allocation
N. JSF++ Definition Polyspace Specification
206 Allocation/deallocation from/to the free store |Reports calls to C library functions: malloc /
(heap) shall neot occur after initialization. calloc/ realloc/ free and all new/
delete operators in functions or methods.
Fault Handling
N. JSF++ Definition Polyspace Specification
208 C++ exceptions shall not be used. Reports try, catch, throw spec, and
throw.
Portable Code
N. JSF++ Definition Polyspace Specification
209 The basic types of int, short, Llong, float |Only allows use of basic types through direct

and double shall not be used, but specific-
length equivalents should be typedef'd
accordingly for each compiler, and these
type names used in the code.

typedefs.

15-146

JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification
213 No dependence shall be placed on C++’s Reports when a binary operation has one
operator precedence rules, below arithmetic |operand that is not parenthesized and is an
operators, in expressions. operation with inferior precedence level.
Reports bitwise and shifts operators that are
used without parenthesis and binary
operation arguments.
215 Pointer arithmetic will not be used. Reports:p + Ip - Ip++p--p+=p-=

Allows p[i].

Unsupported JSF++ Rules

* “Code Size and Complexity” on page 15-148

* “Rules” on page 15-148

* “Environment” on page 15-148

* “Libraries” on page 15-149

* “Header Files” on page 15-149

* “Style” on page 15-149

* “Classes” on page 15-149

* “Namespaces” on page 15-151

+ “Templates” on page 15-151

* “Functions” on page 15-152

* “Comments” on page 15-152

* “Initialization” on page 15-153

* “Types” on page 15-153

* “Unions and Bit Fields” on page 15-153
* “Operators” on page 15-153

* “Type Conversions” on page 15-153
+ “Expressions” on page 15-154

* “Memory Allocation” on page 15-154
* “Portable Code” on page 15-154

15-147

15 Coding Rule Sets and Concepts

» “Efficiency Considerations” on page 15-155
* “Miscellaneous” on page 15-155
+ “Testing” on page 15-155

Code Size and Complexity

N. JSF++ Definition

2 There shall not be any self-modifying code.

Rules

N. JSF++ Definition

4 To break a “should” rule, the following approval must be received by the developer:

* approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

5 To break a “will” or a “shall” rule, the following approvals must be received by the
developer:

* approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

* approval from the software product manager (obtained by the unit approval in the
developmental CM tool)

6 Each deviation from a “shall” rule shall be documented in the file that contains the
deviation. Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

7 Approval will not be required for a deviation from a “shall” or “will” rule that complies with
an exception specified by that rule.

Environment

N. JSF++ Definition

10 Values of character types will be restricted to a defined and documented subset of ISO
10646 1.

15-148

JSF C++ Coding Rules

Libraries

N. JSF++ Definition

16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with safety-
critical (i.e. SEAL 1) code.

Header Files

N. JSF++ Definition

34 Header files should contain logically related declarations only.

36 Compilation dependencies should be minimized when possible.

37 Header (include) files should include only those header files that are required for them to
successfully compile. Files that are only used by the associated .cpp file should be placed in
the .cpp file — not the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be
supplied by forward headers that contain only forward declarations.

Style

N. JSF++ Definition

45 All words in an identifier will be separated by the ‘ ’ character.

49 All acronyms in an identifier will be composed of uppercase letters.

55 The name of a header file should reflect the logical entity for which it provides
declarations.

56 The name of an implementation file should reflect the logical entity for which it provides
definitions and have a “.cpp” extension (this name will normally be identical to the header
file that provides the corresponding declarations.)

At times, more than one .cpp file for a given logical entity will be required. In these cases, a
suffix should be appended to reflect a logical differentiation.
Classes

N. JSF++ Definition

64 A class interface should be complete and minimal.

65 A structure should be used to model an entity that does not require an invariant.

15-149

15 Coding Rule Sets and Concepts

N. JSF++ Definition

66 A class should be used to model an entity that maintains an invariant.

69 A member function that does not affect the state of an object (its instance variables) will be
declared const. Member functions should be const by default. Only when there is a clear,
explicit reason should the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private
elements of the class, but is unable to be a member of the class for logical or efficiency
reasons.

70.1 |An object shall not be improperly used before its lifetime begins or after its lifetime ends.

71 Calls to an externally visible operation of an object, other than its constructors, shall not be
allowed until the object has been fully initialized.

72 The invariant for a class should be:

* A part of the postcondition of every class constructor,

* A part of the precondition of the class destructor (if any),

* A part of the precondition and postcondition of every other publicly accessible
operation.

73 Unnecessary default constructors shall not be defined.

77 A copy constructor shall copy all data members and bases that affect the class invariant (a
data element representing a cache, for example, would not need to be copied).

80 The default copy and assignment operators will be used for classes when those operators
offer reasonable semantics.

84 Operator overloading will be used sparingly and in a conventional manner.

85 When two operators are opposites (such as == and !=), both will be defined and one will
be defined in terms of the other.

86 Concrete types should be used to represent simple independent concepts.

87 Hierarchies should be based on abstract classes.

90 Heavily used interfaces should be minimal, general and abstract.

91 Public inheritance will be used to implement “is-a” relationships.

15-150

JSF C++ Coding Rules

JSF++ Definition

92

A subtype (publicly derived classes) will conform to the following guidelines with respect to
all classes involved in the polymorphic assignment of different subclass instances to the
same variable or parameter during the execution of the system:

* Preconditions of derived methods must be at least as weak as the preconditions of the
methods they override.

* Postconditions of derived methods must be at least as strong as the postconditions of
the methods they override.

In other words, subclass methods must expect less and deliver more than the base class
methods they override. This rule implies that subtypes will conform to the Liskov
Substitution Principle.

93

“has-a” or “is-implemented-in-terms-of” relationships will be modeled through membership
or non-public inheritance.

Namespaces

JSF++ Definition

100

Elements from a namespace should be selected as follows:

* using declaration or explicit qualification for few (approximately five) names,
* using directive for many names.

Templates

JSF++ Definition

101

Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements
placed on its arguments.

2 with respect to all functions instantiated by actual arguments.

102

Template tests shall be created to cover all actual template instantiations.

103

Constraint checks should be applied to template arguments.

105

A template definition’s dependence on its instantiation contexts should be minimized.

106

Specializations for pointer types should be made where appropriate.

15-151

15 Coding Rule Sets and Concepts

Functions
N. JSF++ Definition
112 Function return values should not obscure resource ownership.
115 If a function returns error information, then that error information will be tested.
117 Arguments should be passed by reference if NULL values are not possible:
* 117.1 - An object should be passed as const T& if the function should not change the
value of the object.
* 117.2 - An object should be passed as T& if the function may change the value of the
object.
118 Arguments should be passed via pointers if NULL values are possible:
* 118.1 - An object should be passed as const T* if its value should not be modified.
* 118.2 - An object should be passed as T* if its value may be modified.
120 Overloaded operations or methods should form families that use the same semantics, share
the same name, have the same purpose, and that are differentiated by formal parameters.
122 Trivial accessor and mutator functions should be inlined.
123 The number of accessor and mutator functions should be minimized.
124 |Trivial forwarding functions should be inlined.
125 Unnecessary temporary objects should be avoided.
Comments
N. JSF++ Definition
127 Code that is not used (commented out) shall be deleted.
Note: This rule cannot be annotated in the source code.
128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.) outside
of the file being documented will not be allowed.
129 Comments in header files should describe the externally visible behavior of the functions or
classes being documented.
130 The purpose of every line of executable code should be explained by a comment, although

one comment may describe more than one line of code.

15-152

JSF C++ Coding Rules

N. JSF++ Definition
131 One should avoid stating in comments what is better stated in code (i.e. do not simply
repeat what is in the code).
132 Each variable declaration, typedef, enumeration value, and structure member will be
commented.
134 Assumptions (limitations) made by functions should be documented in the function’s
preamble.
Initialization
N. JSF++ Definition
143 Variables will not be introduced until they can be initialized with meaningful values. (See
also AV Rule 136, AV Rule 142, and AV Rule 73 concerning declaration scope, initialization
before use, and default constructors respectively.)
Types
N. JSF++ Definition
146 Floating point implementations shall comply with a defined floating point standard.
The standard that will be used is the ANSI/IEEE® Std 754 [1].
Unions and Bit Fields
N. JSF++ Definition
155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.
Operators
N. JSF++ Definition
167 The implementation of integer division in the chosen compiler shall be determined,
documented and taken into account.
Type Conversions
N. JSF++ Definition
183 Every possible measure should be taken to avoid type casting.

15-153

15 Coding Rule Sets and Concepts

Expressions

N. JSF++ Definition
204 A single operation with side-effects shall only be used in the following contexts:
1 Dy itself
2 the right-hand side of an assignment
3 a condition
4 the only argument expression with a side-effect in a function call
5 condition of a loop
6 switch condition
7 single part of a chained operation
Memory Allocation
N. JSF++ Definition
207 Unencapsulated global data will be avoided.
Portable Code
N. JSF++ Definition
210 Algorithms shall not make assumptions concerning how data is represented in memory
(e.g. big endian vs. little endian, base class subobject ordering in derived classes, nonstatic
data member ordering across access specifiers, etc.).
210.1 |Algorithms shall not make assumptions concerning the order of allocation of nonstatic data
members separated by an access specifier.
211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles begin at
particular addresses.
212 Underflow or overflow functioning shall not be depended on in any special way.
214 Assuming that non-local static objects, in separate translation units, are initialized in a

special order shall not be done.

15-154

JSF C++ Coding Rules

Efficiency Considerations

N. JSF++ Definition
216 Programmers should not attempt to prematurely optimize code.

Miscellaneous

N. JSF++ Definition

217 Compile-time and link-time errors should be preferred over run-time errors.

218 Compiler warning levels will be set in compliance with project policies.

Testing

N. JSF++ Definition

219 All tests applied to a base class interface shall be applied to all derived class interfaces as
well. If the derived class poses stronger postconditions/invariants, then the new
postconditions /invariants shall be substituted in the derived class tests.

220 Structural coverage algorithms shall be applied against flattened classes.

221 Structural coverage of a class within an inheritance hierarchy containing virtual functions
shall include testing every possible resolution for each set of identical polymorphic
references.

15-155

Configure Verification of Modules or
Libraries

* “Provide Context for C Code Verification” on page 16-2

* “Provide Context for C++ Code Verification” on page 16-4

* “Verify C Application Without main Function” on page 16-6
“Verify C++ Classes” on page 16-10

16 Configure Verification of Modules or Libraries

Provide Context for C Code Verification

16-2

This example shows how to provide context for your C code verification. If you use default
options and do not provide a main function, Polyspace Code Prover checks your code for
robustness against all verification conditions. For instance, the software:

* Considers that global variables and inputs of uncalled functions are full range.

* Generates a main that calls uncalled functions in arbitrary order.

In addition, if you do not define a function but declare and call it in your code, Polyspace

stubs the function. For a detailed list of assumptions, see “Code Prover Analysis
Assumptions”.

You can use analysis options on the Configuration pane to change the default behavior
and provide more context about your code. Performing contextual verification can result
in more proven code and therefore fewer orange checks.

Control Variable Range

Use the following options. The options appear under the Code Prover Verification node.

Option Purpose

Variables to initialize (-main- Specify the global variables that Polyspace

generator-writes-variables) must consider as initialized despite no
explicit initialization in the code.

Constraint setup (-data-range- Specify range for global variables.

specifications)

Control Function Call Sequence

Use the following options. The options appear under the Code Prover Verification node.

Option Purpose

Initialization functions (- Specify the functions that the generated
functions-called-before-main) main must call first.

Functions to call (-main- Specify the functions that the generated
generator-calls) main must call later.

Provide Context for C Code Verification

Control Stubbing Behavior

Use the following options. The options appear under the Inputs & Stubbing node.

Option Purpose
Functions to stub (-functions-to- |Specify the functions that Polyspace must
stub) stub.

16-3

16 Configure Verification of Modules or Libraries

Provide Context for C++ Code Verification

16-4

This example shows how to provide context to your C++ code verification. If you use
default options and do not provide a main function, Polyspace Code Prover checks your
code for robustness against all verification conditions. For instance, the software:

* Considers that global variables and inputs of uncalled functions and methods are full
range.

* Generates a main that calls uncalled functions in arbitrary order.
In addition, if you do not define a function but declare and call it in your code, Polyspace

stubs the function. For a detailed list of assumptions, see “Code Prover Analysis
Assumptions”.

You can use analysis options on the Configuration pane to change the default behavior
and provide more context about your code. Performing contextual verification can result
in more proven code and therefore fewer orange checks.

Control Variable Range

Use the following options. The options appear under the Code Prover Verification node.

Option Purpose

Variables to initialize (-main- Specify the global variables that Polyspace

generator-writes-variables) must consider as initialized despite no
explicit initialization in the code.

Constraint setup (-data-range- Specify range for global variables.

specifications)

Control Function Call Sequence

1 Use the following options to call class methods. The options appear under the Code
Prover Verification node.

Option Purpose
Class (-class-analyzer) Specify classes whose methods the
generated main must call.

Provide Context for C++ Code Verification

2

Option

Purpose

Functions to call within the
specified classes (-class-
analyzer-calls)

Specify methods that the generated
main must call.

Analyze class contents only (-
class-only)

Specify that the generated main must
call class methods only.

Skip member initialization
check (-no-constructors-init-
check)

Specify that the generated main must
not check whether each class
constructor initializes all class
members.

Use the following options to call functions that are not class methods. The options
appear under the Code Prover Verification node.

Option

Purpose

Initialization functions (-
functions-called-before-main)

Specify the functions that the
generated main must call first.

Functions to call (-main-
generator-calls)

Specify the functions that the
generated main must call later.

16-5

16 Configure Verification of Modules or Libraries

Verify C Application Without main Function

16-6

Polyspace verification requires that your code must have a main function. You can do one
of the following:

* Provide a main function in your code.
» Specify that Polyspace must generate a main.

Generate main Function

Before verification, specify one of the following options:

Option Description

Verify whole application The verification stops if the software does
not detect a main.

Verify module or library (-main- |Before verification, Polyspace checks if your
generator) code contains a main function.

If a main function exists, the software uses

that main. Otherwise, the software

generates a main using the options that

you specify:

* Variables to initialize (-main-
generator-writes-variables)

e Initialization functions (-
functions-called-before-main)

¢ Functions to call (-main-
generator-calls)

Manually Write main Function

During automatic main generation, the software makes certain assumptions about the
function call sequence or behavior of global variables. For instance, the default
automatically generated main models the following behavior:

* The functions that you specify using the option Functions to call (-main-
generator-calls) can be called in arbitrary order.

Verify C Application Without main Function

» In the beginning of each function body, global variables can have the full range of
values allowed by their type.

To provide a more accurate model of the call sequence, you can manually write a main
function for the purposes of verification. You can add this main function in a separate file
to your project. In some cases, providing an accurate call sequence can reduce the
number of orange checks. For example, in the following code, Polyspace assumes that f
and g can be called in any order. Therefore, it produces an orange overflow for the case
when T is called before g. If you know that f is called after g, you can write a main
function to model this sequence.

static char x;
static int y;

void f(void)

y = 300;
}
void g(void)
{

X =Y,
}

Example 1: main Calls One Function Before Another

Suppose you want to verify two functions funcl and func2 that have the following
prototypes.

int funcl(void *ptr, int x);
void func2(int x, int y);

You know that when both funcl and func2 are called, funcl is always called before
func2.

To manually define a main that models this behavior:

1 Write a main containing declarations of a volatile variable for each function
parameter type.

2 Write a loop with a volatile termination condition.

The verification assumes that a volatile variable can have any value allowed by its
type. Because the loop potentially terminates after any run, this condition models the
fact that you call funcl and func2 an arbitrary number of times.

16-7

16 Configure Verification of Modules or Libraries

3 Inside this loop, write a switch block with a volatile condition. For each function,
write a case branch that calls the function using the volatile variable parameters
that you created.

Because each case branch is potentially not entered, this condition models the fact
that one of funcl and func2 might not be called.

For instance, you can write the following main:

void main()

{

volatile int random=0;
volatile void * volatile ptr;
while(random)

switch (random)

{
case 1:
random = funcl(ptr, random); break;
default:
func2(random, random);

}

Example 2: main Calls One Function 10 Times Before Another

Suppose you want to verify two functions funcl and func2 with the following
prototypes:

void funcl(int);
void func2(void);

You know that when both funcl and func?2 are called, funcl is always called 10 times
before func2.

To manually define a main that models this behavior:

1 Write a main containing declarations of a volatile variable for each function
parameter type.

2 Inyour main function, call funcl in a loop 10 times before func2.

For instance, you can write the following main:
void main(void) {

int i=0;

volatile int random=0;

16-8

Verify C Application Without main Function

while (++i <= 10)
funcl(random);

func2();

16-9

16 Configure Verification of Modules or Libraries

Verify C++ Classes

In this section...

“Verification of Classes” on page 16-10

“Methods and Class Specifics” on page 16-12

Verification of Classes

Object-oriented languages such as C++ are designed for reusability. When developing
code in such a language, you do not necessarily know every contexts in which the class is
deployed. A class or a class family is safe for reuse if it free of defects for all possible
contexts.

To make your classes safe against all possible contexts, perform a robustness verification
and remove as many run-time errors as possible.

Polyspace Code Prover performs a robustness verification by default. If you provide the
software the class definition together with the definition of the class methods, the
software simulates all uses of the class. If some of the method definitions are missing, the
software automatically stubs them.

1 The software verifies each constructor by creating an object using the constructor. If
a constructor does not exist, the software uses the default constructor.
2 The software verifies the public, static and protected class methods of those objects
assuming that:
* The methods can be called in arbitrary order.
* The method parameters can have any value in the range allowed by their data
type.

To perform this verification, by default, it generates a main function that calls the
methods that are not called elsewhere in the code. If you want all your methods to be
verified for all contexts, modify this behavior so that the generated main calls all
public and protected methods instead of just the uncalled ones. For more
information, see Functions to call within the specified classes (-
class-analyzer-calls).

3 The software calls the destructor of those objects (if they exist) and verifies them.

When verifying classes, Polyspace makes certain assumptions.

16-10

Verify C++ Classes

Code Assumption
Construct

Global variable | Unless explicitly initialized, in each method, global variables can have
any value allowed by their type.

For instance, in the following code, Polyspace assumes that globvarl
can have any value allowed by its type. Therefore, an orange Division
by zero appears on the division by globvarl. However, because
globvar?2 is explicitly initialized, the Division by zero check on
division by globvar?2 is green.

extern int fround(float fx);
// global variables

int globvarl;

int globvar2 = 100;

class Location

{
private:
int x;
public:
Location(int intx = 0) {
X = intx;
s
void setx(int intx) {
X = intx;
s
void fsetx(float fx) {
int tx = fround(fx);
if (tx / globvarl != 0)
{
tx = tx / globvar2;
setx(tx);
}
s
T

16-11

16 Configure Verification of Modules or Libraries

Code
Construct

Assumption

Classes with
undefined
constructors

The members of the classes can be non-initialized.

In the following example, Polyspace assumes that m_loc.Xx can be non-
initialized. Therefore, an orange Non-initialized variable error
appears on X in the getMember method. Following the check, Polyspace
assumes that the variable can have any value allowed by its type.
Therefore, an orange Overflow appears on the addition operation in the
show method.

class OtherClass

{
protected:
int x;
public:
OtherClass (int intx);
int getMember(void) {
return X;
s
T

class MyClass

{
OtherClass m_loc;

public:
MyClass(int intx) : m_loc(0) {};
void show(void) {

int wx, wl;
wx = m_loc.getMember();
wl = wx + 2;

};
+;

Methods and Class Specifics

+ “Simple Class” on page 16-13

+ “Template Classes” on page 16-14
* “Abstract Classes” on page 16-15
* “Static Classes” on page 16-16

16-12

Verify C++ Classes

* “Inherited Classes” on page 16-16

* “Simple Inheritance” on page 16-17

* “Multiple Inheritance” on page 16-19
* “Virtual Inheritance” on page 16-20

* “Class Integration” on page 16-20

Simple Class
Consider the following class:

Stack.h
#define MAXARRAY 100

class stack

{
int array[MAXARRAY];
long toparray;

public:
int top (void);
bool isempty (void);
bool push (int newval);
void pop (void);

stack ();
b
stack.cpp
1 #include "stack.h"
2
3 stack::stack ()
4 {
5 toparray = -1;
6 for (int i = 0 ; i < MAXARRAY; i++)
7 array[i] = 0;
8 }
9
10 int stack::top (void)
11 {
12 int i = toparray;
13 return (array[il]);
14 }

16-13

16 Configure Verification of Modules or Libraries

16-14

15

16 bool stack::isempty (void)
17 {

18 if (toparray >= 0)

19 return false;

20 else

21 return true;

22 }

23

24 bool stack::push (int newvalue)
25 {

26 if (toparray < MAXARRAY)
27 {

28 array[++toparray] = newvalue;
29 return true;

30 }

31

32 return false;

33 }

34

35 void stack::pop (void)

36 {

37 if (toparray >= 0)

38 toparray--;

39 }

The class analyzer calls the constructor and then the methods in any order many times.

The verification of this class highlights two problems:

* The stack: :push method may write after the last element of the array, resulting in
the OBAI orange check at line 28.

» If called before push, the stack: : top method will access element -1, resulting in the
OBAI and NIV checks at line 13.

Fixing these problems will eliminate run-time errors in this class.

Template Classes

A template class allows you to create a class without explicit knowledge of the data type
that the class operations handle. Polyspace cannot verify a template class directly. The
software can only verify a specific instance of the template class. To verify a template
class:

Verify C++ Classes

1 Create an explicit instance of the class.
2 Define a typedef of the instance and provide that typedef for verification.

In the following example, ca'lc is a template class that can handle any data type through
the identifier myType.

template <class myType> class calc

{

public:
myType multiply(myType x, myType y);
myType add(myType X, myType y);

template <class myType> myType calc<myType>::multiply(myType x,myType y)
{

}

template <class myType> myType calc<myType>::add(myType x, myType y)

{

}

To verify this class:

return x*y;

return x+y;

1 Add the following code to your Polyspace project.

template class calc<int>;
typedef calc<int> my template;

2 Provide my template as argument of the option Class. See Class (-class-
analyzer).

Abstract Classes

In the real world, an instance of an abstract class cannot be created, so it cannot be
analyzed. However, it is easy to establish a verification by removing the pure declarations.
For example, this can be accomplished via an abstract class definition change:

void abstract func () = 0; by void abstract func ();

If an abstract class is provided for verification, the software will make the change
automatically and the virtual pure function (abstract func in the example above) will
then be ignored during the verification of the abstract class.

This means that no call will be made from the generated main, so the function is
completely ignored. Moreover, if the function is called by another one, the pure virtual

16-15

16 Configure Verification of Modules or Libraries

16-16

function will be stubbed and an orange check will be placed on the call with the message
“call of virtual function [f] may be pure.”

Consider the following classes:

A
abstract

A is an abstract class

B is a simple class.

A and B are base classes of C.
C is not an abstract class.

As it is not possible to create an object of class A, this class cannot be analyzed separately
from other classes. Therefore, you are not allowed to specify class A to the Polyspace
class analyzer. Of course, class C can be analyzed in the same way as in the previous
section “Multiple Inheritance.”

Static Classes
If a class defines a static methods, it is called in the generated main as a classical one.
Inherited Classes

When a function is not defined in a derived class, even if it is visible because it is
inherited from a father's class, it is not called in the generated main. In the example
below, the class Point is derived from the class Location:

Verify C++ Classes

class Location

{
protected:
int x;
int y;
Location (int intx, int inty);
public:
int getx(void) {return x;};
int gety(void) {return y;};
+
class Point : public Location
{
protected:
bool visible;
public :
Point(int intx, int inty) : Location (intx, inty)
visible = false;
}
void show(void) { visible = true;};
void hide(void) { visible = false;};
bool isvisible(void) {return visible;};
b

Although the two methods Location: :getx and Location: :gety are visible for
derived classes, the generated main does not include these methods when analyzing the
class Point.

Inherited members are considered to be volatile if they are not explicitly initialized in the
father's constructors. In the example above, the two members Location: :x and
Location: :y will be considered volatile. If we analyze the above example in its current
state, the method Location:: Location(constructor) will be stubbed.

Simple Inheritance

Consider the following classes:

16-17

16 Configure Verification of Modules or Libraries

16-18

A is the base class of B and D.
B is the base class of C.

In a case such a this, Polyspace software allows you to run the following verifications:

1 You can analyze class A just by providing its code to the software. This corresponds to
the previous “Simple Class” section in this chapter.

2 You can analyze class B class by providing its code and the class A declaration. In this
case, A code will be stubbed automatically by the software.

3 You can analyze class B class by providing B and A codes (declaration and definition).
This is a “first level of integration” verification. The class analyzer will not call A
methods. In this case, the objective is to find bugs only in the class B code.

4 You can analyze class C by providing the C code, the B class declaration and the A
class declaration. In this case, A and B codes will be stubbed automatically.

Verify C++ Classes

5 You can analyze class C by providing the A, B and C code for an integration
verification. The class analyzer will call all the C methods but not inherited methods
from B and A. The objective is to find only defects in class C.

In these cases, there is no need to provide D class code for analyzing A, B and C classes as
long as they do not use the class (e.g., member type) or need it (e.g., inherit).

Multiple Inheritance

Consider the following classes:

A and B are base classes of C.

In this case, Polyspace software allows you to run the following verifications:
1 You can analyze classes A and B separately just by providing their codes to the
software. This corresponds to the previous “Simple Class” section in this chapter.

2 You can analyze class C by providing its code with A and B declarations. A and B
methods will be stubbed automatically.

3 You can analyze class C by providing A, B and C codes for an integration verification.
The class analyzer will call all the C methods but not inherited methods from A and B.
The objective is to find bugs only in class C.

16-19

16 Configure Verification of Modules or Libraries

Virtual Inheritance

Consider the following classes:

B and C classes virtually inherit the A class
B and C are base classes of D.

A, B, C and D can be analyzed in the same way as described in the previous section
“Abstract Classes.”

Virtual inheritance has no impact on the way of using the class analyzer.
Class Integration

Consider a C class that inherits from A and B classes and has object members of AA and
BB classes.

16-20

Verify C++ Classes

A class integration verification consists of verifying class C and providing the codes for A,
B, AA and BB. If some definitions are missing, the software will automatically stub them.

16-21

17

Interpret Polyspace Code Prover
Results

* “Interpret Polyspace Code Prover Results” on page 17-2

* “Code Prover Result and Source Code Colors” on page 17-10
* “Code Prover Run-Time Checks” on page 17-17

* “Dashboard” on page 17-21

* “Concurrency Modeling” on page 17-27

* “Results List” on page 17-29

* “Source” on page 17-33

* “Result Details” on page 17-41

* “Call Hierarchy” on page 17-44

* “Variable Access” on page 17-47

* “Code Prover Analysis Following Red and Orange Checks” on page 17-55
* “Order of Code Prover Run-Time Checks” on page 17-61

* “Orange Checks in Code Prover” on page 17-63

* “Managing Orange Checks” on page 17-66

» “Critical Orange Checks” on page 17-71

* “Limit Display of Orange Checks” on page 17-74

» “Software Quality Objectives” on page 17-77

* “Reduce Orange Checks” on page 17-86

* “Test Orange Checks for Run-Time Errors” on page 17-90

* “Limitations of Automatic Orange Tester” on page 17-94

17 Interpret Polyspace Code Prover Results

Interpret Polyspace Code Prover Results

When you open the results of a Polyspace Code Prover analysis, you see a list on the
Results List pane. The results consist of run-time checks, coding rule violations, code
metrics or global variable usage.

You can first narrow down the focus of your review:

» Use filters on the results list columns to narrow down the list. For instance, you can
focus on the high-impact defects.

Organize results by file and function. Use the [=l+ icon above the list.

Since the results of a Code Prover run-time check are dependent on the results of
previous checks, it helps to start review from the beginning of a function and work
your way down the function.

Once you narrow down the list, you can begin reviewing individual results. This topic
describes how to review a result.

17-2

Interpret Polyspace Code Prover Results

Select a Read result
result. explanation.

r s

File Reporting Metrics | Tocls Window Help
[& G| [runcoseppver » [5200 | L |
oA

Fady o Chek

. Out ofbourds
b

' Her et
o

. ool use of
X * Unrechatie cod
" Uveachatie cod
x* r—
x Urreschabie cod
X Urreschatie cod
" Urveachatie cod
Mo ® Unused varsbid
|

See source
code.

To begin your review, select a result in the list.

Interpret Result

Interpret Message

The first step is to understand what is wrong. Read the message on the Result Details
pane and the related line of code on the Source pane. Use the tools described below to
understand the result.

At this point, you might be ready to decide whether to fix the issue or not.

17-3

17 Interpret Polyspace Code Prover Results

Dut of bounds array index (2

Warning: array index may be outside bounds ; [0..128]

This check may be an issue related to unbounded input values

Local variable main.PORT _A that is dedared volatile in main.c line 48 may lead to imprecdise check
Local variable main.PORT_E that is dedared volatile in main.c line 49 may lead to impredise check
array size: 127

array index value: [0 .. 555]

The message consists of several parts:

* Check color and icon: See “Code Prover Result and Source Code Colors” on page 17-
10. In case of checks for run-time errors:

® . Red indicates a definite error.

: Orange indicates a possible error.

* . Gray indicates unreachable code.

* +": Green indicates absence of that error.
» Description of the run-time check.

In the example above, the check determines if an array index goes outside the array
bounds.

* Values relevant to the run-time check.

In the example above, the message states the array size (127), the array bounds
(0..126) and the range of values that the array index variable can take at that point in
the code (0..555).

* Relevant sources of imprecision (for orange checks).

In the example above, the message states that two volatile variables might be
responsible for the check.

See Variable Ranges in Source Code Tooltips

On the Source pane, variables and operations with tooltips are underlined.

17-4

Interpret Polyspace Code Prover Results

In this example, tooltips appear on:

* s8 ret: You see its data type and range of values before the + operation.

If a data type conversion occurs during the + operation, you also see this in the
tooltip.

* +: You see the value of the left and right operand, and the result.
* =: You see any data type conversion that occurs during the assignment and the result.

Seek Additional Resources for Help

Sometimes, you need additional help for certain results. Click the “Dlicon to open a help
page for the selected result. See code examples illustrating the result.

Find Root Cause of Result

Sometimes, the root cause might be far from the actual location where the result is
displayed. For instance, a variable that you read might be non-initialized because the
initialization is not reachable. The defect is shown when you read the variable, but the
root cause is perhaps a previous if or while condition that is always false.

Navigate in Source Code

Sometimes, the Result Details pane shows one sequence of events that leads to the
result. However, in most situations, you have to find your own navigation pathways
through the code. Using tooltips on variables, follow the propagation of variable ranges as
you navigate through the code.

int func (int var) { /* Initial range of var */

17-5

17 Interpret Polyspace Code Prover Results

}

var -= get (); /* New range of var */

set(&var); /* New range of var */

Use these quick navigation pathways in the user interface:

17-6

Search for all references to a variable and browse through them.

To begin, right-click the variable name on the Source pane.
Navigate from a function call to its definition.

To begin, right-click the function name on the Source pane.
Navigate from a function to its callers and callees.

To begin, click the fx icon on the Result Details pane. You see the function
containing the result, with its callers and callees. Click a caller or callee name to
navigate to the call site. Double-click a name to navigate to the definition.

Alternatively, click the “e icon to see a graphical representation of the call sequence
leading to the result. To navigate to functions in this sequence, click through nodes in
the graph.

Navigate from a function call or loop keyword to an error in the function or loop body.
If the error occurs only in a specific function call or specific loop iteration, the function

call or loop iteration is highlighted red. To begin, right-click the red function call or
loop keyword. Select Go To Cause if the option exists.

Navigate across all instances of a global variable.

To begin, click the “ on the Result Details pane. See all global variables in the

result and read/write operations on them.

Interpret Polyspace Code Prover Results

LﬁEhiiIiiII

s
1 PowerLevel++;

tasks2.c X | taskslc X

¥
vold Increase Powerlewel (wvoid)

{

1 =1 Print Source Code: tasks2.c
‘il Search For "PowerLevel” in Current Source File Ctrl+F

i . ‘d Search For "PowerLevel” in All Source Files
static wvoid

I Search For All References

int loc Go To Definition

ir (loc Go To Line Ctrl+L
! o€ Show Call Graph

Show In Variable Access View

woid E‘u:mpute =| Open Editor
{ Add Pre-Justification Te Clipboard

statlc I Expand All Macros

Computin 1 Collapse All Macros
} Create Duplicate Code Window

Before you begin navigating through pathways in your code, ask the question: What am I
looking for? Based on your answer, choose the appropriate navigation tool. For instance:

To investigate a Non-initialized variable check, you might want to make sure that
the variable is not initialized at all. To look for previous instances of the variable, on
the Source pane, right-click the variable and select Search For All References.
Alternatively, double-click the variable. These options show only instances of a specific
variable and not other variables with the same name in other scopes.

To investigate a violation of MISRA C:2012 Rule 17.7:

17-7

17 Interpret Polyspace Code Prover Results

The value returned by a function having non-void return type shall be used.

you might want to navigate from a function call to the function definition. Right-click
the function and select Go To Definition.

For other examples of what to look for, see “Code Prover Run-Time Checks” on page 17-

17. After you navigate away from the current result, use the I icon on the Result
Details pane to come back.

Navigate in Separate Window

If reviewing a result requires deeper navigation in your source code, you can create a
duplicate source code window that focuses on the result while you navigate in the original
source code window.

vj

cample.c % 4 b B [examplec-spawnl X 4bBE
e

~ =0, y=o0:
including invalid addresses and back to valid addresses. inc x =10, y=10;

*
static void Pointer_Rrithmetic(void)
{

int array[100]:

while (1)

int i, *p = array;

/% Bere we demonstrate Polyspace Verifier's ability to track a

pointer across pointer arithmetic operations,

including invalid addresses and back to valid addresses.
} ’f
static void Fointer Arithmetic(void)
i
int array[100];
int i, *p = array;

i¢=100)) [

/* Safe pointer access */

Right-click on the Source pane and select Create Duplicate Code Window. Right-click
on the tab showing the duplicate file name (ending with -spawn 1) and select New
Vertical Group.

17-8

See Also

Perform the navigation steps in the duplicate file window while the defect still appears on
the original file window. After the investigation is over, close the duplicate window.

See Also

More About

. “Filter and Group Results” on page 20-2
. “Address Polyspace Results Through Bug Fixes or Comments” on page 19-2

17-9

17 Interpret Polyspace Code Prover Results

Code Prover Result and Source Code Colors

This topic explains the various colors used in displaying the results of a Polyspace Code
Prover analysis.

Result Colors

Polyspace displays the different verification results with specific icons and colors on the
Results List and Result Details pane.

Family:... % Check

[] Division by zero

- Unreachable code

X Unreachable code

Out of bounds array index
Overflow

Owerflow

Owerflow

Owerflow

Overflow

Mon-nitialized local variable
Mon-nitizlized local variable
Owerflow

SN NS S

Overflow

Run-Time Checks

Polyspace Code Prover checks each operation in your code for particular run-time errors.
The software assigns a color to the operation based on whether it proved the existence or
absence of a run-time error on all or some execution paths.

17-10

Code Prover Result and Source Code Colors

Check
Color

Purpose

Example

Icon

Red

Highlights operations that are
proven to cause a particular error
on all execution paths*.

Polyspace Code Prover verification
determines errors with reference
to the language standard. Though
some of the errors can be
acceptable for a particular
compilation environment, they
violate the language standard. To
allow some of the environment-
dependent behavior, use
appropriate analysis options. For
more information, see “Verification
Assumptions” and “Check
Behavior”.

Red Overflow on:
Z = X+y;

The operation + overflows for
every value of x and y that the
verification considers at that
point.

Gray

Highlights unreachable code.

Gray Unreachable code
check:

if(x>0)
{}

else

{}

The else branch is
unreachable for all values of x
that the verification considers
at that point.

17-11

17 Interpret Polyspace Code Prover Results

17-12

Check Purpose Example Icon
Color
Orange Highlights operations that can Orange Overflow on:
cause an error on certain
execution paths. Z = X+y;
For more information, see “Orange | | € analysis could not prove
Checks in Code Prover” on page |Whether the operation +
17-63. overflows.
The most common reason is
that the operation overflows
only for some values of x and
y that the verification
considers at that point. You
can use the tooltips on the
variables x and y in the
operation to see the range of
values that the verification
considers.
Green Highlights operations that are Green Overflow on: o

proven to not cause a particular
error on all execution paths*.

Z = X+y;

The operation + does not
overflow for all values of x
and y that the verification
considers at that point.

* For most checks, the software terminates an execution path following the first run-time
error on the path. Therefore, if it proves a definite error (red) or absence of error (green)

on an operation, the proof is valid only for the execution paths that have not yet been
terminated at that point in the code. See “Code Prover Analysis Following Red and
Orange Checks” on page 17-55.

Other Results

Besides checks for run-time errors, Polyspace Code Prover also displays other results
about your code.

Code Prover Result and Source Code Colors

Result Purpose Icon

Coding Indicates violation of predefined or| = for predefined rules and * for

rule custom coding rules. custom rules.

violations

Code Indicates code complexity metrics. | # for metrics that do not exceed a limit

metrics you specified and ! # for metrics that
exceed a limit.

Global Indicates glOba]. variable = for shared potentially unprotected

variables |declaration.

variables and # = for non-shared
unused variables

Source Code Colors

Polyspace uses the following color scheme for displaying code on the Source pane.

* Lines with checks:

For every check on the Results List pane, Polyspace assigns the check color to the
corresponding section of code.

For lines containing macros, if the macro is collapsed, then Polyspace colors the
entire line with the color of the most severe check on the line. The severity
decreases in this order: red, gray, orange, green.

This unreachable for loop contains a macro MAX SIZE. The entire line is colored
gray.

o i = 0 i « MARX SIFE: i++

If there is no check in a line containing a macro, Polyspace underlines the line in
black when the macro is collapsed.

For all other lines, Polyspace colors only the keyword or identifier associated with
the check.

This assignment has three checks: i and used global are initialized but the array
tab can be accessed outside its bounds. The [operator is colored orange to
indicate the issue.

17-13

17

Interpret Polyspace Code Prover Results

17-14

» Lines with coding rule violations:

For every coding rule violation on the Results List pane, Polyspace assigns to the
corresponding keyword or identifier:

A = symbol if the coding rule is a predefined rule. The predefined rules available
are MISRA C, MISRA AC AGC, MISRA C++, or JSF C++.

This if statement and | | operation violates MISRA rules.

A ¥ symbol if the coding rule is a custom rule.

This function name violates a custom naming convention.

¥
int polynomia{int input)

* Lines with tooltips:

If a tooltip is available for a keyword or identifier on the Source pane, Polyspace:

Uses solid underlining for the keyword or identifier if it is associated with a check.

This line has both checks and tooltips on input, % and used global.

".-'
regult = input % used glcbal:

Uses dashed underlining for the keyword or identifier if it is not associated with a
check.

This line has tooltips on for and <, but no checks on them.

1< 10; i++)

Uses dashed red underlining on function calls to indicate that the function body
contains a definite run-time error. The tooltip shows the line in the function body
that causes the error.

This call to function with_ red leads to a run-time error.

Code Prover Result and Source Code Colors

» Function definitions:

When a function is defined, Polyspace colors the function name in blue.

v
vold taskl (void) |

» Lines deactivated due to conditional compilation:

Polyspace assigns a lighter shade of gray to code deactivated due to conditional
compilation. Such code occurs, for instance, in #1ifdef statements where the macro
for a branch is not defined. This code does not affect the verification.

#ifdef ACTIVE

Global Variable Colors

The Variable Access pane shows the global variables in your code along with the read
and write operations on the variables.

For instance, used global is a global variable that is written four times: once during
initialization, once in the function function with red, and twice in the function
function with_grey.

17-15

17 Interpret Polyspace Code Prover Results

Variables

colors_of_Polyspace

H-fa se_condition

¥]--shared_protected

unused_globa

4 _init_globals()
-~ function_with_red()

Finchnn with arewl
-~ W function_with_arey(

b function_with_grey()

fil-tab

The color scheme is as follows:
» Variable colors:

* Orange: Shared, unprotected global variable (only applicable to multitasking code)
* Green: Shared, protected global variable (only applicable to multitasking code)

* Black: Unshared, used global variable

* Gray: Unshared, unused global variable

See “Global Variables”.

* Operation colors: If an operation occurs in unreachable code, it is grey, otherwise
black.

In the preceding example, one operation in the function function with grey is
unreachable but the other is reachable.

For more information, see “Variable Access” on page 17-47.

17-16

Code Prover Run-Time Checks

Code Prover Run-Time Checks

Polyspace Code Prover checks each operation in your code for certain run-time errors and
displays the result as a red, green or orange check. For more information, see “Code
Prover Result and Source Code Colors” on page 17-10.

You must review a red or orange check and determine whether to fix your code. The
tables below list the checks that Polyspace Code Prover performs and how you can review

them.

Data Flow Checks

Check

How to Review

Details

Function not
called

Investigate why a function does
not appear in the call graph
starting from the main or another
entry point function.

“Review and Fix Function Not
Called Checks” on page 18-16

Function not

Identify the call sites of a function

“Review and Fix Function Not

reachable and investigate why they occur in |Reachable Checks” on page 18-
unreachable code. 18

Non- Locate prior variable “Review and Fix Non-initialized

initialized initializations if any and see if Local Variable Checks” on page

local your program can bypass them. [18-49

variable

Non- Locate prior pointer initializations | “Review and Fix Non-initialized

initialized if any and see if your program Pointer Checks” on page 18-53

pointer can bypass them.

Non- Locate prior initializations of the |“Review and Fix Non-initialized

initialized global variable if any and see if | Variable Checks” on page 18-56

variable your program can bypass them.

Return value
not
initialized

Identify paths through your
function body that do not end in
a return statement.

“Review and Fix Return Value Not
Initialized Checks” on page 18-
85

17-17

17

Interpret Polyspace Code Prover Results

17-18

Check How to Review Details
Unreachable Investigate why a conditional “Review and Fix Unreachable
code statement in your code is Code Checks” on page 18-92

redundant, for instance, always
true or always false.

Numerical Checks

Check

How to Review

Details

Division by
zero

Review prior operations in your
code that lead to zero value of a
denominator.

“Review and Fix Division by Zero
Checks” on page 18-10

Invalid shift

Review prior operations in your

“Review and Fix Invalid Shift

operations code that lead to a shift amount |Operations Checks” on page 18-
outside bounds or a negative 36
value being left-shifted.

Overflow Review prior operations in your |“Review and Fix Overflow

code that lead to an operation
overflowing.

Checks” on page 18-78

Static Memory Checks

Check

How to Review

Details

Absolute
address usage

Review uses of absolute address
in your code and make sure that
the addresses are valid.

“Review and Fix Absolute
Address Usage Checks” on page
18-3

Illegally
dereferenced
pointer

Review prior operations in your
code that lead to a pointer
pointing outside its allocated
memory buffer.

“Review and Fix Illegally
Dereferenced Pointer Checks” on
page 18-22

OQut of bounds
array index

Review prior operations in your
code that lead to an array index
being greater than or equal to
array size.

“Review and Fix Out of Bounds
Array Index Checks” on page 18-
73

Code Prover Run-Time Checks

Control Flow Checks

Check How to Review Details
Non- Review operations in the function |“Review and Fix Non-Terminating
terminating body and find which run-time Call Checks” on page 18-59
call error occurs because of issues

specific to the current function

call.
Non- Review operations in the loop and | “Review and Fix Non-Terminating
terminating determine why the loop does not |Loop Checks” on page 18-64
loop terminate or why a definite run-

time error occurs in one of the

loop runs.
C++ Checks
Check How to Review Details
Invalid C++ Determine root cause of “Review and Fix Invalid C++
specific nonpositive array size or Specific Operations Checks” on
operations incorrect usage of the page 18-33

typeid or the
dynamic cast operator.

Function not

Identify paths through your

“Review and Fix Function Not

returning function body that do not end in |Returning Value Checks” on page
value a return statement. 18-20
Incorrect Investigate why a “Review and Fix Incorrect Object
object certain virtual member call Oriented Programming Checks”
oriented or this pointer usage represents |on page 18-30
programming an incorrect pattern of object

oriented programming.
Null this- Investigate why the pointer to the | “Review and Fix Null This-pointer
pointer current object can be NULL- Calling Method Checks” on page
calling valued. 18-71
method

17-19

17

Interpret Polyspace Code Prover Results

17-20

Check How to Review Details

Uncaught Investigate how an exception can |“Review and Fix Uncaught

exception escape uncaught from the Exception Checks” on page 18-
function where it is thrown. 89

Other Checks

Check How to Review Details

Correctness Find the root cause of a function |“Review and Fix Correctness

condition pointer misuse, incorrect array Condition Checks” on page 18-

conversion or variable values
outside specified constraints.

4

Invalid use
of standard

Investigate why the arguments in
the current call to the standard

“Review and Fix Invalid Use of
Standard Library Routine

library library routine are invalid. Checks” on page 18-42
routine

User Investigate why the condition in |“Review and Fix User Assertion
assertion an assert statement fails. Checks” on page 18-98

Dashboard

Dashboard

The Dashboard pane in the Polyspace user interface provides statistics on the
verification results in a graphical format.

n Dashboard C angopaiDocumen xamples\RZ017a PrereleaselCode_Prover_ExampleiModule_14CP_Result
Code_Prover_Example wersion 1.0 {10/11/2016) - Author: polyspace - Wiew configuration For resulbs - Yiew analysis assumptions for resulks
Review Scape: All results - View all results in this scope
Check distribution Code covered by verification
Broven: 93% Is i configuration correct?
Orange (22) 75+
s —
el Red (5) 504 100% 98% 92%
Green (265) 5]
oA
w | | ’
Files Functions Code operations
Top 5 coding rule violations Top 5 orange sources
Total: 54 violation(s) Found - Total: 15 check(s) caused by orange sources
157
3 — — —
10
2 om— om—
5
1
E= i g i | i s L | | ! ’
71 10,3 a1 17.7 18.1 main,PORT_B main.PORT_A all_values_ul6.tmpulf

On this tab, you can view four graphs and charts:

* Code covered by verification
This column graph displays:

* The percentage of files checked for run-time errors (verified). You can see this
percentage in the Files column.

17-21

17 Interpret Polyspace Code Prover Results

* The percentage of functions in verified files that are checked for run-time errors
(verified). You can see this percentage in the Functions column.

* The percentage of elementary operations in verified functions that are checked for
run-time errors. You can see this percentage in the Code operations column.

Click the column graph to open the Code covered by verification window.

i '

% Code covered by verification 2

The metrics provide:

@ Measure of the code coverage achieved by the verification,
@ Indication of the validity of the configuration.

Low percentages for procedures or code operations may indicate an early red chedk or
missing function call.
Possible reasons for low values:

@ Program entry points are not provided in the Polyspace configuration.
@ Variable or function ranges are not spedfied.

See Code Caoverage Metrics in the documentation.

=
Unreachable procedure(2/3) File Line

task multitasking_code.c 5

interrupt multitasking_code.c 11

Close

L.

This window contains:

17-22

Dashboard

» The fraction of procedures that are unreachable in the format, Number of
unreachable procedures/Total number of procedures.

* Alist of unreachable procedures along with the file and line number where they
are defined. Selecting a procedure displays the procedure definition in the Source
pane.

Alow coverage can indicate an early red check or missing function call. Consider the
following code:

1 void coverage eg(void)
2 A

3 int x;

4

5 X =1/ Xx;

6 X =X+ 1;

7 propagate();

8 }

Verification generates only one red Non-initialized local variable check, for a read

operation on the variable x — see line 5. The software does not display checks for

these elementary operations:

* On line 5, for the division operation, a Division by zero check.

* On line 5, for the division operation, an Overflow check.

* On line 6, for the addition operation, an Overflow check.

* Online 6, for another read operation on x, a Non-initialized local variable
check.

As the software displays only one out of the five operation checks for the code, the
percentage of elementary operations covered is 1/5 or 20%. The software does not
take into account the checks inside the unreachable function propagate(). For more
information, see “Reasons for Unchecked Code” on page 23-86.

Check distribution

This pie chart displays the number of checks of each color. For a description of the
check colors, see “Code Prover Result and Source Code Colors” on page 17-10.

Using this pie chart, you can obtain an estimate of:

* The number of checks to review.
* The selectivity of your verification — the fraction of checks that are not orange.

17-23

17

Interpret Polyspace Code Prover Results

17-24

You can follow certain coding rules or specify certain verification options to reduce
the number of orange checks. See “Reduce Orange Checks” on page 17-86.

Top 5 orange sources

An orange source is a variable or function that leads to an orange check. This column
graph displays five orange sources affecting the most number of checks.

An orange source can cause multiple orange checks in Code Prover. When you click an
orange source in this graph, the Results List pane shows only the orange checks
coming from this source.

For instance, in this code, the unknown value input can cause an overflow and a
division by zero. The variable input is an orange source that causes two orange
checks.

void func (int input) {
int vall;

double val2;

vall input++;

val2 1.0/input;

}

Each column represents an orange source. The columns are arranged in the order of
number of checks affected. The height of the column indicates the number of checks
affected by the corresponding orange source. Place your cursor on a column to open a
tooltip showing the source name and the number of checks affected by the source.

Dashboard

Top 5 orange sources

]
3 R SR I
] all_values_s16.tmpslG
11 # oranges impacted: 4
0= ”

I I I
all_values_s32.tmps32 main.PORT_B main. PORT_A

View Qrange Sources

Using this chart, you can:

* View the five sources affecting the most number of checks. Select a column to view
further details of the corresponding orange source in the Orange Sources pane.

 Prioritize your review of orange checks. If there are sources affecting a large
number of orange checks, address those sources if possible before you begin a
systematic review of orange checks. See “Create Constraint Template After
Analysis” on page 12-3.

Top 5 coding rule violations

This column graph displays the five most violated coding rules. Each column
represents a coding rule and is indexed by the rule number. The height of the column
indicates the number of violations of the coding rule represented by that column.

For a list of supported coding rules, see “Supported MISRA C:2004 and MISRA AC
AGC Rules” on page 15-3, “MISRA C:2012 Directives and Rules”, “Supported MISRA C
++ Coding Rules” on page 15-86, and “Supported JSF C++ Coding Rules” on page 15-
124.

17-25

17

Interpret Polyspace Code Prover Results

17-26

You can also perform the following actions on this pane:

Select elements on the graphs to filter results from the Results List pane. See “Filter
and Group Results” on page 20-2.

View the configuration used to obtain the result. Select the link Configuration.

View information about functions that are not reached during the analysis. Select the
link Unreachable functions.

View the analysis assumptions behind the result. Select the link Analysis
assumptions.

View the modeling of the multitasking configuration of your code. Select the link
Concurrency modeling on page 17-27.

Concurrency Modeling

Concurrency Modeling

The Concurrency Modeling view displays all the tasks and interrupts that the analysis
extracts from your code and your Polyspace multitasking configuration.

W' Concurrency modeling >
O+ Type here to filter table

Entry point Set by

g corrected deadlock task1() -

Starts after the main entry point completes Manually configured

5 corrected deadlock taska()
Starts after the main entry point completes Manually configured

5 corrected destrovlocked task()

Starts after the main entry point completes Manually configured

5 corrected doublelock task()

Starts after the main entry point completes Manually configured

5 corrected doubleunlock task()

Starts after the main entry point completes Manually configured

= start_routine() (2 instances)
Starts in bug_returnnotchecked at line 834 Automatically detected

Starts in corrected _returnnotchecked at line 853 Automatically detected

If"_?_:l Multitasking

Close

in the table, the functions are listed in the first column by order of decreasing priority.
The second column shows how Polyspace detects each task or interrupt: automatically,
manually from the Polyspace configuration, or from an external file.

From this view, you can:

17-27

17 Interpret Polyspace Code Prover Results

* Click a function name to go to its definition in the source code.

* Click an event to go to the corresponding call to the concurrency primitive in the
source code, for instance pthread create.

* Click Manually configured, for functions that are manually configured, to go to the
Multitasking node on the Configuration pane.

17-28

Results List

Results List

The Results List pane lists all analysis results along with their attributes.

For each result, the Results List pane contains the check attributes, listed in columns:

Attribute Description

Family Group to which the result belongs, for
instance, red check, gray check, etc.

ID Unique identification number of the result.

Type Result information such as run-time check

color (red, orange, green), coding rule
standard (MISRA C: 2004, MISRA C: 2012),
etc.

Group Category of the result, for instance:

e For run-time checks: Groups such as
static memory, numerical, control flow,
etc.

» For coding rule violations: Groups
defined by the coding rule standard.

For instance, MISRA C: 2012 defines
groups related to code constructs such
as functions, pointers and arrays, etc.

Check Result name, for instance:

¢ For run-time checks: Check name

» For coding rule violations: Coding rule
number

Detail Additional information about a result. The
column shows the first line of the Result
Details pane.

For an example of how to use this column,
see the result MISRA C:2012 Dir 1.1.

17-29

17 Interpret Polyspace Code Prover Results

Attribute

Description

Information

For orange checks, this column indicates
whether the check is related to path or
input values. For more information, see
“Critical Orange Checks” on page 17-71.

For coding rule violations, this column
indicates whether the rule belongs to the
Required subset.

For global variables, this column contains
the global variable name.

File

File containing the instruction where the
result occurs

Class

Class containing the instruction where the
result occurs. If the result is not inside a
class definition, then this column contains
the entry, Global Scope.

Function

Function containing the instruction where
the result occurs. If the function is a
method of a class, it appears in the format
class name::function name.

Folder

Path to the folder that contains the source
file with the result

CERT ID or 1SO-17961 ID

CERT C99 or ISO/IEC TS 17961 IDs
corresponding to the Code Prover results.
Note that you primarly use Bug Finder for
checking security standards.

See:

* “CERT C Coding Standard and
Polyspace Results” (Polyspace Bug
Finder)

o “ISO/IEC TS 17961 Coding Standard
and Polyspace Results” (Polyspace Bug
Finder)

17-30

Results List

Attribute Description

Line Line number of the instruction where the
result occurs.

Col Column number of the instruction where
the result occurs. The column number is
the number of characters from the
beginning of the line.

% Percentage of run-time checks that are not
orange (total selectivity rate). This column
is most useful when you choose the option

File from the '=|~ list. The entry in this
column against a file or function indicates
the percentage of checks in the file or
function that are not orange.

Severity Level of severity you have assigned to the
result. The possible levels are:

* Unset

* High

* Medium

* Low

Status Review status you have assigned to the
result. The possible statuses are:

¢ Unreviewed (default status)

* To investigate

* To fix

* Justified

* No action planned

* Not a defect

* Other

17-31

17

Interpret Polyspace Code Prover Results

17-32

Attribute

Description

Justified

Check boxes showing whether you have
justified the results. To justify a result, you
must assign the status Justified, No
action planned or Not a defect.

If you choose the option File from the |=l~
list, this column indicates the percentage of
checks that you have justified per file and
function.

Comments

Comments you have entered about the
result

To show or hide any of the columns, right-click anywhere on the column titles. From the
context menu, select or clear the title of the column that you want to show or hide.

Using this pane, you can:

* Navigate through the results.

* Organize your result review using filters on the columns. For more information, see
“Filter and Group Results” (Polyspace Bug Finder).

Source

Source

The Source pane shows the source code with the results highlighted with specific colors
and icons. For more information, see “Code Prover Result and Source Code Colors” on
page 17-10.

W= [

Dashboard xlmain.c x| 4 @ B

| static int interpolation (void)
{

int i, item = 07
M int found = false;
M for (i = 0; i <« MAY S5IZE; i++4) |
ar:?—ﬂ
M 1f ((found == false) &z (*arr > 1&))
W found = true;
item = i;
}
}
*arr = 20;

return item;

4 3
| |£| Source @ Data Range Configuration

On the Source pane, you can:

* Examine Source Code

On the Source pane, if you right-click a text string, the context menu provides options
to examine your code. For example, right-click the global variable PowerLevel:

17-33

17 Interpret Polyspace Code Prover Results

Source

kasksl.c 14 I &3

L
int crderregulate (void)

int tmp, X;
Increase Powerlevel () ;
SHE4.A = 22;
| 40 tmp = Powerlewel + SHR4. LS
= Print Source Code: taskslc

£ = tmp; Q Search For "PowerLewvel” in Current Source File Ctrl +F

return E: Q

m

Search For "PowerLewvel” in All Source Files

Search For All References

Go To Definition

static void inity 5o To Line Ctrl +L
{ g Show Call Graph

int tmp = 0 Showe In Wariable Access Yiew

while {(randon

......... — Ilg Open Editar

Begin CS{ Add Pre-Justification Ta Clipboard

= 5HH
RS 8 M Expand All Macros
1 Collapse &ll Macros

Create Duplicate Code Windour

Use the following options to examine and navigate through your code:

* Search "PowerLevel" in Current Source File — List occurrences of the string
within the current source file in the Search pane.

* Search "PowerLevel" in All Source Files — List occurrences of the string within
all source files in the Search pane.

17-34

Source

Search For All References — List all references in the Search pane. The
software supports this feature for global and local variables, functions, types, and
classes.

Go To Definition — Go to the line of code that contains the definition of
PowerLevel. The software supports this feature for global and local variables,
functions, types, and classes. If the definition is not available to Polyspace,
selecting the option takes you to the function declaration.

Go To Line — Open the Go To Line dialog box. If you specify a line number and
click Enter, the software displays the specified line of code.

Expand All Macros or Collapse All Macros — Display or hide the content of
macros in current source file.

View Variable Range

Place your cursor over a check to view range information for variables, operands,
function parameters, and return values.

If a tooltip is available for a keyword or identifier on the Source pane, Polyspace:

Uses solid underlining for the keyword or identifier if it is associated with a check.

Uses dashed underlining for the keyword or identifier if it is not associated with a
check.

17-35

17 Interpret Polyspace Code Prover Results

17-36

static void Sgquare_Root_conv (double alpha, float* beta pt)

/* Perform arithmetic conversion of alpha to beta */

beta_pt = (float) ({1.5 + coca{alpha)) / 5.0);

Dereference of parameter 'beta_pt' (pointer to float 32, size: 32 bits):
Pointer is not null.
Points to 4 bytes at offset 0 in buffer of 4 bytes, so is within bounds (if memory is allocated).

stati
) Pointer may point to variable or field of variable:
d "beta’, local to function 'Square Root'.
_| Assignment to dereference of parameter 'beta_pt' (float 32): [0.1 .. 0.5]
:_ Prass 'F2' for focus
Sguare_Root_conv(alpha, sbeta):
w
gamma = (Lloat)sgrt(beta - 0.73); [* always sgrt(negatiwve number) */

The range displayed is the same as the range that the software calculates during
verification (or includes the range if rounded during display). For instance, for floating
point variables, the tooltips show the variable range using the following rules:

The range appears as a collection of values, for instance 1.0 or 2.0 or NaN, or
an interval [1.0 .. 2.0].

The displayed range includes the actual variable range. For instance, the range
[1.0 .. 2.0] on avariable indicates that the variable cannot have the value
0.9999 or 2.0001.

However, the displayed range can also include additional values because of
approximation.

Constants are displayed using either fixed point (1.0, -2.0, etc.) or scientific
format when it improves readability (1.0E+10, -1.2E-20, etc.).

The tooltips clearly indicate which values are shown with rounding. For instance,
the value 1.0 does not involve rounding but 1.2345. .. shows a variable that is
displayed with rounding towards zero.

When rounded, at least 5 significant digits are displayed.

Source

* Expand Macros

You can view the contents of source code macros in the source code view. A code
information bar displays M icons that identify source code lines with macros.

Source w
[main.c x| 4 b E
20 -
21 for (i = 0; i < MBX SIZE; i++) |
22 arr+t;
2:M ?.'f_[{found == false) s& (*arr » 16)) | il
24[M found = true;
25 item = iy
e 1
27 1 i
{ 3

When you click a line with this icon, the software displays the contents of macros on

that line.
¥ Source
21d for (i =07 i< 10; i+4) {
22 arr++;
23 M 7f ({found — false) cc (*arr > 16)) [[
24[M found = true;
25 item = iy
26 }
27 } -
4 k

To display the normal source code again, click the line away from the shaded region,
for example, on the arrow icon.

17-37

17

Interpret Polyspace Code Prover Results

17-38

To display or hide the content of all macros:

1 Right-click any point within the source code view.

2 From the context menu, select either Expand All Macros or Collapse All
Macreos.

Note

1 The Result Details pane also allows you to view the contents of a macro if the
check you select lies within a macro.

2 You cannot expand OSEK API macros in the Source pane.

Manage Multiple Files
You can view multiple source files in the Source pane as separate tabs.

On the Source pane toolbar, right-click a view.

static void 3 Close "
{ Close Others
1RT TIP3 Close Al
while (r3
"""""] Mext
rme 5
Begir Previous EI

Imp 3 =5 Mew Horizontal Group
End _(DD Mew Vertical Group

Floating

} /% end loopr */
}

L I

l [¥] Source I @ Data Range Configuration |

From the Source pane context menu, you can:

Source

* Close - Close the currently selected source file. You can also use the y button to
close the tabs.

* Close Others - Close all source files except the currently selected file.
* Close All - Close all source files.

* Next - Display the next view.

* Previous - Display the previous view.

* New Horizontal Group - Split the Source pane horizontally to display the
selected source file below another file.

* New Vertical Group - Split the Source pane vertically to display the selected
source file side-by-side with another file.

* Floating - Display the current source file in a new window, outside the Source
pane.

View Code Block

On the Source pane, to highlight a block of code, click either its opening or closing
brace.

static wold initregulate {void) e
{
int tmp = 07
while (random int({) < 1000}
tmp = orderregulate(]); ‘\[L_“)
Begin CS(): |E|

Compute_Injection();
} 7* end loop:r */
} -

4
[¥] Source El Data Range Configuration

17-39

17 Interpret Polyspace Code Prover Results

See Function Callers and Callees

You can click on a function name to see callers and callees of the function on the Call
Hierarchy pane.

* When a function is defined, the source code shows the function name in blue. Click

the function name to update the Call Hierarchy pane.

int func{int wval)

return 1;

* When a function is called, the function call either shows a run-time check color or
not. If the function does not have a run-time check color (see func2 below), click

Calls
file. func
b 4 file.main

the function name to update the Call Hierarchy pane.

int

main{) {

int val = INIT VAL;

int checkSuccess

if (checkduccess == 0]

func2();

17-40

If the function has a run-time check color (see func above), right-click the function
and select Go To Definition. The Call Hierarchy pane updates to show the callers
and callees.

Calls

[fle. func2
o 4 file.main

Line

10

Result Details

Result Details

On the Results List pane, if you select a check, you see additional information on the

Result Details pane.

On this pane, you can also assign a Severity and Status to each check. You can also enter
comments to describe the results of your review. This action helps you track the progress

of your review and avoid reviewing the same check twice.

- I
Allresults v | Tehew [Fv < 2> @ Showing 375/375 v oS Iz M| & ¥ single_file_analysis. c | reset_temperaturei}
Farity J m F Check | |7 et Re
fOut of bounds array inde:: 2| | severity ~ | [Erter comment here..,
* 7 Red Check Tlegally dereferenced pointer
- 12 Red Check Non-terminating cal of | e L |
* 208 Red Check Non-terminating loop _
- 19 Redcheck Invalid use of standard ibrary routine | — | || ® 1D 332: DUt of bounds array index (2
- 52 Gray Check Unreachable code Error: array index is outside ts bounds : [0..35]
. aray size: 39
269 Gray Check Unreachable code ey vslus: [-255 .. 3]
* ait Gray Check Unreachable code

View Traceback

Sometimes, on the Result Details pane, you can see the sequence of instructions leading
to the check (traceback). You can select each instruction and navigate to it in your source

code.

17-41

17 Interpret Polyspace Code Prover Results

V4 Result Details =]

0(2 IE| example.c [Unreachable_Code()
Severity v: \Enter comment here... A
Status ' =

Unproven: operation [-] on scalar may overflow (result strictly areater than MAX INT32)
This check may be an issue related to unbounded input values
If appropriate, applying DRS to stubbed function random_int in example.c line 183 may remove this orange.
If appropriate, applying DRS to stubbed function random_int in example.c line 188 may remove this orange.
operator - on type int 32

left: [-23141..23.q]

right: [-231.. 2147483846 (0x7FFFFFFE]]

result: [1.. 231‘—1]
(result is truncated)

m

Event File Scope Line
1 Stubbed function ‘random_int' example.c Unreachable_Code() 192
2 Assignment to local variable "x' example.c Unreachable_Code() 133
3 Stubbed function ‘random_int' example.c Unreachable_Code() 189
4 Entering if branch {if-condition true) example.c Unreachable_Code() 131
3 7 Unproven: operation [-] on scalar may overflow (result strictly areater than MAX INT32) example.c Unreachable_Code() m

The following columns appear in the traceback:

Column Description
Event Code instructions related to the defect.

For instance, if an Out of Bounds Array Index error occurs in a loop,
the Result Details pane can show updates to the array index that
occur inside the loop. The update statements might physically occur in
your code before or after the array access. However, because the
statements occur in a loop, they are related to the array access.

Scope Function containing the instructions. If the instructions are not in a
function, the column lists the file containing the instructions.

Line Line number of the instruction.

Show Error Call Graph

Click the Show error call graph icon, o in the Result Details pane toolbar to display
the call sequence that leads to the code associated with a result.

17-42

Result Details

Lrap

€]

= 147% - +
Demo_C - Call.. .polation.NTL.O x] 4 B
main.c main.c main.c —

o

main

O

interpolation

L} 3

m

For global variables, this graph shows the call sequence leading to read and write
operations on the global variable.

Show Call Hierarchy and Variable Access

From the Result Details pane, you can open the Call Hierarchy and Variable Access
panes.

Select the fx button to open the Call Hierarchy pane.

On this pane, you can see the function in which the current check occurs, along with
its callers and callees. For more information, see “Call Hierarchy” on page 17-44.

Select the * button to open the Variable Access pane.

On this pane, you can see the global variables in your code. For more information, see
“Variable Access” on page 17-47.

17-43

17

Interpret Polyspace Code Prover Results

Call Hierarchy

17-44

The Call Hierarchy pane displays the call tree of functions in the source code.

For each function, foo, the Call Hierarchy pane lists the functions and tasks that call
foo (callers) and those called by foo (callees). The callers are indicated by 4 (functions),

or 4| (tasks). The callees are indicated by » (functions) or I (tasks). The Call
Hierarchy pane lists both direct function calls and indirect calls through function
pointers. The indirect calls are shown with the i icon. Calls that are unreachable are
shown with the function name in grey.

You open the Call Hierarchy pane using the fx icon in your result details. To update the
pane:

* You can click a run-time check, either on the Results List or Source pane. You see
the function containing the check along with its callers and callees.

* You can click a function name in your source code. You see the callers and callees of
the function.If the function name also shows a run-time check color, instead of clicking
the function name, right-click the name and select Go To Definition.

In the following example, the Call Hierarchy pane displays the function,
generic validation, along with its callers and callees.

Call Hierarchy

a Hierarcny -]
P <
Calls File Line Stubbed
genenc _validation() single_file_analysis.c 69
=P functional_ranges() single_file_analysis.c m_
- W all_values_uis() single_file_analysis.c 44
- # al_values_s1a() single_file_analysis.c 45
- # all_values_s16(0) single_file_analysis.c 47
- p all_values_s320) single_file_analysis.c 48
e b all_values_s16(0) single_file_analysis.c 49
¥ al_values_s1a() single_file_analysis.c 51
- new_speed() single_file_analysis.c 107
- b new_speed() single_file_analysis.c 108
- SEND_MESSAGE() single_file_analysis.c 113 Automatic
- W reset_temperature() single_file_analysis.c 130
- 4 main{) main.c 50

Depending on the name, the corresponding line number in the Call Hierarchy pane
refers to a different line in the source code:

For the function name, the line number refers to the beginning of the function
definition. In the preceding example, the definition of generic_validation begins
on line 69.

For a callee name, the number refers to the line where the callee is called. In the
preceding example, callee, functional ranges, is called by generic validation
on line 86.

For a caller name, the number refers to the line where the caller calls the function. In
the preceding example, caller main calls generic_validation on line 50.

Tip Select a caller or callee name to navigate to the call location in the source code.

You can perform the following actions from the Call Hierarchy pane:

L]

Show/Hide Callers and Callees

Customize the view to display callers only or callees only. Show or hide callers and
callees by clicking this button

17-45

17

Interpret Polyspace Code Prover Results

17-46

Navigate Call Hierarchy

You can navigate the call hierarchy in your source code using this pane. For a function,
double-click a caller or callee name to navigate to the caller or callee definition in the
source code.

Determine if Function is Stubbed

You can determine from the Stubbed column if a function is stubbed. The entries in
the column show why a function was stubbed.

* Automatic: Polyspace cannot find the function definition. For instance, you did not
provide the file containing the definition.

+ User specified: You override the function definition by using the option
Functions to stub (-functions-to-stub).

* Lookup table: You verify generated code with functions that return values from
specific kinds of lookup tables. You use the option Generate stubs for
Embedded Coder lookup tables (-stub-embedded-coder-lookup-
table-functions).

* Std library: The function is a standard library function. You do not provide the
function definition explicitly in your Polyspace project.

* Mapped to std library: You map the function to a standard library function by
using the option - function-behavior-specifications.

For more information, see “Stubbed Functions”.

Variable Access

Variable Access

The Variable Access pane displays global variables. For each global variable, the pane
lists all functions and tasks performing read/write access on the variables, along with
their attributes, such as values, read/write accesses and shared usage.

E®
R ¥ X=
Variables File Values #Reads #Writes Written by task Read by task Protection Usage Line Col Data Type
Code_Prover_Example
[#-arr initilisations.c 3 2 11 5 pointer toint 32
[#-current_data initizlisations.c 2 2 8 12 pointer toint 32
[tasksl.c 2 3 proc2 serverlserver2 tregulate proc2 serverlserver2 tregulate shared 28 11 struct {A:int 32, B: in..
[#-5HRE tasks1.c o 2 i 32 i1 int32
- Injection tasks2.c o 1 1 32 15 int32
[#-tab initialisations.c Oor 12 1 3 10 4 array(0..9) of int 32
E-SHR tasks1.c Oor22 1 2 serverlserver2 trequlate Critical section shared 30 11 int32
[tasksl.c Qor22 1 3 serverlserver2 tregulate shared 31 11 int32
[-5HR3 tasksl.c Dor28or 51 1 2 109 15 int32
[-first_paiload initialisations.c 100 0 3 13 4 int32
B-second_paiload initilisations.c 200 0 1 14 4 int32
BI-SHRS tasksl.c Sor 28 2 2 proct proc1 proc2 Temporal exclusion |shared 29 11 int32
F-v5 single_file_analysis.c [-1440 .. 14400] 1 2 19 11 int16
-output_ve single_file_analysis.c [-1701 .. 3276] 1 3 22 11 int32
&3] tasks1.c [-2147483838 .. 2°11] 4 3 serverlserver2 tregulate server1server2 tregulate shared 26 4 int32
[-output_v7 single_file_analysis.c |[-253 .. 555] 3 2 23 11 int32
B-v2 single_file_analysis.c |[-25920 .. 4800] 1 2 16 11 int16
F-output_v1 single_file_analysis.c [-31..127] 0 2 24 10 int8
[#-saved_values single_file_analysis.c [-32..117] 0 2 26 11 array(0..126) ofint 16
Bvd single_file_analysis.c [-360 .. 1008] 1 2 18 11 int1s
E-v3 single_file_analysis.c |[0.. 218] 2 2 17 10 unsigned int 8
vl single_file_analysis.c |[0.. 23040] 3 2 15 11 int16
F-v0 single_file_analysis.c |[0.. 26624] 1 2 14 11 unsignedint 16
< m 3

For each variable and each read/write access, the Variable Access pane contains the
relevant attributes. For the variables, the various attributes are listed in this table.

Attribute

Description

Variables Name of Variable
File Source file containing variable declaration
Values Value (or range of values) of variable

This column is empty for pointer variables.

Reads

Number of times the variable is read

Writes

Number of times the variable is written

Written by task

Name of tasks writing on variable

Read by task

Name of tasks reading variable

17-47

17 Interpret Polyspace Code Prover Results

Attribute Description

Protection Whether shared variable is protected from
concurrent access

(Filled only when Usage column has entry,
Shared)

The possible entries in this column are:

¢ Critical Section: If variable is accessed in
critical section of code

¢ Temporal Exclusion: If variable is accessed
in mutually exclusive tasks

For more details on these entries, see

“Multitasking”.

Usage Shared, if variable is shared between tasks;
otherwise, blank

Line Line number of variable declaration

Col Column number (number of characters from
beginning of line) of variable declaration

Data Type Data type of variable (C/C++ data types or
structures/classes)

Double-click a variable name to view read/write access operations on the variable. The

arrowhead symbols » and 4 in the Variable Access pane indicate functions performing
read and write access respectively on the global variable. Likewise, tasks performing read

and write access are indicated by the symbols [I» and 4l respectively. For further
information on tasks, see Tasks (-entry-points).

For access operations on the variables, the various attributes described in the pane are
listed in this table.

Attribute Description

Variables Names of function (or task) performing read/
write access on the variable

17-48

Variable Access

Attribute Description

Values Value or range of values of variable in the
function or task performing read/write access
This column is empty for pointer variables.

Written by task Only for tasks: Name of task performing write
access on variable

Read by task Only for tasks: Name of task performing read
access on variable

Line Line number where function or task accesses
variable

Col Column number where function or task accesses
variable

File Source file containing access operation on

variable

For example, consider the global variable, SHR2:

e

<% ¥ X

Variables File Values #Reads #Writes Written by task Read by task Protection Usage line ol DataType

B tasks1.c oor22 1 3 serveriserver2 regulate shared 31 | 11 32 -

]| sener1) tasks1.c server1

o d]] serverazg) tasks1.c server2

|[» trequiateq) tasksL.c tregulate ‘5‘
4 _init_globals() tasksL.c 0 31 1 T
4 Tserver) tasksL.c 0 85 4

b initregulate() tasksL.c Oor 22 53 20

4 Tserver) tasksL.c 2 76 4

<

.

The function, Tserver, in the file, tasks1. c, performs two write operations on SHR2.
This is indicated in the Variable Access pane by the two instances of Tserver() under

the variable, SHR2, marked by 4 . Likewise, the two write accesses by tasks, serverl

and server2, are also listed under SHR2 and marked by (15

The color scheme for variables in the Variable Access pane is:

» Black: global variable.

* Orange: global variable, shared between tasks with no protection against concurrent

acCcess.

17-49

17 Interpret Polyspace Code Prover Results

17-50

* Green: global variable, shared between tasks and protected against concurrent access.
* Gray: global variable, declared but not used in reachable code.

If a task performs certain operations on a global variable, but the operations are in
unreachable code, the tasks are colored gray.

The information about global variables and read/write access operations obtained from
the Variable Access pane is called the data dictionary.

You can also perform the following actions from the Variable Access pane.

* View Access Graph

View the access operations on a global variable in graphical format using the Variable
Access pane. Select the global variable and click e .

Here is an example of an access graph:

Variable Access

= [

J Concurrent ac...i.c shared_var X]

@]

First call graph - Tasks accessing a global variable
Second call graph - Tasks creation

rrialti.c

multi.c rrialti.c
task: inc
_ rlti.c
O
reset
multi.c
interrupt_handler)
it c
O
interrupt
i, ¢ milti.c

e O

interrupt_handler

main

rnulti.c

©

task:

O

shared_var READ

milti.c

shared_var WRITE

17 Interpret Polyspace Code Prover Results

* View Structured Variables

For structured variables, view the individual fields from the Variable Access pane.
For example, for the structure, SHR4, the pane displays the fields, SHR4 . A and
SHR4.B, and the functions performing read/write access on them.

.:-

°q [Xz
Variables File Values - #Reads #Writes Written by task Read by task Pratection Usage Line Col Data Type
E-5HR4 tasksl.c 2 3 proc2 serverl server2 tregulate proc2 server1server2 tregulate shared 28 11 struct {A: int 32, B:in *
4| proc20) tasks1.c proc2
4| server1Q tasks1.c serverl M
4| server20 tasks1.c server2
4|| tregulate0) tasks1.c tregulate
||» proc2p) tasks1.c proc2
||» server1() tasksi.c serverl
||» server2Q) tasksi.c server2 L
|| treguiate() tasks1.c treguiate 1
4 _init_globals() tasksl.c 28 11
[-5HR4.B tasksl.c 1 1 28 11 int32
|| proc20 tasksi.c proc2
|I» proc2Q tasksi.c proc2
4 proc2() tasksl.c 22 ur | 9 L
» proc2(tasksl.c 22 12 | 27
B-SHR4.A tasksl.c 1 1 server1server2 trequlate serverl server2 tregulate shared 28 11 int32
----- d|| server1) tasksi.c serverl
----- d|| server2() tasksi.c server2
----- || trequiate() tasksl.c trequlate
----- ||» server1() tasksi.c serverl
----- ||» server2() tasksi.c server?
----- ||» trequiate() tasksl.c tregulate
----- 4 orderregulate() tasks1.c 22 39 9
----- P orderregulate() tasks1.c 22 40 28 -
« m r

* View Operations on Anonymous Variables

You can view operations on anonymous variables. For example, consider this line of
code that declares an unnamed union with the variable at an absolute address:

union {char, c; int i; } @0x1234;
When you analyze the preceding code and specify the iar compiler, the unnamed

variable at 0x1234 appears in the Variable Access pane with a name that starts with
pstanonymous.

~
Variables Values #Re... #Wri... Wri... Re... Protection Usage Line Col File Data Type
Example

17-52

Variable Access

View Access Through Pointers
View access operations on global variables performed indirectly through pointers.

If a read/write access on a variable is performed through pointers, then the access is

marked by ¥ (read) or * (write).

For instance, in the file, initialisations. c, the variable, arr, is declared as a
pointer to the array, tab.

iyl iES|
initialisations.c X 4 b E||ed X X=
Variables File Values #Reads #Writes Written by task Read by task Pratection Usage
BT inc bab(i01; =
— initialisations. ¢ oor 12 1 3
int* arr = tab;
=TS e interpolation) |mainuc =
~ initialisations. c o
it Zienpaiioad - 100 RIS irierpolston)main.c o2 [| [| | | |
r [wr '

In the file main.c, tab is read in the function, interpolation(), through the

pointer variable, arr. This operation is shown in the Variable Access pane by the ¥
icon.

During dynamic memory allocation, memory is allocated directly to a pointer. Because
the Values column is populated only for non-pointer variables, you cannot use this
column to find the values stored in dynamically allocated memory. Use the Variable
Access pane to navigate to dereferences of the pointer on the Source pane. Use the
tooltips on this pane to find the values following each pointer dereference.

Show/Hide Callers and Callees

Customize the Variable Access pane to show only the shared variables. On the

Variable Access pane toolbar, click the Non-Shared Variables button * to show or
hide non-shared variables.

Hide Access in Unreachable Code

Hide read/write access occurring in unreachable code by clicking the filter button
X[

Limitations
You cannot see an addressing operation on a global variable or object (in C++) as a

read/write operation in the Variable Access pane. For example, consider the
following C++ code:

17-53

17 Interpret Polyspace Code Prover Results

class CO

{
public:

co() {}
int get flag()

volatile int rd;
return rd;

}
~Co() {}
private:
int a; /* Never read/written */

+;
CO cO; /* c0 is unreachable */
int main()

if (c0.get flag()) /* Uses address of the method */

{
int *ptr = take addr of x();
return 1;

}

else
return 0;
b

You do not see the method call c0@.get flag() in the Variable Access pane because
the call is an addressing operation on the method belonging to the object c0.

17-54

Code Prover Analysis Following Red and Orange Checks

Code Prover Analysis Following Red and Orange Checks

Polyspace considers that all execution paths that contain a run-time error terminate at the
location of the error. For a given execution path, Polyspace highlights the first occurrence
of a run-time error as a red or orange check and excludes that path from consideration.
Therefore:

* Following a red check, Polyspace does not analyze the remaining code in the same
scope as the check.

* Following an orange check, Polyspace analyzes the remaining code. But it considers
only a reduced subset of execution paths that did not contain the run-time error.
Therefore, if a green check occurs on an operation after an orange check, it means
that the operation does not cause a run-time error only for this reduced set of
execution paths.

Exceptions to this behavior can occur. For instance:

+ For an orange overflow, if you specify wrap-around for Overflow computation
mode (-scalar-overflows-behavior), Polyspace wraps the result of an
overflow and does not terminate the execution paths.

* For a subnormal float result, if you specify warn-all for Subnormal detection
mode (-check-subnormal), Polyspace does not terminate the execution paths
with subnormal results.

The path containing a run-time error is terminated for the following reasons:

* The state of the program is unknown following the error. For instance, following an
Illegally dereferenced pointer error on an operation x=*ptr, the value of x is
unknown.

* You can review an error as early in your code as possible, because the first error on an
execution path is shown in the verification results.

* You do not have to review and then fix or justify the same result more than once. For
instance, consider these statements, where the vertical ellipsis represents code in
which the variable i is not modified.

X

arr[il;

arr[il;

< -
1]

17-55

17

Interpret Polyspace Code Prover Results

17-56

If an orange Out of bounds array index check appears on x=arr[i], it means that i
can be outside the array bounds. You do not want to review another orange check on
y=arr[i] arising from the same cause.

Use these two rules to understand your checks. The following examples show how the two
rules can result in checks that can be misleading when viewed out of context. Understand
the examples below thoroughly to practice reviewing checks in context of the remaining
code.

Code Following Red Check

The following example shows what happens after a red check:

void red(void)
{

int
X
X

}

X;
1/
X +

’

X
1;

When Polyspace verification reaches the division by x, x has not yet been initialized.
Therefore, the software generates a red Non-initialized local variable check for
X.

Execution paths beyond division by x are stopped. No checks are generated for the
statement x = x + 1;.

Green Check Following Orange Check

The following example shows how a green check can result from a previous orange check.
An orange check terminates execution paths that contain an error. A green check on an
operation after an orange check means that the operation does not cause a run-time error
only for the remaining execution paths.
extern int Read_An_Input(void);
void propagate(void)
{

int x;

int y[1e0];

x = Read An Input();

y[x] = 0;

y[x] = 0;
}

In this function:

Code Prover Analysis Following Red and Orange Checks

* X is assigned the return value of Read An_Input. After this assignment, the software
estimates the range of x as [-2731, 2731-1].

* The first y[x]=0; shows an QOut of bounds array index error because X can
have negative values.

» Afterthe first y[x]=0;, from the size of y, the software estimates x to be in the range
[0,99].

* The second y[x]=0; shows a green check because x lies in the range [0,99].

Gray Check Following Orange Check
The following example shows how a gray check can result from a previous orange check.

Consider the following example:
extern int read_an input(void);

void main(void)
{
int x;
int y[100];
x = read_an _input();
yIx] = 0;
y[x-11 = (1 / x) + x ;
if (x == 0)
y[x] = 1;

From the gray check, you can trace backwards as follows:

* The line y[x]=1; is unreachable.
» Therefore, the test to assess whether x = 0 is always false.
* The return value of read _an_input() is never equal to 0.

However, read_an_input can return any value in the full integer range, so this is not
the correct explanation.

Instead, consider the execution path leading to the gray code:

* The orange Out of bounds array index check on y[x]=0; means that subsequent
lines deal with x in [0,99].

17-57

17

Interpret Polyspace Code Prover Results

17-58

The orange Division by Zero check on the division by x means that x cannot be equal
to 0 on the subsequent lines. Therefore, following that line, x isin [1,99].

Therefore, X is never equal to 0 in the if condition. Also, the array access through
y[x-1] shows a green check.

Red Check Following Orange Check

The following example shows how a red error can reveal a bug which occurred on
previous lines.

%% filel.c %% %% file2.c %%

void f(int); #include <math.h>
int read an input(void);

void f(int a) {

int main() { int tmp;

}

int x,old x; tmp = sqrt(0-a);
X = read_an_input(); }
old x = x;
if (x<0 || x>10)
return 1;
f(x);
x =1/ old x;
// Red Division by Zero
return 0;

A red check occurs on x=1/0ld_x; in filel. c because of the following sequence of
steps during verification:

1

When x is assigned to old x in filel.c, the verification assumes that x and old x
have the full range of an integer, thatis [-2731 , 2731-1].

Following the if clause in filel.c, xisin [0,10]. Because x and old_x are equal,
Polyspace considers that old xisin [0,10] as well.

When x is passed to f in filel. c, the only possible value that x can have is 0. All
other values lead to a run-time exception in file2.c, thatis tmp = sqrt(0-a);.

A red error occurs on x=1/0ld_x; in filel.c because the software assumes old x
to be 0 as well.

Code Prover Analysis Following Red and Orange Checks

Red Checks in Unreachable Code

Code Prover can sometimes show red checks in code that is supposed to be unreachable
and gray. When propagating variable ranges, Code Prover sometimes makes
approximations. In making these approximations, Code Prover might consider an
otherwise unreachable branch as reachable. If an error appears in that unreachable
branch, it is colored red.

Consider the statement:

if (test var == 5) {
// Code Section
}

If test var only has the value 5, the if branch is unreachable. If Code Prover makes an
approximation because of which test var acquires the value 5, the branch is now
reachable and can show checks of other colors.

Use this figure to understand the effect of approximations. Because of approximations, a
check color that is higher up can supersede the colors below. A check that should be red
or green (indicating a definite error or definite absence of error) can become orange
because a variable acquires extra values that cannot occur at run time. A check that
should be gray can show red, green and orange checks because Code Prover considers an
unreachable branch as reachable.

17-59

17 Interpret Polyspace Code Prover Results

See Also
Related Examples

. “Interpret Polyspace Code Prover Results” on page 17-2
. “Order of Code Prover Run-Time Checks” on page 17-61

17-60

Order of Code Prover Run-Time Checks

Order of Code Prover Run-Time Checks

If multiple checks are performed on the same operation, Code Prover performs them in a
specific order. The order of checks is important only if one of the checks is not green. If a
check is red, the subsequent checks are not performed. If a check is orange, the
subsequent checks are performed for a reduced set of values. For details, see “Code
Prover Analysis Following Red and Orange Checks” on page 17-55.

A simple example is the order of checks on a pointer dereference. Code Prover first
checks if the pointer is initialized and then checks if the pointer points to a valid location.
The check Il1legally dereferenced pointer follows the check Non-initialized
local variable.

The order of checks can be nontrivial if one of the operands in a binary operation is a
floating-point variable. Code Prover checks the operation in this order:

1 TInvalid operation on floats: If you enable the option to consider non-finite
floats, this check determines if the operation can result in NaN.
2 Overflow: This check determines if the result overflows.

If you enable the option to consider non-finite floats, this check determines if the
operation can result in infinities.

3 Subnormal float: If you enable the subnormal detection mode, this check
determines if the operation can result in subnormal values.

For instance, suppose you enable options to forbid infinities, NaNs and subnormal results.
In this example, the operationy = x + 0; is checked for all three issues. The operation
appears red but consists of three checks: an orange Invalid operation on floats, an
orange Overflow, and a red Subnormal float check.

#include <float.h>
#include <assert.h>

double input();

int main() {

double x input();

double vy;

assert (x !'= x || x > DBL MAX || (x > 0. & x < DBL_MIN));
y =X+ 0.;

return 0;

17-61

17

Interpret Polyspace Code Prover Results

17-62

At the + operation, x can have three groups of values: x is NaN, x > DBL MAX, and x >
0. & x < DBL_MIN.

The checks are performed in this order:

1 Invalid operation on floats: The check is orange because one execution path
considers that x can be NaN.

For the next checks, this path is not considered.
2 Overflow: The check is orange because one group of execution paths considers that
x > DBL_MAX. For this group of paths, the + operation can result in infinity.

For the next check, this group of paths is not considered.

3 Subnormal float: On the remaining group of execution paths, x > 0. && x <
DBL MIN. All values of x cause subnormal results. Therefore, this check is red.

The message on the Result Details pane reflects this reduction in paths. The message
for the Subnormal float check states (when finite) to show that infinite values were
removed from consideration.

® subnormal float 2

Error: Result of the operation is subnormal (when finite),
This check may be an issue related to unbounded input values
operator + on type float 64

left: [4.9406E22* . 2,225163%%] or Infor NaN
right: 0.0

The values for the left and right operands reflect all values before the operation, and not
the reduced set of values. Therefore, the left operand still shows Inf and NaN even
though these values were not considered for the check.

See Also

Consider non finite floats (-allow-non-finite-floats) | Infinities (-
check-infinite) | Invalid operation on floats |NaNs (-check-nan) |
Overflow | Subnormal float

More About
. “Code Prover Analysis Following Red and Orange Checks” on page 17-55

Orange Checks in Code Prover

Orange Checks in Code Prover

In this section...

“When Orange Checks Occur” on page 17-63
“Why Review Orange Checks” on page 17-63
“How to Review Orange Checks” on page 17-64
“How to Reduce Orange Checks” on page 17-64

When Orange Checks Occur

An orange check indicates that Polyspace detects a possible run-time error but cannot
prove it. A check on an operation appears orange if both conditions are true:

First condition

Second condition

Example

The operation occurs
multiple times on an
execution path or on
multiple execution paths.

During static verification,
the operation fails only a
fraction of times or only on a
fraction of paths.

The operation occurs in:

* A loop with more than
one iterations.

¢ A function that is called
more than once.

The operation involves a
variable that can take
multiple values.

During static verification,
the operation fails only for a
fraction of values.

The operation involves a
volatile variable.

During static verification, Polyspace can consider more execution paths than the
execution paths that occur during run time. If an operation fails on a subset of paths,
Polyspace cannot determine if that subset actually occurs during run time. Therefore,
instead of a red check, it produces an orange check on the operation.

Why Review Orange Checks

Considering a superset of actual execution paths is a sound approximation because
Polyspace does not lose information. If an operation contains a run-time error, Polyspace
does not produce a green check on the operation. If Polyspace cannot prove the run-time
error because of approximations, it produces an orange check. Therefore, you must

review orange checks.

17-63

17

Interpret Polyspace Code Prover Results

17-64

Examples of Polyspace approximations include:

* Approximating the range of a variable at a certain point in the execution path. For
instance, Polyspace can approximate the range {-1} U [0,10] of a float variable
by [-1,10].

» Approximating the interleaving of instructions in multitasking code. For instance, even
if certain instructions in a pair of tasks cannot interrupt each other, Polyspace
verification might not take that into account.

How to Review Orange Checks

To ensure that an operation does not fail during run time:
1 Determine if the execution paths on which the operation fails can actually occur.

For more information, see “Interpret Polyspace Code Prover Results” on page 17-2.
If any of the execution paths can occur, fix the cause of the failure.

If the execution paths cannot occur, enter a comment in your Polyspace result or
source code, describing why they cannot occur. See “Address Polyspace Results
Through Bug Fixes or Comments” on page 19-2.

In a later verification, you can import these comments into your results. Then, if the
orange check persists in the later verification, you do not have to review it again.

How to Reduce Orange Checks

Polyspace performs approximations because of one of the following.

* Your code does not contain complete information about run-time execution. For
example, your code is partially developed or contains variables whose values are
known only at run time.

If you want fewer orange checks, provide the information that Polyspace requires. For
more information, see “Provide Context for Verification” on page 17-86.

* Your code is very complex. For example, there can be multiple type conversions or
multiple goto statements.

If you want fewer orange checks, reduce the complexity of your code and follow
recommended coding practices. For more information, see “Follow Coding Rules” on
page 17-87.

Orange Checks in Code Prover

» Polyspace must complete the verification in reasonable time and use reasonable
computing resources.

If you want fewer orange checks, improve the verification precision. But higher
precision also increases verification time. For more information, see “Improve
Verification Precision” on page 17-87.

17-65

17 Interpret Polyspace Code Prover Results

Managing Orange Checks

17-66

Polyspace checks every operation in your code for certain run-time errors. Therefore, you
can have several orange checks in your verification results. To avoid spending
unreasonable time on an orange check review, you must develop an efficient review
process.

Depending on your stage of software development and quality goals, you can choose to:

* Review all red checks and critical orange checks.
* Review all red checks and all orange checks.

To see only red and critical orange checks, from the drop-down list in the left of the
Results List pane toolbar, select Critical checks.

Managing Orange Checks

Software Development Stage

Development Stage

Situation

Review Process

Initial stage or unit
development stage

In initial stages of
development, you can have
partially developed code or
want to verify each source
file independently. In that
case, it is possible that:

* You have not defined all
your functions and class
methods.

* You do not have a main
function

Because of insufficient
information in the code,
Polyspace makes
assumptions that result in
many orange checks. For
instance, if you use the
default configuration,
Polyspace assumes full
range for inputs of functions
that are not called in the
code.

In the initial stages of
development, review all red
checks. For orange checks,
depending on your
requirements, do one of the
following:

* You want your partially
developed code to be
free of errors
independent of the
remaining code. For
instance, you want your
functions to not cause
run-time errors for any
input.

If so, review orange
checks at this stage.

* You might want your
partially developed code
to be free of errors only
in the context of the
remaining code.

If so, do one of the
following:

* Ignore orange checks
at this stage.

* Provide the context
and then review
orange checks. For
instance, you can
provide stubs for
undefined functions

17-67

17 Interpret Polyspace Code Prover Results

17-68

Development Stage

Situation

Review Process

to emulate them more
accurately.

For more information,
see “Provide Context
for Verification” on
page 17-86.

Later stage or integration
stage

In later stages of
development, you have
provided all your source
files. However, it is possible
that your code does not
contain all information
required for verification. For
example, you have variables
whose values are known
only at run time.

Depending on the time you
want to spend, do one of the
following:

* Review red checks only.

* Review red and critical
orange checks.

Managing Orange Checks

Development Stage

Situation

Review Process

Final stage

* You have provided all
your source files.

* You have emulated run-
time environment
accurately through the
verification options.

Depending on the time you
want to spend, do one of the
following:

* Review red checks and
critical orange checks.

* Review red checks and
all orange checks.

For each orange check:

¢ If the check indicates a
run-time error, fix the
cause of the error.

o If the check indicates a
Polyspace approximation,
enter a comment in your
results or source code.

As part of your final release
process, you can have one of
these criteria:

* All red and critical
orange checks must be
reviewed and justified.

* All red and orange
checks must be reviewed
and justified.

To justify a check, assign the
Status of No action
planned or Justified to
the check.

Quality Goals

For critical applications, you must review all red and orange checks.

17-69

17 Interpret Polyspace Code Prover Results

17-70

» If an orange check indicates a run-time error, fix the cause of the error.

» If an orange check indicates a Polyspace approximation, enter a comment in your
results or source code.

As part of your final release process, review and justify all red and orange checks. To
justify a check, assign the Status of No action planned or Justified to the check.

For noncritical applications, you can choose whether or not to review the noncritical
orange checks.

See Also

Related Examples
. “Limit Display of Orange Checks” on page 17-74

More About
. “Orange Checks in Code Prover” on page 17-63

Critical Orange Checks

Critical Orange Checks

The software identifies a subset of orange checks that are most likely run-time errors. If
you select Critical checks from the drop-down list in the left of the Results List pane
toolbar, you can view this subset.

These orange checks are related to path and bounded input values. Here, input values
refer to values that are external to the application. Examples include:

» Inputs to functions called by generated main. For more information on functions called
by generated main, see Functions to call (-main-generator-calls).
* Global and volatile variables.

* Data returned by a stubbed function. The data can be the value returned by the
function or a function parameter modified through a pointer.

Path

The following example shows a path-related orange check that might be identified as a
potential run-time error.

Consider the following code.

void path(int x) {
int result;
result =1/ (x - 10);
// Orange division by zero

}
void main() {
path(1);
path(10);

}

The software identifies the orange ZDV check as a potential error. The Result Details
pane indicates the potential error:

Warning: scalar division by zero may occur

This Division by zero check on result=1/(x-10) is orange because:

17-71

17 Interpret Polyspace Code Prover Results

* path(1) does not cause a division by zero error.
* path(10) causes a division by zero error.

Polyspace indicates the definite division by zero error through a Non-terminating call
error on path(10). If you select the red check on path(10), the Result Details pane
provides the following information:

NTC Reason for the NTC: {path.x=10)

Bounded Input Values

Most input values can be bounded by data range specifications (DRS). The following
example shows an orange check related to bounded input values that might be identified
as a potential run-time error.

int tab[10];
extern int val;
// You specify that val is in [5..10]

void assignElement(int index) {
int result;
result = tab[index];
// Orange Out of bounds array index

}
void main(void) {
assignElement(val);
}

If you specify a PERMANENT data range of 5 to 10 for the variable val, verification
generates an orange Out of bounds array index check on tab[index]. The Result
Details pane provides information about the potential error:

Warning: array index may be outside bounds: [0..9]

This check may be an issue related to bounded input values

Verifying DRS on extern variable val may remove this orange.

array size: 10
array index value: [5 .. 10]

Unbounded Input Values

The following example shows an orange check related to unbounded input values that
might be identified as a potential run-time error:

int tab[10];
extern int val;

17-72

Critical Orange Checks

void assignElement(int index) {
int result;
result = tab[index];
// Orange Out of bounds array index
}
void main(void) {
assignElement(val);
}

The verification generates an orange Out of bounds array index check on tab[index].
The Result Details pane provides information about the potential error:

Warning: array index may be outside bounds: [0..9]

This check may be an issue related to unbounded input values

If appropriate, applying DRS to extern variable val may remove this orange.
array size: 10
array index value: [-231 .. 231-1]

17-73

17

Interpret Polyspace Code Prover Results

Limit Display of Orange Checks

17-74

This example shows how to control the number and type of orange checks displayed on
the Results List pane. Use the drop-down list in the left of the Results List pane toolbar.
To reduce your review effort, you can do one of the following:

1
2

Display only the critical orange checks.

Use the option Critical checks in the drop-down list. For more information, see
“Critical Orange Checks” on page 17-71.

Limit the number or suppress orange checks for certain check types, using additional
options on drop-down list.

You can add predefined options to the list or create your own options. If you create
your own options, you can share the option files to help developers in your
organization review at least a certain number or percentage of orange checks.

Select Tools > Preferences.

On the Review Scope tab, do one of the following:

To add predefined options to the drop-down list on the Results List pane, select
Include Quality Objectives Scopes.

The Scope Name list shows additional options, HIS, SQ0-4, SQ0-5 and SQO0-6.
Select an option to see the limit values.

In addition to orange checks, the options impose limits on the display of code
metrics and coding rule violations. The option HIS displays code metrics only. For
a detailed explanation of the predefined options, see “Software Quality
Objectives” on page 17-77.

To create your own options in the drop-down list on the Results List pane, select
New. Save your option file.

On the left pane, select Run-time Check. On the right pane, to suppress a check
completely, clear the box next to the check. To suppress a check partly, specify a
percentage less than 100 to display.

To suppress all checks belonging to a category such as Numerical, clear the box
next to the category name. For more information on the categories, see “Run-Time
Checks”. If only a fraction of checks in a category are selected, the check box next

to the category name displays a [H symbol.

Limit Display of Orange Checks

Instead of a percentage, you can specify a number or the string ALL. To specify a
number, clear the box Specify percentage of checks.

p
" Polyspace Preferences

N

| Server Configuration | Project and Results Folder | Editors | Tools Menu | Review Sizi:usesl Miscellaneous | Character Enooding| Review Scope I—

Manage Show menu on Results Summary

[Indude Quality Objectives Scopes

Scope Name [My_scope

v” Mew H Remove ” Open H Save as

[=H-Run-time Check {11/ 19)

H-Global Variable (Unset)
tH-Code Metric (3 [18)
H-MISRA C:2004 (Unset)
t-MISRA C:2012 (Unset)
H-MISRA AC AGC (Unset)
t-MISRA C++ {Unset)
H-J5F C++ (Unset)
H-Custom {Unset)

Run-time Check

Your scope contrals the orange chedks displayed in Results Summary

Specify percentage of checks
Status Cap Marme

= |¥] Mumerical i
B0% Division by Zero
E0% Scalar overflow
&0%: Float overflow
B0% shift operations

= [H Static memory
80% Out of bounds array index
B0%% Tlegally dereferenced painter
-] Absolute address

= Data flow e
60% Mon-nitialized variable
B0% Mon-nitizlized local variable
60% Mon-nitialized pointer
B0% Tnitialized return value

= [Other

L User assertion
G0

D h_‘ Invalid use of standard library routine

H] C++checks i

l

oK

| (sonly.] [concsl |

3 Select Apply or OK.

17-75

17

Interpret Polyspace Code Prover Results

17-76

On the Results List pane, the drop-down list on the Results List pane displays the
additional options.

Select the option corresponding to the limits that you want. Only the number or
percentage that you specify remain on the Results List pane.

If you specify an absolute number, Polyspace displays that number of orange
checks.

If you specify a percentage, Polyspace calculates that percentage of the total
green and orange checks. The software then considers whether green checks
alone make up the percentage. If they do not make up the percentage, the
software then displays sufficient orange checks to make up the percentage. For
example, if you specify 60, the software checks if 60% of your green and orange
checks comprise of green checks only. Otherwise, it displays sufficient orange
checks to make up the 60%.

You can use a review scope with percentage specifications to ensure that at least
60% of (green + orange) checks are either green or justified orange. To justify a
check, you must assign a Status of either No action planned or Justified.
For more information, see “Address Polyspace Results Through Bug Fixes or
Comments” on page 19-2.

See Also

Related Examples
“Filter and Group Results” on page 20-2

“Reduce Orange Checks” on page 17-86

“Critical Orange Checks” on page 17-71

Software Quality Objectives

Software Quality Objectives

The Software Quality Objectives or SQOs are a set of thresholds against which you can
compare your verification results. You can develop a review process based on the
Software Quality Objectives. In your review process, you consider only those results that
cause your project to fail a certain SQO level.

You can use a predefined SQO level or define your own SQOs. Following are the quality
thresholds specified by each predefined SQO.

SQO Level 1

Metric Threshold Value
Comment density of a file 20

Number of paths through a function 80

Number of goto statements 0

Cyclomatic complexity 10

Number of calling functions

Number of calls

Number of parameters per function

Number of instructions per function 50

Number of call levels in a function 4

Number of return statements in a function |1

Language scope, an indicator of the cost of |4
maintaining or changing functions.
Calculated as follows:

(NI+N2) / (nl1+n2)

* nl — Number of different operators
* N1 — Total number of operators
* n2 — Number of different operands
* N2 — Total number of operands

Number of recursions 0

17-77

17

Interpret Polyspace Code Prover Results

17-78

Metric

Threshold Value

Number of direct recursions

0

Number of unjustified violations of the
following MISRA C:2004 rules:

5.2

8.11, 8.12

11.2,11.3

12.12
13.3,13.4,13.5
14.4,14.7

16.1, 16.2, 16.7
17.3,17.4,17.5,17.6
18.4

204

0

Number of unjustified violations of the
following MISRA C:2012 rules:

8.8, 8.11, and 8.13
11.1,11.2,11.4,11.5,11.6, and 11.7
14.1 and 14.2

15.1, 15.2, 15.3, and 15.5

17.1 and 17.2

18.3, 18.4, 18.5, and 18.6

19.2

21.3

Software Quality Objectives

Metric

Threshold Value

Number of unjustified violations of the
following MISRA C++ rules:

¢ 2-10-2

¢ 3-1-3, 3-3-2, 3-9-3

e 5-0-15, 5-0-18, 5-0-19, 5-2-8, 5-2-9

* 6-2-2, 6-5-1, 6-5-2, 6-5-3, 6-5-4, 6-6-1,
6-6-2, 6-6-4, 6-6-5

e 7-5-1,7-5-2,7-54

+ 84-1

+ 9-5-1

 10-1-2,10-1-3, 10-3-1, 10-3-2, 10-3-3

* 15-0-3, 15-1-3, 15-3-3, 15-3-5, 15-3-6,
15-3-7, 15-4-1, 15-5-1, 15-5-2

0

e 18-4-1

SQO Level 2

In addition to all the requirements of SQO Level 1, this level includes the following
thresholds:

Metric Threshold Value

Number of unjustified red checks 0

Number of unjustified Non-terminating |0

call and Non-terminating loop checks

SQO Level 3

In addition to all the requirements of SQO Level 2, this level includes the following
thresholds:

Metric Threshold Value

Number of unjustified gray Unreachable
code checks

0

17-79

17

Interpret Polyspace Code Prover Results

17-80

SQO Level 4

In addition to all the requirements of SQO Level 3, this level includes the following
thresholds:

Metric Threshold Value

Percentage of justified orange checks,
calculated as the number of green and
justified orange checks divided by the total
number of green and orange checks.

Invalid C++ specific operations
50

Correctness condition: 60

Division by zero: 80

Uncaught exception: 50

Function not returning value: 80

Illegally dereferenced pointer: 60

Return value not initialized: 80

Non-initialized local variable: 80

Non-initialized pointer: 60

Non-initialized variable: 60

Null this-pointer calling method:
50

Incorrect object oriented
programming: 50

Out of bounds array index: 80

Overflow: 60

Invalid shift operations: 80

User assertion: 60

SQO Level 5

In addition to all the requirements of SQO Level 4, this level includes the following

thresholds:

Software Quality Objectives

Metric Threshold Value

Number of unjustified violations of the 0
following MISRA C:2004 rules:

* 6.3

+ 8.7

* 92,93

* 10.3,10.5

« 11.1,115

e 12.1,12.2,125,12.6,12.9, 12.10
* 13.1,13.2,13.6

+ 14.8,14.10

+ 153

+ 16.3,16.8, 16.9

e 19.4,19.9, 19.10, 19.11, 19.12

+ 20.3

Number of unjustified violations of the 0
following MISRA C:2012 rules:

« 11.8

 12.1and 12.3

* 13.2and 13.4

e 144

* 15.6and 15.7

* 16.4 and 16.5

e 174

* 20.4, 20.6, 20.7, 20.9, and 20.11

17-81

17 Interpret Polyspace Code Prover Results

17-82

Metric

Threshold Value

Number of unjustified violations of the
following MISRA C++ rules:

¢ 3-4-1,3-9-2

* 4-5-1

* 5-0-1, 5-0-2, 5-0-7, 5-0-8, 5-0-9, 5-0-10,
5-0-13, 5-2-1, 5-2-2, 5-2-7, 5-2-11, 5-3-3,
5-2-5, 5-2-6, 5-3-2, 5-18-1

* 6-2-1, 6-3-1, 6-4-2, 6-4-6, 6-5-3

* 8-4-3, 8-4-4, 8-5-2, 8-5-3

 11-0-1

o 12-1-1,12-8-2

* 16-0-5, 16-0-6, 16-0-7, 16-2-2, 16-3-1

0

Percentage of justified orange checks,
calculated as the number of green and
justified orange checks divided by the total
number of green and orange checks.

Invalid C++ specific operations
70

Correctness condition: 80

Division by zero: 90

Uncaught exception: 70

Function not returning value: 90

Illegally dereferenced pointer: 70

Return value not initialized: 90

Non-initialized local variable: 90

Non-initialized pointer: 70

Non-initialized variable: 70

Null this-pointer calling method:
70

Incorrect object oriented
programming: 70

Out of bounds array index: 90

Overflow: 80

Software Quality Objectives

Metric Threshold Value
Invalid shift operations: 90
User assertion: 80
SQO Level 6
In addition to all the requirements of SQO Level 5, this level includes the following
thresholds:
Metric Threshold Value

Percentage of justified orange checks,
calculated as the number of green and
justified orange checks divided by the total
number of green and orange checks.

Invalid C++ specific operations
90

Correctness condition: 100

Division by zero: 100

Uncaught exception: 90

Function not returning value: 100

Illegally dereferenced pointer: 80

Return value not initialized: 100

Non-initialized local variable:
100

Non-initialized pointer: 80

Non-initialized variable: 80

Null this-pointer calling method:
90

Incorrect object oriented
programming: 90

Out of bounds array index: 100

Overflow: 100

Invalid shift operations: 100

User assertion: 100

17-83

17

Interpret Polyspace Code Prover Results

17-84

SQO Exhaustive

In addition to all the requirements of SQO Level 1, this level includes the following
thresholds. The thresholds for coding rule violations apply only if you check for coding

rule violations.

calculated as the number of green and
justified orange checks divided by the total
number of green and orange checks.

Metric Threshold Value
Number of unjustified MISRA C and MISRA |0

C++ coding rule violations

Number of unjustified red checks 0

Number of unjustified Non-terminating |0

call and Non-terminating loop checks

Number of unjustified gray Unreachable |0

code checks

Percentage of justified orange checks, 100

For information on the rationales behind these levels, see Software Quality Objectives for

Source Code.

Comparing Verification Results Against Software Quality

Objectives

You can compare your verification results against SQOs either in the Polyspace user
interface or the Polyspace Metrics web interface.

* In the Polyspace user interface, you can use the menu in the Results List toolbar to
display only those results that you must fix or justify to attain a certain Software

Quality Objective.

https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/p/72337_Software_Quality_Objectives_V3.0.pdf
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/p/72337_Software_Quality_Objectives_V3.0.pdf

Software Quality Objectives

;Al.l results vi TeNew [E]v <@ 5> (@ Showing 375375 +

“F “F Type #F Chedk “F Function i
332 Red Check Out of bounds array index reset_temperature()
= 77 Red Check Tlegally dereferenced pointer Pointer_Arithmetic()
112 Red Check Mon-terminating call Recursion_caller()
206 Red Check Mon-terminating loop interpolation()
119 Red Check Invalid use of standard library routne Square_Root()

500-4 - Shows results that viclate the Software Quality Objective Level 4 (5Q0-4) threshold. ||:u:|r|:||:|natesD

To activate the SQO options in this menu, select Tools > Preferences. On the Review
Scope tab, select Include Quality Objectives Scope.

* In the Polyspace Metrics web interface, you can first determine whether your project
fails to attain a certain Software Quality Objective. The web interface generates a
Quality Status of PASS or FAIL for your project. If your project has a Quality Status
of FAIL, the web interface highlights in red those results that you must fix or justify to
attain the Software Quality Objective. You can choose to only download those results
to the Polyspace user interface and review them. For more information, see “Compare
Metrics Against Software Quality Objectives” on page 22-18.

Note You cannot use the menu in the user interface to suppress red or gray checks.
Therefore, you cannot directly compare your project against predefined SQO levels 1, 2
and 3 in the Polyspace user interface. However, in the Polyspace Metrics web interface,
you can compare your project against all predefined SQO levels.

17-85

17 Interpret Polyspace Code Prover Results

Reduce Orange Checks

An orange check indicates that Polyspace detects a possible run-time error but cannot
prove it. To help Polyspace produce more proven results, you can:

* Specify appropriate verification options.

» Follow appropriate coding practices.

You can also limit the number and family of orange checks displayed on Results List. For
more information, see “Limit Display of Orange Checks” on page 17-74.

You can take one or more of the following actions for orange check reduction.

Provide Context for Verification

This example shows how to provide additional information about run-time execution of

your code. Sometimes, the code you provide does not contain this information. For

instance:

* You do not have a main function

* You have a function that is declared but not defined.

* You have function arguments whose values are available only at run-time.

* You have concurrently running functions that are intended for execution in a specific
sequence.

Without sufficient information, Polyspace Code Prover cannot verify the presence or
absence of run-time errors.

To provide more context for verification and reduce orange checks, use the following

methods.

Method Example

Define how the main generated by “Code Prover Verification”

Polyspace initializes variables and calls

functions

Define ranges for global variables and “Create Constraint Template After Analysis”
function arguments. on page 12-3

17-86

Reduce Orange Checks

Method Example
Define execution sequence for multitasking |“Configuring Polyspace Multitasking
code. Analysis Manually” on page 13-14

Map an imprecisely analyzed function toa |-function-behavior-specifications
standard function for precise results at the
function call sites.

Improve Verification Precision

This example shows how to improve the precision of your verification. Increased precision
reduces orange checks, but increases verification time.

Use the following options. In the Polyspace user interface, the options appear on the
Configuration pane under the Precision node.

Option Purpose

Precision level (-0) Specify the verification algorithm.

Verification level (-to) Specify the number of times the Polyspace
verification process runs on your source
code.

Improve precision of Propagate greater information about

interprocedural analysis (-path- |function arguments into the called function.
sensitivity-delta)

Sensitivity context (-context- If a function contains a red and green check
sensitivity) on the same instruction from two different
calls, display both checks instead of an
orange check.

Follow Coding Rules

This example shows how to follow coding rules that help Polyspace Code Prover prove the
presence or absence of run-time errors. If your code follows certain subsets of MISRA
coding rules, Polyspace can verify the presence or absence of run-time errors more easily.

1 Check whether your code follows the relevant subset of coding rules.

a In the Polyspace user interface, on the Configuration pane, depending on the
code, select one of the options under the Coding Rules node.

17-87

17

Interpret Polyspace Code Prover Results

17-88

Type of Code Option Rule Description
Handwritten C code |Check MISRA C: * “Software Quality
2004 or Check Objective Subsets
MISRA C:2012 (C:2004)” on page
15-47

* “Software Quality
Objective Subsets
(C:2012)” on page

15-59
Generated C code Check MISRA AC “Software Quality
AGC Objective Subsets (AC

AGC)” on page 15-53

Handwritten C++ Check MISRA C++ |“Software Quality
code rules Objective Subsets (C+
+)” on page 15-116

b From the option drop-down list, select SQ0-subsetl or SQO-subset?2.
2 Run verification and review your results.
3 Fix the coding rule violations.

Reduce Application Size
Sometimes, the application size causes a loss of precision.

In a relatively smaller application, Code Prover retains more precise information about
variable ranges. For instance, suppose a variable takes these values:
{-2,-1,2,10,15,16,17%}. If this variable is the denominator in a division, Code Prover shows
a green Division by zero as long as it retains this precise information. If the application
size grows beyond a certain point, to reduce computational complexity, Code Prover
approximates this range to, for instance, {-2,2} U {10} U {15,17}. Now, if the variable is
used for division, Code Prover shows an orange Division by zero.

To improve precision, you can divide the application into multiple modules. Verify each
module independently of the other modules. You can review the complete results for one
module, while the verification of the other modules are still running.

* You can let the software modularize your application. The software divides your source
files into multiple modules such that the interdependence between the modules is as
little as possible. To begin, select Tools > Run Modularize.

See Also

» If you are running verification in the user interface, you can create multiple modules
in your project and copy source files into those modules.

* You can perform a file-by-file verification. Each file constitutes a module by itself. See
Verify files independently (-unit-by-unit).

See Also

More About

. “Orange Checks in Code Prover” on page 17-63
. “Managing Orange Checks” on page 17-66

17-89

17

Interpret Polyspace Code Prover Results

Test Orange Checks for Run-Time Errors

17-90

This example shows how to run dynamic tests on orange checks. An orange check means
that Polyspace static verification detects a possible error but cannot prove it. Orange
checks can occur because of:

¢ Run-time errors.

* Approximations that Polyspace made during static verification.

For more information, see “Orange Checks in Code Prover” on page 17-63.

By running tests, you can determine which orange checks represent run-time errors.
Provided that you have emulated the run-time environment accurately, if a dynamic test
fails, the orange check represents a run-time error. For this example, save the following
code in a file test orange.c:

volatile int r;
#include <stdio.h>

int input() {

int k;

k = r%21 - 10;

// k has value in [-10,10]
return k;

}

void main() {

int x=input();
printf("%.2f",1.0/x);
}

Run Tests for Full Range of Input

Note The Automatic Orange Tester is not supported on Mac.

1 Create a Polyspace project. Add test orange. c to your project.

2 In the project configuration, under Advanced Settings, select Automatic Orange
Tester.

Test Orange Checks for Run-Time Errors

After verification, Polyspace generates additional source code that tests each orange
check for run-time errors. The software compiles this instrumented code. When you
run the automatic orange tester later, the software tests the resulting binary code.

3 Run a verification and open the results.

An orange Division by zero error appears on the operation 1.0/X.

4 Select Tools > Automatic Orange Tester.

In the Automatic Orange Tester window, click Start.

The Automatic Orange Tester runs tests on your code. If the tests take too long, use
the Stop All button to stop the tests. Reduce Number of tests before running again.

s ~
|¢ Polyspace Automatic Orange Tester - _testgen.tgf [=B éj
File Options Help |
Variable Name Type Values Advanced
E|E| __polyspace__stdstubs.c -
& _polyspace_random_double volatile floate4 TR TiEx
volatile int32 PN, .TEX
AOT Configuration AOT Results v
Tests that did not detect run-time errors: 586
b etoifeests: LE Tests that detected run-time errors: 14
Maximum loop iterations: 100 Number of unique run-time errors detected: 1
Maximum test time (in second): 10 Tests that timed out: 0
Stopped tests: 0 |
Total number of tests: 600 1
Start [Stop All] [Stop Current]
Running... Time Remaining: 00:00:28 o 4
Results | g Line Column Error # Testcases Failed M
Log_aot.c 14 17 |zDV (Float Division by Zero) |14 |~

17-91

17

Interpret Polyspace Code Prover Results

17-92

6

After the tests are completed, under AOT Results, view the number of Tests that
detected run-time errors.

The orange Division by zero check represents a run-time error, so you see test case
failures.

On the Results tab, click the row describing the check.
A Test Case Detail window shows:

* The operation on which the tests were run.
* The test cases that failed with the reason for the failure.

Run Tests for Specified Range of Input

The Automatic Orange Tester window lists variables that cause orange checks. Because
Polyspace does not have sufficient information about these variables, it makes
assumptions about their range. If you know the variable range, you can specify it before
running dynamic tests on orange checks. For pointer variables, you can specify the
amount of memory written through the pointer. For instance, if the pointer points to an
array, you can specify whether the first element of the array or the entire array is written
through the pointer.

In the Automatic Orange Tester window, on the row describing r, click Advanced.
In the Edit Values window, under Variable Values, select Range of values.

Specify a minimum value of 1 and maximum of 9 for r. The Automatic Orange Tester
saves the range as a . tgf file in the Polyspace-Instrumented folder in your
results folder.

Click Start to restart tests on the orange Division by zero check for rin [1,9].

A division by zero cannot occur for rin [1, 9], so there are no test failures. Although
a test failure indicates a run-time error for specified inputs, because of the finite
number of tests performed, the absence of test failures does not mean absence of a
run-time error.

To prove that your range converts the orange check into a green check, you must
provide the range during another static verification.

a In the Automatic Orange Tester window, select File > Export Constraints.
b Save your ranges as a text file.

See Also

¢ Before running the next verification, on the Configuration pane, under Inputs
& Stubbing, provide the text file for Constraint setup.

d Run a verification and open your results.

Instead of orange, there is a green Division by zero check on the operation
1.0/x.

See Also

Related Examples
. “Identify Function Call with Run-Time Error” on page 18-62
. “Limit Display of Orange Checks” on page 17-74

More About

. “Limitations of Automatic Orange Tester” on page 17-94
. “Orange Checks in Code Prover” on page 17-63
. “Managing Orange Checks” on page 17-66

17-93

17 Interpret Polyspace Code Prover Results

Limitations of Automatic Orange Tester

The Automatic Orange Tester has the following limitations:

Unsupported Platforms

The Automatic Orange Tester is not supported on Mac.

Unsupported Polyspace Options

The software does not support the following options with -automatic-orange-tester.

* -div-round-down

* -char-is-16bits

* -short-is-8bits

In addition, the software does not support global asserts in the code of the form
Pst Global Assert(A,B).

Options with Restrictions

Do not specify the following with -automatic-orange-tester:

+ -allow-non-finite-floats

* -check-subnormal

* -data-range-specification (in global assert mode)

+ -target [c18 | tms320c3c | x86 64 | sharc21x61]

You must use the -target mcpu option together with -pointer-is-32bits.

Unsupported C Routines

The software does not support verification of C code that contains calls to the following
routines:

* va start
* Vva_arg

17-94

Limitations of Automatic Orange Tester

va_end
va_copy
setjmp
sigsetjmp
longjmp
siglongjmp
signal
sigset
sighold
sigrelse
sigpause
sigignore
sigaction
sigpending
sigsuspend
sigvec
sigblock
sigsetmask
sigprocmask
siginterrupt
srand
srandom
initstate
setstate

17-95

Reviewing Checks

* “Review and Fix Absolute Address Usage Checks” on page 18-3

* “Review and Fix Correctness Condition Checks” on page 18-4

* “Review and Fix Division by Zero Checks” on page 18-10

* “Review and Fix Function Not Called Checks” on page 18-16

* “Review and Fix Function Not Reachable Checks” on page 18-18

* “Review and Fix Function Not Returning Value Checks” on page 18-20

* “Review and Fix Illegally Dereferenced Pointer Checks” on page 18-22

» “Review and Fix Incorrect Object Oriented Programming Checks” on page 18-30
* “Review and Fix Invalid C++ Specific Operations Checks” on page 18-33
* “Review and Fix Invalid Shift Operations Checks” on page 18-36

* “Review and Fix Invalid Use of Standard Library Routine Checks” on page 18-42
* “Invalid Use of Standard Library Floating Point Routines” on page 18-45
* “Review and Fix Non-initialized Local Variable Checks” on page 18-49

* “Review and Fix Non-initialized Pointer Checks” on page 18-53

* “Review and Fix Non-initialized Variable Checks” on page 18-56

* “Review and Fix Non-Terminating Call Checks” on page 18-59

* “Identify Function Call with Run-Time Error” on page 18-62

* “Review and Fix Non-Terminating Loop Checks” on page 18-64

* “Identify Loop Operation with Run-Time Error” on page 18-68

» “Review and Fix Null This-pointer Calling Method Checks” on page 18-71
* “Review and Fix Out of Bounds Array Index Checks” on page 18-73

* “Review and Fix Overflow Checks” on page 18-78

* “Detect Overflows in Buffer Size Computation” on page 18-83

* “Review and Fix Return Value Not Initialized Checks” on page 18-85

* “Review and Fix Uncaught Exception Checks” on page 18-89

* “Review and Fix Unreachable Code Checks” on page 18-92

18 Reviewing Checks

* “Review and Fix User Assertion Checks” on page 18-98
* “Find Relations Between Variables in Code” on page 18-103
* “Review Polyspace Results on AUTOSAR Code” on page 18-107

18-2

Review and Fix Absolute Address Usage Checks

Review and Fix Absolute Address Usage Checks

Follow one or more of these steps until you determine a fix for the Absolute address
usage check. There are multiple ways to fix this check. For a description of the check and
code examples, see Absolute address usage.

Tip This check is green by default. To reduce the number of orange checks, if you trust
that all absolute addresses in your code are valid, you can retain this default behavior.

For best use of this check, leave this check green by default during initial stages of
development. During integration stage, use the option -no-assumption-on-absolute-
addresses and detect all uses of absolute memory addresses. Browse through them and
make sure that the addresses are valid.

1 Select the check on the Results List pane.

The Source pane displays the code operation containing the absolute address.

2 Ifyou determine that the address is valid, add a comment and justification in your
result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

18-3

18 Reviewing Checks

Review and Fix Correctness Condition Checks

18-4

Follow one or more of these steps until you determine a fix for the Correctness
condition check. There are multiple ways to fix a red or orange check. For a description
of the check and code examples, see Correctness condition.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.
Step 1: Interpret Check Information

On the Results List pane, select the check. View the cause of check on the Result
Details pane. The following list shows some of the possible causes:

* An array is converted to another array of larger size.

In the following example, a red check occurs because an array is converted to another
array of larger size.

® Correctness condition 2/

Certain failure of correctness condition [array conversion must not extend range]

* When dereferenced, a function pointer has value NULL.

In the following example, a red check occurs because, when dereferenced, a function
pointer has value NULL.

® correctness condition 2/

Error: function pointer does not paint to & valid function
pointer is null
pointer does not point to any function

* When dereferenced, a function pointer does not point to a function.

In the following example, an orange check occurs because Polyspace cannot determine
if a function pointer points to a function when dereferenced. This situation can occur
if, for instance, you assign an absolute address to the function pointer.

Review and Fix Correctness Condition Checks

Correctness condition 2/
Warning: function pointer may not point to a valid function
Pointer is not null,
Polyspace assumption: Verification continues with full range for return values and modifiable arguments.
This check may be an issue related to unbounded input values
Absolute address assignment in function_pointer_uses_abs_addr.c line 3 may lead to imprecision here

* A function pointer points to a function, but the argument types of the pointer and the
function do not match. For example:

typedef int (*typeFuncPtr) (complex*);

int func(int* x);

typeFuncPtr funcPtr = &func;

In the following example, a red check occurs because:

* The function pointer points to a function func.

+ func expects an argument of type int, but the corresponding argument of the
function pointer is a structure.

Correctness condition \34'
‘warning: Funckion poinker may not poink to a walid Function
Pointer is not mull,
Paointer points to badly byvped Function: Func,
- Errar when calling Function Func: wrong byvpe of argument {argument 1 of call has type pointer to struckure but Function expects bype pointer ko ink 323,
Polyspace assumption: Verification continues with Full range For return values and modifiable arguments.

* A function pointer points to a function, but the argument numbers of the pointer and
the function do not match. For example:

typedef int (*typeFuncPtr) (int, int);
int func(int);

typeFuncPtr funcPtr = &func;.

In the following example, a red check occurs because:

* The function pointer points to a function func.
* func expects one argument but the function pointer has two arguments.

18-5

18 Reviewing Checks

Correctness condition ‘EJ
Warning: Function poinker may not point ko a walid Function
Pointer is not noll,
Pointer points ko badly typed Funckion: func,
- Error when calling function func: wrong number of arguments {call has 2 arguments but function expects 1 argument),
Polyspace assumpkion: Yerification continues with Full range For return values and modifiable arguments.

* A function pointer points to a function, but the return types of the pointer and the
function do not match. For example:

typedef double (*typeFuncPtr) (int);
int func(int);
typeFuncPtr funcPtr = &func;

In the following example, a red check occurs because:

* The function pointer points to a function func.
* func returns an int value, but the return type of the function pointer is double.

Correctness condition \3/
Warning: Function poinker may not point ko a walid Function
Poinker is not null,
Pointer points ko badly typed Funckion: func,

- Error when calling funckion func: wrang bype of returned walue (function rekurns type int 32 buk call expects tvpe Float 647,
Polyspace assumption: Yerification continues with Full range For return walues and modifiable arguments.

* The value of a variable falls outside the range that you specify through the Global
Assert mode. See “Constrain Global Variable Range” on page 12-11.

In the following example, a red check occurs because:

* You specify a range 0...10 for the variable glob.
* The value of the variable falls outside this range.

® Correctness condition 2/

Certain failure of global assertion condition [glob in the range of 0...10]

18-6

Review and Fix Correctness Condition Checks

Step 2: Determine Root Cause of Check

Based on the check information on the Result Details pane, perform further steps to
determine the root cause. You can perform the following steps in the Polyspace user

interface only.

Check Information

How to Determine Root Cause

An array is converted to another array of
larger size.

1 To determine the array sizes, see the
definition of each array variable.

Right-click the variable and select Go
To Definition.

2 Ifyou dynamically allocate memory to
an array, it is possible that their sizes
are not available during definition.
Browse through all instances of the
array variable to find where you
allocate memory to the array.

a Right-click the variable. Select
Search For All References.

All instances of the variable appear
on the Search pane with the
current instance highlighted.

b On the Search pane, select the
previous instances.

18-7

18 Reviewing Checks

18-8

Check Information

How to Determine Root Cause

Issues when dereferencing a function
pointer:

The function pointer has value NULL
when dereferenced.

The function pointer does not point to a
function when dereferenced.

The function pointer points to a
function, but the argument types of the
pointer and the function do not match.

The function pointer points to a
function, but the argument numbers of
the pointer and the function do not
match.

The function pointer points to a
function, but the return types of the
pointer and the function do not match.

1

Find the location where you assign the
function pointer to a function.

a Right-click the function pointer.
Select Search For All
References.

All instances of the function
pointer appear on the Search pane
with the current instance
highlighted.

b On the Search pane, select the
previous instances.

Determine the argument and return
types of the function pointer type and
the function. Identify if there is a
mismatch between the two. For
instance, in the following example,
determine the argument and return
types of typeFuncPtr and func.

typeFuncPtr funcPtr = func;

a Right-click the function pointer
type and select Go To Definition.

b Right-click the function and select
Go To Definition. If the definition
does not exist, this option shows
the function stub definition
instead. In this case, find the
function declaration.

Sometimes, you assign a function
pointer to a function with matching
signature, but the assignment is
unreachable. Check if this is the case.

Review and Fix Correctness Condition Checks

Check Information

How to Determine Root Cause

The value of a variable falls outside the
range that you specify through the Global
Assert mode.

Browse through all previous instances of
the global variable. Identify a suitable point
to constrain the variable.

1 Right-click the variable. Select Show
In Variable Access View.

2 On the Variable Access pane, select
each instance of the variable.

Step 3: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on

page 19-2.

18-9

18 Reviewing Checks

Review and Fix Division by Zero Checks

Follow one or more of these steps until you determine a fix for the Division by zero
check. There are multiple ways to fix a red or orange check. For a description of the
check and code examples, see Division by zero.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information

Place your cursor on the / or % operation that causes the Division by zero error.

func{l.0 wval};

{E:i:‘mbahle cause for 'Diwvision by Zero' Stubbed function 'get'Val
operatar / on type float 64
left: 1.0

right: [-2.1475E T 2 1475E]
result: [-1.0001 .. -4.6566E "] or [4.6566E"" . 1.0001]

Obtain the following information from the tooltip:
* The values of the right operand (denominator).
In the preceding example, the right operand, val, has a range that contains zero.

Possible fix: To avoid the division by zero, perform the division only if val is not zero.

18-10

Review and Fix Division by Zero Checks

Integer Floating-point
if(val != 0) #define eps 0.0000001
func(1.0/val); .
else .
/* Error handling */ if(val < -eps || val > eps)
func(1.0/val);
else
/* Error handling */

* The probable root cause for division by zero, if indicated in the tooltip.

In the preceding example, the software identifies a stubbed function, getVal, as
probable cause.

Possible fix: To avoid the division by zero, constrain the return value of getVal. For
instance, specify that getVal returns values in a certain range, for example, 1. .10.
For more information, see “Constrain Stubbed Functions” on page 12-15.

Step 2: Determine Root Cause of Check

Before a / or % operation, test if the denominator is zero. Provide appropriate error
handling if the denominator is zero.

Only if you do not expect a zero denominator, determine root cause of check. Trace the
data flow starting from the denominator variable. Identify a point where you can specify a
constraint to prevent the zero value.

In the following example, trace the data flow starting from arg2:

void foo() {
double time
double dist

readTime();
readDist();

bar(dist,time);

}

void bar(double argl, double arg2) {
double vel;
vel=argl/arg2;

}

You might find that:

18-11

18 Reviewing Checks

bar is called with full-range of values.

Possible fix: Call bar only if its second argument time is greater than zero.
time obtains a full-range of values from readTime.

Possible fix: Constrain the return value of readTime, either in the body of readTime
or through the Polyspace Constraint Specification interface, if you do not have the
definition of readTime. For more information, see “Constrain Stubbed Functions” on
page 12-15.

To trace the data flow, select the check and note the information on the Result Details
pane.

If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction.

If the Result Details pane shows the line number of probable cause for the check,
right-click on the Source pane. Select Go To Line.

Otherwise:

1 Find the previous write operation on the operand variable.

Example: The value of arg2 is written from the value of time in bar.

2 At the previous write operation, identify a new variable to trace back.

Place your cursor on the variables involved in the write operation to see their
values. The values help you decide which variable to trace.

Example: At bar(dist, time), you find that time has a full-range of values.
Therefore, you trace time.

3 Find the previous write operation on the new variable. Continue tracing back in
this way until you identify a point to specify your constraint.

Example: The previous write operation on time is time=readTime(). You can
choose to specify your constraint on the return value of readTime.

Depending on the variable, use the following navigation shortcuts to find previous
instances. You can perform the following steps in the Polyspace user interface only.

18-12

Review and Fix Division by Zero Checks

Variable How to Find Previous Instances of Variable

Local Variable Use one of the following methods:
» Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the Search
pane with the current instance highlighted.

2 On the Search pane, select the previous instances.

Browse the source code.
1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable 1 Select the option Show In Variable Access View.
Right-click the variable. If On the Variable Access pane, the current instance of
the option Show In the variable is shown.

Variable Access View 2 On this pane, select the previous instances of the

appears, the variable is a
global variable.

variable.

Write operations on the variable are indicated with 4
and read operations with P .

Function return value 1 Find the function definition.

ret=func(); Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is not
available to Polyspace, selecting the option takes you to
the function declaration.

2 In the definition of func, identify each return
statement. The variable that the function returns is your
new variable to trace back.

You can also determine if variables in any operation are related from some previous
operation. See “Find Relations Between Variables in Code” on page 18-103.

18-13

18 Reviewing Checks

18-14

Step 3: Look for Common Causes of Check

Look for common causes of the Division by zero check.

» For a variable that you expect to be non-zero, see if you test the variable in your code
to exclude the zero value.

Otherwise, Polyspace cannot determine that the variable has non-zero values. You can
also specify constraints outside your code. See “Specify External Constraints” on page
12-2.

« Ifyou test the variable to exclude its zero value, see if the test occurs in a reduced
scope compared to the scope of the division.

For example, a statement assert(var !=0) occurs in an if or while block, but a
division by var occurs outside the block. If the code does not enter the if or while
block, the assert does not execute. Therefore, outside the if or while block,
Polyspace assumes that var can still be zero.

Possible fix:
* Investigate why the test occurs in a reduced scope. In the above example, see if

you can place the statement assert(var !=0) outside the if or for block.

+ Ifyou expect the if or while block to always execute, investigate when it does not
execute.

Step 4: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in

your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you are using a volatile variable in your code. Then:
1 Polyspace assumes that the variable is full-range at every step in the code. The range
includes zero.

A division by the variable can cause Division by zero error.

3 If you know that the variable takes a non-zero value, add a comment and justification
describing why you did not change your code.

Review and Fix Division by Zero Checks

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

Disabling This Check
You can effectively disable this check. If your compiler supports infinities and NaNs from

floating-point operations, you can enable a verification mode that incorporates infinities
and NaNs. See Consider non finite floats (-allow-non-finite-floats).

18-15

18 Reviewing Checks

Review and Fix Function Not Called Checks

Follow one or more of these steps until you determine a fix for the Function not called
check. There are multiple ways to fix this check. For a description of the check and code
examples, see Function not called.

If you determine that the check represents defensive code or a function that is part of a
library, add a comment and justification in your result or code explaining why you did not
change your code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

Note This check is not turned on by default. To turn on this check, you must specify the
appropriate analysis option. For more information, see Detect uncalled functions
(-uncalled-function-checks).

Step 1: Interpret Check Information

On the Results List pane, select the check. On the Source pane, the body of the function
is highlighted in gray.

avi
single_file_analysis.c X 4 I B
-
static 532 pnused fonction (void)

f

}

4

v v
return saved wvalues[ocutput vl] + (332) generic_walidation({output_w6& / 10000} , (ocutput_v7 / 1&000)):

3

18-16

Step 2: Determine Root Cause of Check

1 Search for the function name and see if you can find a call to the function in your
code.

On the Search pane, enter the function name. From the drop-down list beside the
search field, select Source.

Possible fix: If you do not find a call to the function, determine why the function
definition exists in your code.

Review and Fix Function Not Called Checks

If you find a call to the function, see if it occurs in the body of another uncalled
function.

Possible fix: Investigate why the latter function is not called.
See if you call the function indirectly, for example, through function pointers.

If the indirection is too deep, Polyspace sometimes cannot determine that a certain
function is called.

Possible fix: If Polyspace cannot determine that you are calling a function indirectly,
you must verify the function separately. You do not need to write a new main function
for this other verification. Polyspace can generate a main function if you do not
provide one in your source. You can change the main generation options if needed.
For more information on the options, see “Code Prover Verification”.

Step 3: Look for Common Causes of Check

Look for the following common causes of the Function not called check.

Determine if you intended to call the function but used another function instead.

Determine if you intended to replace some code with a function call. You wrote the
function definition, but forgot to replace the original code with the function call.

If this situation occurs, you are likely to have duplicate code.

See if you intend to call the function from yet unwritten code. If so, retain the function
definition.

For code intended for multitasking, see if you have specified all your entry point
functions.

To see the options used for the result, select the link View configuration for results
on the Dashboard pane.

For more information, see Tasks (-entry-points).

For code intended for multitasking, see if your main function contains an infinite loop.
Polyspace Code Prover requires that your main function must complete execution
before the other entry points begin.

For more information, see “Configuring Polyspace Multitasking Analysis Manually” on
page 13-14.

18-17

18 Reviewing Checks

Review and Fix Function Not Reachable Checks

18-18

Follow one or more of these steps until you determine a fix for the Function not
reachable check. There are multiple ways to fix this check. For a description of the check
and code examples, see Function not reachable.

If you determine that the check represents defensive code, add a comment and
justification in your result or code explaining why you did not change your code. See
“Address Polyspace Results Through Bug Fixes or Comments” on page 19-2.

Note This check is not turned on by default. To turn on this check, you must specify the
appropriate analysis option. For more information, see Detect uncalled functions
(-uncalled-function-checks).

Step 1: Interpret Check Information

Select the check on the Results List pane. On the Source pane, you can see the function
definition in gray.

ki soures =&
fir.c X 4 F B

void increase{int* arr, int index); o

!
-
[=]
e
[=H
L]
i1
1
t
1
1
i}
i1
—
m

ey = e

Step 2: Determine Root Cause of Check

Determine where the function is called and review why all the function call sites are
unreachable. You can perform the following steps in the Polyspace user interface only.

1 Select the check on the Results List pane.

Review and Fix Function Not Reachable Checks

On the Result Details pane, click the fx button.

On the Call Hierarchy pane, you see the callers of the function denoted by 4 .
3 On the Call Hierarchy pane, select each caller.

This action takes you to the function call on the Source pane.

4 See if the caller itself is called from unreachable code. If the caller definition is
entirely in gray on the Source pane, it is called from unreachable code. Follow the
same investigation process, starting from step 1, for the caller.

5 Otherwise, investigate why the section of code from which you call the function is
unreachable.

The code can be unreachable because it follows a red check or because it contains
the gray Unreachable code check.

» Ifared check occurs, fix your code to remove the check.

+ Ifa gray Unreachable code check occurs, review the check and determine if you
must fix your code. See “Review and Fix Unreachable Code Checks” on page 18-
92.

Note If you do not see a caller name on the Call Hierarchy pane, determine if you are
calling the function indirectly, for example through a function pointer. Determine if a
mismatch occurs between the function pointer declaration and the function call through
the pointer.

Polyspace places a red or orange Correctness condition check on the indirect call if a
mismatch occurs. To detect a mismatch in indirect function calls, look for the
Correctness condition check on the Results List pane. For more information, see
Correctness condition.

18-19

18 Reviewing Checks

Review and Fix Function Not Returning Value Checks

18-20

Follow one or more of these steps until you determine a fix for the Function not
returning value check. For a description of the check and code examples, see Function
not returning value.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.
Step 1: Interpret Check Information

Select the check on the Results List pane. The Result Details pane displays further
information about the check.

Function returns a value \EJ
Warning: function may not return a value
This check may be a path-related issue, which is not dependent on input values

You can see:
* The immediate cause of the check.

In this example, the software has identified that a function with a non-void return
type might not have a return statement.

* The probable root cause of the check, if indicated.

In this example, the software has identified that the check is possibly path-related.
More than one call to the function exists, and the check is green on at least one call.

Step 2: Determine Root Cause of Check

Determine why a return statement does not exist on certain execution paths.

1 Browse the function body for return statements.
2 Ifyoufind a return statement:

a Seeif the return statement occurs in a block inside the function.

For instance, the return statement occurs in an if block. An execution path
that does not enter the if block bypasses the return statement.

Review and Fix Function Not Returning Value Checks

b See if you can identify the execution paths that bypass the return statement.

For instance, an if block that contains the return statement is bypassed for
certain function inputs.

¢ Ifthe function is called multiple times in your code, you can identify which
function call led to bypassing of the return statement. Use the option Sensitivity
Context to determine the check color for each function call.

Possible fix: If the return type of the function is incorrect, change it. Otherwise, add a
return statement on all execution paths. For instance, if only a fraction of branches of an
if-else if-else condition have a return statement, add a return statement in the
remaining branches. Alternatively, add a return statement outside the if-else if-
else condition.

18-21

18 Reviewing Checks

Review and Fix lllegally Dereferenced Pointer Checks

Follow one or more of these steps until you determine a fix for the Illegally
dereferenced pointer check. There are multiple ways to fix this check. For a description
of the check and code examples, see Illegally dereferenced pointer.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Place your cursor on the dereference operator.
Obtain the following information from the tooltip:

* Whether the pointer can be NULL.

In the following example, ptr can be NULL when dereferenced.

ptr = 1:
R['tl:ijrtﬂ:ua‘r:ulﬁ cause for '[legally dereferenced pointer': Stubbed function 'mput’
Dereference of local pointer 'pir’ (pointer to mt 32, size; 32 bitsy:
Fointer tnay be null
FPoints to 4 bytes at unknown offset in buffer of unlmown size, so may be outside bounds.
Pointer may point to dynamically allocated memory.
Azsigntnent to dereference of local pointer 'pir' (it 320 1

Possible fix: Dereference ptr only if it is not NULL.

if(ptr !=NULL)
*ptr = 1;
else
/* Alternate action */

18-22

Review and Fix lllegally Dereferenced Pointer Checks

* Whether the pointer points to dynamically allocated memory.

In the following example, ptr can point to dynamically allocated memory. It is possible
that the dynamic memory allocation operator returns NULL.

ptr = 1;
l{tl:ijrtﬂja‘r:ule cause for '[legally dereferenced pointer’: Stubbed function ‘nput’
Dereference of local pointer 'ptr' Cpointer to int 32, size: 32 bita):
Pointer may be null,
Foints to 4 bytes at unkhown offset in buffer of unltown size, so tnay be outside bounds.
Pointer may point to dynarnically allocated memory.
Assignment to dereference of local pointer 'pir' (int 320: 1

Possible fix: Check the return value of the memory allocation operator for NULL.

ptr = (char*) malloc(i);
if(ptr==NULL)

/* Error handling*/
else {

*ptr=0;

}

* Whether pointer points outside allowed bounds. A pointer points outside bounds when
the sum of pointer size and offset is greater than buffer size.

In the following example, the offset size (4096 bytes) together with pointer size (4
bytes) is greater than the buffer size (4096 bytes). If the pointer points to an array:

* The buffer size is the array size.

* The offset is the difference between the beginning of the array and the current
location of the pointer.

18-23

18 Reviewing Checks

dereference of local pointer 'ptr' (pointer to mnt 32, size: 32 bits):
pointer i3 not null
points to 4 bytes at offset 4096 in buffer of 4096 bytes, so is outside bounds
may point to variable or field of variable in: {main:arr}

Possible fix: Investigate why the pointer points outside the allowed buffer.
* Whether pointer can point outside allowed bounds because buffer size is unknown.

In the following example, the buffer size is unknown.

val = “ptroy

'%’rnbable cause for MNon-initialized variable': Stubbed function 'getAddress'
Probable cause for Tlegally dereferenced pointer': Stubbed function 'getAddress'

dereference of local pointer 'ptr' (pointer to int 32, size: 32 bits):
pointer is not null (but may not be allocated memory)
points to 4 bytes at unknown offset in buffer of unknown size, so may be outside bounds
may point to dynamically allocated memory

dereferenced value (int 32): full-range [-231 - 231

_1]

Possible fix: Investigate whether the pointer is assigned:

* The return value of an undefined function.

* The return value of a dynamic memory allocation function. Sometimes, Polyspace
cannot determine the buffer size from the dynamic memory allocation.

* Another pointer of a different type, for instance, void*.
» The probable root cause for illegal pointer dereference, if indicated in the tooltip.

In the following example, the software identifies a stubbed function, getAddress, as
probable cause.

18-24

Review and Fix lllegally Dereferenced Pointer Checks

‘%’rnbable- cause for Non-initialized variable': Stubbed function 'getAddress'
Probable cause for Tlegally dereferenced pointer': Stubbed function 'getAddress’

dereference of local pointer 'ptr' (pointer to int 32, size: 32 bits):
pointer is not null (but may not be allocated memory)
points to 4 byies at unknown offset in buffer of unknown size, so0 may be outside bounds
may point to dynamically allocated memory

dereferenced value (int 32): full-range [-231 .. 231

-1]

Possible fix: To avoid the illegally dereferenced pointer, constrain the return value of
getAddress. For instance, specify that getAddress returns a pointer to a 10-

element array. For more information, see “Constrain Stubbed Functions” on page 12-
15.

Step 2: Determine Root Cause of Check

Select the check and note the information on the Result Details pane.

If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction and trace back to the root cause.

If the Result Details pane shows the line number of probable cause for the check, in
the Polyspace user interface, right-click the Source pane. Select Go To Line.

Otherwise, based on the nature of the error, use one of the following methods to find

the root cause. You can perform the following steps in the Polyspace user interface
only.

18-25

18 Reviewing Checks

18-26

Error

How to Find Root Cause

Pointer can be
NULL.

Find an execution path where the pointer is assigned the
value NULL or not assigned a definite address.

1 Right-click the pointer and select Search For All
References.

2 Find each previous instance where the pointer is
assigned an address.

3 For each instance, on the Source pane, place your
cursor on the pointer. The tooltip indicates whether the
pointer can be NULL.

Possible fix: If the pointer can be NULL, place a check for
NULL immediately after the assignment.

if(ptr==NULL)
/* Error handling*/
else {

!
4 If the pointer is not NULL, see if the assignment occurs
only in a branch of a conditional statement. Investigate
when that branch does not execute.

Possible fix: Assign a valid address to the pointer in all
branches of the conditional statement.

Pointer can point to
dynamically
allocated memory.

Identify where the allocation occurs.

1 Right-click the pointer and select Search For All
References.

2 Find the previous instance where the pointer receives a
value from a dynamic memory allocation function such as
malloc.

Possible fix: After the allocation, test the pointer for
NULL.

Review and Fix lllegally Dereferenced Pointer Checks

Error

How to Find Root Cause

Pointer can point
outside bounds
allowed by the
buffer.

1 Find the allowed buffer.

a

On the Search tab, enter the name of the variable
that the pointer points to. You already have this
name from the tooltip on the check.

Search for the variable definition. Typically, this is
the first search result.

If the variable is an array, note the array size. If the
variable is a structure, search for the structure type
name on the Search tab and find the structure
definition. Note the size of the structure field that
the pointer points to.

2 Find out why the pointer points outside the allowed
buffer.

a

Right-click the pointer and select Search For All
References.

Identify any increment or decrement of the pointer.
See if you intended to make the increment or
decrement.

Possible fix: Remove unintended pointer arithmetic.
To avoid pointer arithmetic that takes a pointer
outside allowed buffer, use a reference pointer to
store its initial value. After every arithmetic
operation on your pointer, compare it with the
reference pointer to see if the difference is outside
the allowed buffer.

Step 3: Look for Common Causes of Check

Look for common causes of the Illegally dereferenced pointer check.

» Ifyou use pointers for moving through an array, see if you can use an array index

instead.

18-27

18 Reviewing Checks

18-28

To avoid use of pointer arithmetic in your code, look for violations of MISRA C: 2004
rule 17.4 or MISRA C: 2012 rule 18.4. For more information, see “Check for Coding
Rule Violations” on page 14-2.

* See if you use pointers for moving through the fields of a structure.

Polyspace does not allow the pointer to one field of a structure to point to another
field. To allow this behavior, use the option Enable pointer arithmetic across
fields (-allow-ptr-arith-on-struct).

* See if you are dereferencing a pointer that points to a structure but does not have
sufficient memory for all its fields. Such a pointer usually results from type-casting a
pointer to a smaller structure.

Polyspace does not allow such dereference. To allow this behavior, use the option
Allow incomplete or partial allocation of structures (-size-in-
bytes).

« If an orange check occurs in a function body, see if you are passing arrays of different
sizes in different calls to the function.

See if one particular call causes the orange check. For a tutorial, see “Identify
Function Call with Run-Time Error” on page 18-62.

* See if you are performing a cast between two pointers of incompatible sizes.

Step 4: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in

your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, the pointer receives an address from an undefined function. Then:
1 Polyspace assumes that the function can return NULL.

Therefore, the pointer dereference is orange.
2 Polyspace also assumes an allowed buffer size based on the type of the pointer.

If you increment the pointer, you exceed the allowed buffer. The pointer dereference
that follows the increment is orange.

Review and Fix lllegally Dereferenced Pointer Checks

3 If you know that the function returns a non-NULL value or if you know the true
allowed buffer, add a comment and justification in your code describing why you did
not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

18-29

18 Reviewing Checks

Review and Fix Incorrect Object Oriented Programming
Checks

18-30

In this section...

“Step 1: Interpret Check Information” on page 18-30
“Step 2: Determine Root Cause of Check” on page 18-31

Follow one or more of these steps until you determine a fix for the Incorrect object
oriented programming check. For a description of the check and code examples, see
Incorrect object oriented programming.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information

On the Results List pane, select the check. The Result Details pane displays further
information about the check.

® Incorrect object oriented programming &
Error: incorrect this-pointer type of Typelnfo

You can see:
* The immediate cause of the check. For instance:

* You dereference a function pointer that has the value NULL or points to an invalid
member function.

The member function is invalid if its argument or return type does not match the
pointer argument or return type.

* You call a pure virtual member function of a class from the class constructor or
destructor.

* You call a member function using an incorrect this pointer.

To see why the this pointer can be incorrect, see Incorrect object oriented
programming.

Review and Fix Incorrect Object Oriented Programming Checks

» The probable root cause of the check, if indicated.

Step 2: Determine Root Cause of Check

If you cannot determine the root cause based on the check information, use navigation
shortcuts in the user interface to navigate to the root cause.

Based on the specific error, use one of the following methods to find the root cause.

Error How to Find Root Cause

You dereference a Right-click the function pointer and select Search For All
function pointer that References. Find the instance where you assign NULL to the
has the value NULL. function pointer.

You dereference a Compare the argument and return types of the function pointer
function pointer that and the member function that it points to.

points to an invalid i . . .
T e 1 Right-click the function pointer on the Source pane and

select Search For All References. Find the instances
where you:

* Define the function pointer.

* Assign the address of a member function to the function
pointer.

2 Find the member function definition. Right-click the
member function name on the Source pane and select Go
To Definition.

18-31

18 Reviewing Checks

18-32

Error

How to Find Root Cause

You call a pure
virtual member
function from a
constructor or
destructor.

Find the member function declaration and determine whether
you intended to declare it as virtual or pure virtual.
Alternatively, determine if you can replace the call to the pure
virtual function with another operation, for instance, a call to
a different member function.

1 Right-click the function name on the Source pane and
select Search for function_name in All Source Files.

2 Find the function declaration from the search results.

A pure virtual function has a declaration such as:

virtual void func() = 0;

You call a member
function using an
incorrect this pointer.

Determine why the this pointer is incorrect.

For instance, if a red Incorrect object oriented
programming check appears on a function call ptr->func()
and the message indicates that the this pointer is incorrect,
trace the data flow for ptr.

* Right-click the function pointer on the Source pane and
select Search For All References.

* Browse through all write operations on the pointer. Look for
the following issues:
* Cast between pointers of unrelated types.

* Pointer arithmetic that takes a pointer outside its
allowed buffer, for instance, the bounds of an array.

If a red Incorrect object oriented programming check
appears on a function call obj . func(), trace the data flow for
obj. See if obj is not initialized previously.

Review and Fix Invalid C++ Specific Operations Checks

Review and Fix Invalid C++ Specific Operations Checks

Follow one or more of these steps until you determine a fix for the Invalid C++ specific
operations check. There are multiple ways to fix a red or orange check. For a description
of the check and code examples, see Invalid C++ specific operations.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover

Results” on page 17-2.

Step 1: Interpret Check Information

On the Results List pane, select the check. The Result Details pane displays further
information about the check.

C++ specific checks &
Warning: typeid argument may be incorrect
This check may be an issue related to unbounded input values
If appropriate, applying DRS to stubbed function getShapePtr() in file_typeid. cpp line 53 may remove this orange.

You can see:
* The immediate cause of the check. For instance:
* The size of an array is not strictly positive.

For instance, you create an array using the statement arr = new char [num].
num is possibly zero or negative.

Possible fix: Use num as an array size only if it is positive.
* The typeid operator dereferences a possibly NULL pointer.

Possible fix: Before using the typeid operator on a pointer, test the pointer for
NULL.

* The dynamic_ cast operator performs an invalid cast.

18-33

18 Reviewing Checks

Possible fix: The invalid cast results in a NULL return value for pointers and the
std::bad_cast exception for references. Try to avoid the invalid cast. Otherwise,
if the invalid cast is on pointers, make sure that you test the return value of
dynamic_cast for NULL before dereference. If the invalid cast is on references,
make sure that you catch the std: :bad cast exception in a try-catch

statement.

* The probable root cause of the check, if indicated.

Step 2: Determine Root Cause of Check

If you cannot determine the root cause based on the check information, use navigation
shortcuts in the user interface to navigate to the root cause.

Based on the nature of the error, use one of the following methods to find the root cause.

Error How to Find Root Cause
An array size is 1 Trace the data flow for the size variable.
nonpositive.
Follow the same root cause investigation steps as for a
Division by Zero check. See “Review and Fix Division by
Zero Checks” on page 18-10.
2 Identify a point where you can constrain the array size
variable to positive values.
The typeid operator |1 Trace the data flow for the pointer variable.
dereferences a
possibly NULL pointer. Follow the same root cause investigation steps as for an
Illegally dereferenced pointer check. See “Review and Fix
llegally Dereferenced Pointer Checks” on page 18-22.
2 Identify a point where you can test the pointer for NULL.

The dynamic cast
operator performs an
invalid cast.

Navigate to the definitions of the classes involved. Determine the
inheritance relationship between the classes.

1

2

On the Source pane in the Polyspace user interface, right-
click the class name.

Select Go To Definition.

18-34

Review and Fix Invalid C++ Specific Operations Checks

Step 3: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in

your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you obtain the array size variable from a stubbed function getSize. Then:
1 Polyspace assumes that the return value of getSize is full-range. The range includes

nonpositive values.

2 Using the variable as array size in dynamic memory allocation causes orange Invalid
C++ specific operations.

3 Ifyou know that the variable takes a positive value, add a comment and justification
explaining why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

18-35

18 Reviewing Checks

Review and Fix Invalid Shift Operations Checks

Follow one or more of these steps until you determine a fix for the Invalid shift
operations check. There are multiple ways to fix the check. For a description of the
check and code examples, see Invalid shift operations.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.
Step 1: Interpret Check Information

Select the red or orange Invalid shift operations check. Obtain the following
information from the Result Details pane:

» The reason for the check being red or orange. Possible reasons:
* The shift amount can be outside allowed bounds.

The software also states the allowed range for the shift amount.
* Left operand of left shift can be negative.

In the example below, a red error occurs because the shift amount is outside allowed
bounds. The allowed range for the shift amount is 0 to 31.

® 1nvalid shift operations &
Error: left operand of left shift is negative
This check may be a path-related issue, which is not dependent on input values
operator << on type int 32
left: -200
right: 1

Possible fix: To avoid the red or orange check, perform the shift operation only if the
shift amount is within bounds.

if(shiftAmount < (sizeof(int) * 8))
/* Perform the shift */

18-36

Review and Fix Invalid Shift Operations Checks

else
/* Error handling */

* Probable root cause for the check, if the software provides this information.

Invalid shift operations &
Warning: left operand of left shift may be negative
This check may be an issue related to unbounded input values
If appropriate, applying DRS to stubbed function getVal in shf_2.c line 9 may remove this orange.
If appropriate, applying DRS to stubbed function getVal in shf_2.c line 8 may remove this arange.
operator << on type int 32

left: [-65535 .. 55535]

right: 10

result: multiples of 1024 in [0 .. 67107840 (0x3FFFCO0]]

In the preceding example, the software identifies a stubbed function, getVal as
probable cause.

Possible fix: To avoid the orange check, constrain the return value of getVal. For
instance, specify that getVal returns values in a certain range, for example, 0. . 10.
For more information, see “Constrain Stubbed Functions” on page 12-15.

Step 2: Determine Root Cause of Check

+ If the shift amount is outside bounds, trace the data flow for the shift variable. Identify
a suitable point where you can constrain the shift variable.

In the following example, trace the data flow for shiftAmount.

void func(int val) {
int shiftAmount = getShiftAmount();
int res = val >> shiftAmount;

}
You might find that getShiftAmount returns full-range of values.
Possible fix:

* Perform the shift operation only if shiftAmount is between 0 and
(sizeof(int))*8 - 1.

* Constrain the return value of getShiftAmount, in the body of getShiftAmount
or through the Polyspace Constraint Specification interface, if you do not have the

18-37

18 Reviewing Checks

18-38

definition of getShiftAmount. For more information, see “Constrain Stubbed
Functions” on page 12-15.

If the left operand of a left shift operation can be negative, trace the data flow for the
left operand variable. Identify a suitable point where you can constrain the left
operand variable.

In the following example, trace the data flow for shiftAmount.

void func(int shiftAmount) {
int val = getVal();
int res = val << shiftAmount;

}

You might find that getVal returns full-range of values.
Possible fix:

» Perform the shift operation only if val is positive.

* Constrain the return value of getVal, in the body of getVal or through the
Polyspace Constraint Specification interface, if you do not have the definition of
getVal. For more information, see “Constrain Stubbed Functions” on page 12-15.

+ If you want Polyspace to allow the operation, use the analysis option Allow
negative operand for left shifts. See Allow negative operand for left
shifts (-allow-negative-operand-in-shift).

To trace the data flow, select the check and note the information on the Result Details
pane.

If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction.

If the Result Details pane shows the line number of probable cause for the check,
right-click on the Source pane. Select Go To Line.

Otherwise:

1 Find the previous write operation on the variable you want to trace.
2 At the previous write operation, identify a new variable to trace back.

Place your cursor on the variables involved in the write operation to see their
values. The values help you decide which variable to trace.

3 Find the previous write operation on the new variable. Continue tracing back in
this way until you identify a point to specify your constraint.

Review and Fix Invalid Shift Operations Checks

Depending on the variable, use the following navigation shortcuts to find previous
instances. You can perform the following steps in the Polyspace user interface only.

Variable

How to Find Previous Instances of Variable

Local Variable

Use one of the following methods:
» Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the
Search pane with the current instance
highlighted.

2 On the Search pane, select the previous
instances.

* Browse the source code.
1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

If the option Show In
Variable Access View
appears, the variable is
a global variable.

Right-click the variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance
of the variable is shown.

2 On this pane, select the previous instances of the
variable.

Write operations on the variable are indicated with

4 and read operations with » .

18-39

18 Reviewing Checks

Variable How to Find Previous Instances of Variable

Function return value 1 Find the function definition.

ret=func(); Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is
not available to Polyspace, selecting the option
takes you to the function declaration.

2 In the definition of func, identify each return
statement. The variable that the function returns is
your new variable to trace back.

You can also determine if variables in any operation are related from some previous
operation. See “Find Relations Between Variables in Code” on page 18-103.

Step 3: Look for Common Causes of Check

Look for common causes of the Invalid Shift Operations check.

* See if you have specified the right target processor type. The target processor type
determines the number of bits allowed for a certain variable type.

To determine the number of bits allowed:
1 Navigate to the variable definition. Note the variable type.

Right-click the variable and select Go To Definition, if the option exists.
2 See the number of bits allowed for the type.

In the configuration used for your results, select the Target & Compiler node.
Click the Edit button next to the Target processor type list.

» For left shifts with a negative operand, see if you intended to perform a right shift
instead.

Step 4: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in

your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

18-40

Review and Fix Invalid Shift Operations Checks

For instance, you obtain a variable from an undefined function and perform a left shift on
it. Then:
Polyspace assumes that the function can return a negative value.

The left shift operation can occur on a negative value and therefore there is an
orange check on the operation.

3 Ifyou know that the function returns a positive value, add a comment and
justification describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

18-41

18 Reviewing Checks

Review and Fix Invalid Use of Standard Library Routine
Checks

18-42

Follow one or more of these steps until you determine a fix for the Invalid use of
standard library routine check. For a description of the check and code examples, see
Invalid use of standard library routine.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information

Select the check on the Results List pane. View further information about the check on
the Result Details pane. The check is red or orange because of invalid function
arguments.

® 1nvalid use of standard library routine &
Error: function 'sgrt’ is called with invalid argument(s)
I Argument is definitely negative

The cause of a red or orange check depends on the standard library function that you use.
The following table shows the possible causes for some of the commonly used functions.

Function Cause of Red or Orange Check

islower, isdigit, and The value of the argument can be outside the range
other character-handling allowed for an unsigned char variable.
functions in ctype.h

Note that you can use the macro EOF as argument.

Review and Fix Invalid Use of Standard Library Routine Checks

Function

Cause of Red or Orange Check

Functions in math.h

The software checks for multiple kinds of errors in
sequence. The software performs each check only for
those execution paths where the previous check passes.

Some examples are given below. For more information
and a list of functions, see “Invalid Use of Standard
Library Floating Point Routines” on page 18-45.

sqrt The value of the argument
can be negative.
pow The first argument can be

negative while the second
argument is a non-integer.

exp, exp2, or the hyperbolic
functions

The argument can be so
large that the result exceeds
the value allowed for a
double.

log

The argument can be zero
or negative.

asin or acos

The argument can be
outside the range [-1,1].

tan The argument can have the
value HALF PI.

acosh The argument can be less
than 1.

atanh The argument can be

greater than 1 or less than
-1.

fprintf, fscanf, and
other file handling functions

The file pointer argument can be non-readable. For

example, it can be NULL.

Functions that take string
arguments

The string argument can be an invalid string. For
example, it does not end with a terminating '\0".

18-43

18 Reviewing Checks

18-44

Function Cause of Red or Orange Check

memmove or memcpy The third argument of this function specifies the number
of bytes to copy from the second to the first argument.
This number can exceed the memory allocated to the first

or second argument.

Step 2: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on

page 19-2.

For instance, you obtain a value from an undefined function and perform the sqrt
operation on it. Then:

Polyspace assumes that the function can return a negative value.
2 Therefore, the software produces an orange Invalid Use of Standard Library
Routine check on the sqrt function call.

3 Ifyou know that the function returns a positive value, to avoid the orange, you can
specify a constraint on the return value of your function. See “Constrain Stubbed
Functions” on page 12-15. Alternately, add a comment and justification describing
why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Invalid Use of Standard Library Floating Point Routines

Invalid Use of Standard Library Floating Point Routines

Polyspace Code Prover performs the Invalid Use of Standard Library Routine check
on standard library routines to determine if their arguments are valid. The check works
differently for memory routines, floating-point routines or string routines because their
arguments can be invalid in different ways. This topic describes how the check works for

standard library floating-point routines.

For more information on the check, see Invalid use of standard library
routine.

What the Check Looks For

The Invalid Use of Standard Library Routine check sequentially looks for the
following issues in use of floating-point routines.

Domain error: A domain error occurs if the arguments of the function are invalid. The
definition of invalid argument varies based on whether you allow non-finite floats or
not. If you allow non-finite floats but:

* Specify that you must be warned about NaN results, a domain error occurs if the
function returns NaN and the arguments themselves are not NaN.

* Specify that NaN results must be forbidden, a domain error occurs if the function
returns NaN or the arguments themselves are NaN.

For details, see NaNs (-check-nan).

The check works in almost the same way as the check Invalid operation on
floats. The Invalid Use of Standard Library Routine check works on standard
library functions while the Invalid Operation on Floats check works on numerical
operations involving floating-point variables.

Overflow error: An overflow error occurs if the result of the function overflows. The
definition of overflow varies based on whether you allow non-finite floats and based on
the rounding modes you specify. If you allow non-finite floats but specify that you must
be warned about infinite results, an overflow error occurs if the function returns
infinity and the arguments themselves are not infinity. For details, see Infinities
(-check-infinite).

18-45

18 Reviewing Checks

18-46

The check works in the same way as the check Overflow. The Invalid Use of
Standard Library Routine check works on standard library functions while the
Overflow check works on numerical operations involving floating-point variables.

* Invalid pointer argument: For functions such as frexp that take pointer arguments,
the verification checks if it is valid to dereference the pointer. For instance, the pointer
is not NULL or does not point outside allowed bounds.

The check looks for these errors in sequence.

+ If the check finds a definite domain error, it does not look for the overflow error.

» If the check finds a possible domain error, it looks for the overflow error only for the
execution paths where the domain error does not occur.

The check for each error itself can consist of multiple conditions, which are also checked
in sequence. Each check is performed only for those execution paths where the previous
check passes.

Single-Argument Functions Checked

The Invalid Use of Standard Library Routine check covers the following routines,
their single-precision versions with suffix f (if they have one) and their long double
versions with suffix 1. The check works in exactly the same way for C and C++ code.

* acos
* acosh
e asin
* asinh
* atan
* atanh
¢ ceil
* COS

* cosh
* exp

* exp2
* expml
+ fabs

Invalid Use of Standard Library Floating Point Routines

floor
log
logl0
loglp
logb
round
sin
sinh
sqrt
tan
tanh
trunc
cbrt

Functions with Multiple Arguments

The Invalid Use of Standard Library Routine check covers the following routines,
their single-precision versions with suffix f (if they have one) and their long double
versions with suffix 1. The check works in exactly the same way for C and C++ code.

atan2
fdim
fma
fmax
fmin
fmod
frexp
hypot
ilogb
ldexp
modf
nextafter

18-47

18 Reviewing Checks

* nexttoward
* pow
* remainder

See Also
Consider non finite floats (-allow-non-finite-floats) | Float rounding
mode (-float-rounding-mode)

18-48

Review and Fix Non-initialized Local Variable Checks

Review and Fix Non-initialized Local Variable Checks

Follow one or more of these steps until you determine a fix for the Non-initialized local
variable check. There are multiple ways to fix this check. For a description of the check
and code examples, see Non-initialized local variable.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information

Place your cursor on the variable on which the Non-initialized local variable error
appears.

{5 Probable cause for Non-initialized local variable': Stubbed function 'mitialize’

Assignment to local variable 'val' (int 32): [-2° =1 _ 2° 1]
E] |

Local variable 'val' (int 32) full-range [-2° . 2° -1]

Obtain the probable root cause for the variable being non-initialized, if indicated in the
tooltip.

In the preceding example, the software identifies a stubbed function, initialize, as
probable cause.

Possible fix: To avoid the check, you can specify that initialize writes to its
arguments. For more information, see “Constrain Stubbed Functions” on page 12-15.

Step 2: Determine Root Cause of Check

You can perform the following steps in the Polyspace user interface only.

18-49

18 Reviewing Checks

1 Search for the variable definition. See if you initialize the variable when you define it.

Right-click the variable and select Go To Definition, if the option exists.

2 Ifyou do not want to initialize the variable during definition, browse through all
instances of the variable. Determine if you initialize the variable in any of those
instances.

Do one of the following:
* On the Source pane, double-click the variable.

Previous instances of the variable are highlighted. Scroll up to find them.
* On the Source pane, right-click the variable. Select Search For All References.

Select the previous instances on the Search pane.

Possible fix: If you do not initialize the variable, identify an instance where you can
initialize it.

3 Ifyou find an instance where you initialize the variable, determine if you perform the
initialization in the scope where the Non-initialized local variable error appears.

For instance, you initialize the variable only in some branches ofan if ...
elseif ... else statement. If you use the variable outside the statement, the
variable can be non-initialized.

Possible fix:
* Perform the initialization in the same scope where you use it.

In the preceding example, perform the initialization outside the if ...
elseif ... else statement.

* Perform the initialization in a block with smaller scope but make sure that the
block always executes.

In the preceding example, perform the initialization in all branches of the if
elseif ... else statement. Make sure that one branch of the statement
always executes.

Step 3: Look for Common Causes of Check

Look for common causes of the Non-initialized local variable check.

18-50

Review and Fix Non-initialized Local Variable Checks

See if you pass the variable to another function by reference or pointers before using
it. Determine if you initialize the variable in the function body.

To navigate to the function body, right-click the function and select Go To Definition,

if the option exists.
Determine if you initialize the variable in code that is not reachable.

For instance, you initialize the variable in code that follows a break or return
statement.

Possible fix: Investigate the unreachable code. For more information, see “Review and
Fix Unreachable Code Checks” on page 18-92.
Determine if you initialize the variable in code that can be bypassed during execution.

For instance, you initialize the variable in a loop inside a function. However, for certain
function arguments, the loop does not execute.

Possible fix:

* Initialize the variable during declaration.

* Investigate when the code can be bypassed. Determine if you can avoid bypassing
of the code.

If the variable is an array, determine if you initialize all elements of the array.

If the variable is a structured variable, determine if you initialize all fields of the
structure.

If you do not initialize a certain field of the structure, see if the field is unused.

Possible fix: Initialize a field of the structure if you use the field in your code.

Step 4: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in

your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you pass a variable to a function by pointer or reference. You intend to
initialize the variable in the function body, but you do not provide the function body
during verification. Then:

18-51

18 Reviewing Checks

18-52

* Polyspace assumes that the function might not initialize the variable.

» Ifyou use the variable following the function call, Polyspace considers that the
variable can be non-initialized. It produces an orange Non-initialized local variable
check on the variable.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

Disabling This Check

You can disable this check. If you disable this check, Polyspace assumes that at
declaration, variables have full-range of values allowed by their type. For more

information, see Disable checks for non-initialization (-disable-
initialization-checks).

Review and Fix Non-initialized Pointer Checks

Review and Fix Non-initialized Pointer Checks

Follow one or more of these steps until you determine a fix for the Non-initialized
pointer check. There are multiple ways to fix this check. For a description of the check
and code examples, see Non-initialized pointer.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information

Select the check on the Results List pane. On the Result Details pane, obtain further
information about the check.

Mon-initialized pointer
Wi'arning: pointer may be non-initialized
Dereferenced value (pointer toink &, size: & biks);
Painter is not null,
Paints ko 1 bykes ak offsek [1 ., 9] in buffer of 20 bykes, sois within bounds (F memary is allacated),
Paointer mayy paint to variable ar figld of wariable:
‘art', local ko Function 'main’,

Step 2: Determine Root Cause of Check

Right-click the pointer variable and select Go To Definition. Initialize the variable when
you define it. If you do not want to initialize during definition, identify a suitable point to
initialize the variable before you read it.

For orange checks, determine why the pointer is non-initialized on certain execution
paths.

1 Find previous instances where write operations are performed on the pointer.

2 For each write operation, determine if the operation occurs:

18-53

18 Reviewing Checks

18-54

» Before the read operation containing the orange Non-initialized pointer check.

Possible fix: If the write operation occurs after the read operation, see if you
intended to perform the operations in reverse order.

¢ In an unreachable code block.

Possible fix: Investigate why the code block is unreachable. See “Review and Fix
Unreachable Code Checks” on page 18-92.

* In a code block that is not reached on certain execution paths. For example, the
operation occurs in an if block in a function. The if block is not entered for
certain function inputs.

Possible fix: Perform a write operation on all the execution paths. In the preceding
example, perform the write operation in all branches of the if ... elseif
else statement.

Depending on the nature of the variable, use the appropriate method to find previous
operations on the variable. You can perform the following steps in the Polyspace user
interface only.

Variable How to Find Previous Operations on Variable

Local Variable Use one of the following methods:
» Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the Search
pane with the current instance highlighted.

2 On the Search pane, select the previous instances.
* Browse the source code.

1 On the Source pane, double-click the variable.

All instances of the variable are highlighted.

2 Scroll up to find the previous instances.

Review and Fix Non-initialized Pointer Checks

Variable How to Find Previous Operations on Variable
Global Variable 1 Select the option Show In Variable Access View.
Right-click the variable. If The current instance of the variable is shown on the
the option Show In Variable Access pane.
Variable Access View 2 On this pane, select the previous instances of the
appears, the variable is a el
global variable.
Write operations on the variable are indicated with 4 .
Read operations are indicated with ¥ .

Step 3: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in

your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

Disabling This Check
You can disable the check in two ways:

* You can disable the check only for non-local pointers. Polyspace considers global
pointer variables to be initialized to NULL according to ANSI C standards. For more
information, see Ignore default initialization of global variables.

* You can disable the check completely along with other initialization checks. If you
disable this check, Polyspace assumes that at declaration, pointers can be NULL or
point to memory blocks at an unknown offset. For more information, see Disable
checks for non-initialization (-disable-initialization-checks).

18-55

18 Reviewing Checks

Review and Fix Non-initialized Variable Checks

Follow one or more of these steps until you determine a fix for the Non-initialized
variable check. There are multiple ways to fix this check. For a description of the check
and code examples, see Non-initialized variable.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information

On the Results List pane, select the check. On the Result Details pane, obtain further
information about the check.

Mon-initialized variable
\arning: wariable may be non-initialized (bype: ink 32)

This check maw be a path-related issue, which is nok dependent on input values
Global wariable 'globbar’ {ink 323 0

Obtain the following information:
* Probable cause of check, if described on the Result Details pane.

In the preceding example, there is an orange Non-initialized variable check on the
global variable globVar.

The software detects that the check is potentially a path-related issue. Therefore, the
global variable can be non-initialized only on certain execution paths. For example,
you initialized the global variable in an if block, but did not initialize it in the
corresponding else block.

Possible fix: Determine along which paths the global variables can be non-initialized.
* Value of global variable, if initialized.

In the preceding example, when initialized, the global variable globVar has value 0.

18-56

Review and Fix Non-initialized Variable Checks

Step 2: Determine Root Cause of Check
You can perform the following steps in the Polyspace user interface only.

Right-click the variable and select Go To Definition. Initialize the variable when you
define it. If you do not want to initialize during definition, identify a suitable point to
initialize the variable before you read it.

If the check is orange, determine why the variable is non-initialized on certain execution
paths.

1 Right-click the variable. Select Show In Variable Access View.

2 On the Variable Access pane, select each write operation on the variable.

Write operations are indicated with 4 and read operations with » .
3 Determine if the write operation occurs:

* Before the read operation containing the orange Non-initialized variable check.

Possible fix: If the write operation occurs after the read operation, see if you
intended to perform the operations in reverse order.

* In an unreachable code block.

Possible fix: Investigate why the code block is unreachable. See “Review and Fix
Unreachable Code Checks” on page 18-92.

* In a code block that is not reached on certain execution paths. For example, the
operation occurs in an if block in a function. The if block is not entered for
certain function inputs.

Possible fix: Perform a write operation on all the execution paths. In the preceding
example, perform the write operation in all branches of the if ... elseif
else statement.

Step 3: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in

your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

18-57

18 Reviewing Checks

Disabling This Check
You can disable this check in two ways:

* You can specify that global variables must be considered as initialized. Polyspace
considers global variables to be initialized according to ANSI C standards. The default
values are:

* Oforint
* 0for char
* 0.0 for float

For more information, see Ignore default initialization of global variables.

* You can disable the check along with other initialization checks. If you disable this
check, Polyspace assumes that at declaration, variables have the full range of values
allowed by their type. For more information, see Disable checks for non-
initialization (-disable-initialization-checks).

18-58

Review and Fix Non-Terminating Call Checks

Review and Fix Non-Terminating Call Checks

Follow one or more of these steps until you determine a fix for the Non-terminating call
check. There are multiple ways to fix the check. For a description of the check and code
examples, see Non-terminating call.

For the general workflow on reviewing checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

A red Non-terminating call check on a function call indicates one of the following:

An operation in the function body failed for that particular call. Because there are
other calls to the same function that do not cause a failure, the operation failure
typically appears as an orange check in the function body:.

The function does not return to its calling context for other reasons. For example, a
loop in the function body does not terminate.

Step 1: Determine Root Cause of Check

Determine the root cause of the check in the function body. You can perform the following
steps in the Polyspace user interface only.

1

Navigate to the function definition.

Right-click the function call containing the red check. Select Go To Definition, if the
option exists.

In the function body, determine if there is a loop where the termination condition is
never satisfied.

Possible fix: Change your code or the function arguments so that the termination
condition is satisfied.

Otherwise, in the function body, identify which orange check caused the red Non-
terminating call check on the function call.

If you cannot find the orange check by inspection, rerun verification using the
analysis option Sensitivity context. Provide the function name as option argument.
The software marks the orange check causing the red Non-terminating call check
as a dark orange check.

For more information, see Sensitivity context (-context-sensitivity).

18-59

18 Reviewing Checks

18-60

For a tutorial on using the option, see “Identify Function Call with Run-Time Error”
on page 18-62.

Possible fix: Investigate the cause of the orange check. Change your code or the
function arguments to avoid the orange check.

Step 2: Look for Common Causes of Check

To trace a Non-terminating call check on a function call to an orange check in the
function body, try the following:

If the function call contains arguments, in the function body, search for all instances of
the function parameters. See if you can find an orange check related to the
parameters. Because other calls to the same function do not cause an operation
failure, it is likely that the failure is related to the function parameter values in the red
call.

In the following example, in the body of func, search for all instances of argl and
arg2. Right-click the variable name and select Search For All References.

void func(int argl, double arg2) {
}
void main() {

int vallIntl,vallnt2;
double valDoublel, valDouble2;

%unc(valIntl, valDoublel);
func(valInt2, valDouble2);
}

Because valIntl and valDoublel do not cause an operation failure in func, the
failure might be due to valInt2 or valDouble2. Because valInt2 and valDouble2
are copied to argl and arg2, the orange check must occur in an operation related to
argl or arg2.

If the function call does not contain arguments, identify what is different between
various calls to the function. See if you can relate the source of this difference to an
orange check in the function body.

Review and Fix Non-Terminating Call Checks

For instance, if the function reads a global variable, different calls to the function can
operate on different values of the global variable. Determine if the function body
contains an orange check related to the global variable.

18-61

18 Reviewing Checks

Identify Function Call with Run-Time Error

18-62

This tutorial shows how to identify the function call that causes a run-time error in the
function body.

If a function contains two different colors on the same operation for two different calls,
the software combines the call contexts and displays an orange check on the operation.
For example, when some function calls cause a red or orange check on an operation in the
function body and other calls cause a green check, in your verification results, the
operation is orange.

You have to distinguish orange checks that arise from combination of call contexts
because an orange check can arise from other causes. Using the option Sensitivity
context, make this distinction by storing individual call contexts for a function.

In this tutorial, a function is called twice. You identify which function call causes a run-
time error in the function body.

1 Run analysis on this code and open the results.

void func(int arg) {
int loc_var = 0;
loc var = 1/arg;

}

void main(void)
int num = 1;
func(num + 10);
func(num - 1);

{

}

A red Non-terminating call check appears on the second call to func. In the body
of func, there is an orange Division by zero check on the / operation.

2 Specify that you want to store individual call context information for the function
func.
a In your project configuration, select the Precision node.
b Select custom for Sensitivity context.

Click I:II_II:I to add a new field. Enter func.
3 Run verification and open the results.

See Also

An orange Division by zero check still appears in the body of func. However, this
orange check is marked on the Results List pane as a dark orange check and is

denoted by a * mark. Instead of a red Non-terminating call check, a dashed, red
line appears on the second call to func.

4 Select the orange check.

The Result Details pane shows the call contexts for the check. You can see that one
call produces a red check on the / operation and the other call produces a green
check. You can click each call to navigate to it in your source code.

Division by Zero &/
Warning (probable error): scalar division by zero may ococur
operator / on type int 32

left: fullrange [-231 - 23‘1-1]

right: fullrange [-231 . 23‘1-1]

result: fullrange [-231 . 231-1]

Calling context File Scope Line

operator (on typeint 32 left: 1 right: 0 file.c main g

operator [on type int 32 left: 1 right: 11 result: 0 file.c main 3
See Also

Non-terminating call

Related Examples

. “Review and Fix Non-Terminating Call Checks” on page 18-59
. “Test Orange Checks for Run-Time Errors” on page 17-90

More About
. “Orange Checks in Code Prover” on page 17-63

18-63

18 Reviewing Checks

Review and Fix Non-Terminating Loop Checks

18-64

Follow one or more of these steps until you determine a fix for the Non-terminating
loop check. There are multiple ways to fix the check. For a description of the check and
code examples, see Non-terminating loop.

For the general workflow on reviewing checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Place your cursor on the loop keyword such as for or while.
Obtain the following information from the tooltip:
* Whether the loop is infinite or contains a run-time error.
In the following example, it is likely that the loop is infinite.

while (i<10} {

| loop mav be infinite

» If the loop contains a run-time error, the number of loop iterations. Because Polyspace
considers that execution stops when a run-time error occurs, from this number, you
can determine which loop iteration contains the error.

In the following example, it is likely that the loop contains a run-time error. The error
is likely to occur on the 31st loop iteration.

while (i<1024) |

loop mav fail due to a run-time error (maximum number of iterations: 31)

Step 2: Determine Root Cause of Check
+ If the loop is infinite, determine why the loop-termination condition is never satisfied.

If you deliberately have an infinite loop in your code, such as for cyclic applications,
you can add a comment and justification in your result or code. See “Address
Polyspace Results Through Bug Fixes or Comments” on page 19-2.

Review and Fix Non-Terminating Loop Checks

+ If the loop contains a run-time error, identify the error that causes the Non-
terminating loop check. Fix the error.

In the loop body, the run-time error typically occurs as an orange check of another
type on an operation. The check is orange and not red because the operation typically
passes the check in the first few loop iterations and fails only in a later iteration.
However, because the failure occurs every time the loop runs, the Non-terminating
loop check on the loop keyword is red.

For loops with few iterations, you can navigate directly from the loop keyword to the
operation causing the run-time error.

» To find the source of error, on the Source pane, select the red loop keyword. The
Result Details pane shows the full history leading to the operation that causes the
run-time error.

* Navigate to the source of error in the loop body. Right-click the loop keyword and
select Go to Cause if the option exists.

18-65

18 Reviewing Checks

int a[l0]:

void foo{int

int x, i
x = 0;
fﬁr (1=0

x)
-]::I:I: '<§=

P 1= 105 1)

For a tutorial, see “Identify Loop Operation with Run-Time Error” on page 18-68.

Step 3: Look for Common Causes of Check

+ If the loop is infinite:

* Check your loop-termination condition.

* Inside the loop body, see if you change at least one of the variables involved in the
loop-termination condition.

For instance, if the loop-termination condition is while (countl + count2 <
count3), see if you are changing at least one of countl, count2, or count3in

the loop.

+ Ifyou are changing the variables involved in the loop-termination condition, see if
you are changing them in the right direction.

18-66

Review and Fix Non-Terminating Loop Checks

For instance, if the loop termination condition is while (i<10) and you decrement
i in the loop, the loop does not terminate. You must increment i.

» If the loop contains a run-time error:

If the loop control variable is an array index, see if you have an orange Out of
bounds array index error in the loop body.

If the loop control variable is passed to a function, see if you can relate the red
Non-terminating loop error to an orange error in the function body.

18-67

18 Reviewing Checks

Identify Loop Operation with Run-Time Error

18-68

This tutorial shows how to interpret Polyspace Code Prover results that highlight a run-
time error inside a loop.

If an error occurs in a loop, the error shows in the analysis results as a red Non-
terminating loop check on the loop keyword (for, while, and so on).

for (1 = 0; i <= 10; i++)

The operation causing the error shows as an orange check in the loop. To distinguish this
orange check from other orange checks in the loop, navigate directly from the red loop
keyword to the operation responsible for the run-time error.

In this tutorial, a function is called in a loop. The function body contains another loop,
which has an operation causing a run-time error. You trace from the first loop to the
operation causing the run-time error.

1 Run verification on this code and open the results:
int a[l00];
int f (int 1i);

void main() {

int i,x=0;
for (1 =0; 1 <=10; i++) {
X += f(1i);
}
}
int f (int i) {
int j, x;
X = 0;

for (j = 0; j <= 10; j++) {
X += a[lo + (i * j)I;
}

return Xx;

}

2 Select the red Non-terminating loop result. The Source pane highlights the for
loop in main.

See Also

3 Trace from the for loop in main to the operation causing the error. The operation is
x+= a[l1l0 + (i*j)].An Out of bounds array index error occurs when i is 9 and
j is 10. The error shows in orange on the [operator.

To trace from the red for keyword to the orange array access operation:

* Navigate directly to the operation. Right-click the for keyword and select Go to
Cause.

* See the full history from the for keyword to the array access operation. Select
the red for keyword. The Result Details pane shows the history.

.H-un-terminating loop &

The loop is infinite or contains a run-time error,

This check may be a path-related issue, which is not dependent on input values
Loop fails due to a run-time errar {maximum number of iterations: 10).

Event File Scope Line
1 Iterating on loop: loop ran 9 times file.c main() 5
2 Entering function 'f file.c main()
3 Iterating on loop: loop ran 10 times file.c il 13
4 Array index is outside its bounds : [0..99] file.c il 14
5 " The loop is infinite or contains a run-time error, file.c

You can read the event history in sequence. The outer loop loop runs nine times
without error. On the tenth iteration (1=9), the loop enters the function f. Inside
f, the inner loop runs ten times without error. On the eleventh iteration (j=10),
the array access causes an error.

You can use this information to determine how to fix the run-time error on the array
access operation.

Note You can navigate directly to the root cause of an error for loops with only a small
number of iterations.

See Also

Non-terminating loop

18-69

18 Reviewing Checks

Related Examples

. “Review and Fix Non-Terminating Loop Checks” on page 18-64
. “Test Orange Checks for Run-Time Errors” on page 17-90

More About
. “Orange Checks in Code Prover” on page 17-63

18-70

Review and Fix Null This-pointer Calling Method Checks

Review and Fix Null This-pointer Calling Method Checks

In this section...

“Step 1: Interpret Check Information” on page 18-71

“Step 2: Determine Root Cause of Check” on page 18-72

Follow one or more of these steps until you determine a fix for the Null this-pointer
calling method check. For a description of the check and code examples, see Null
this-pointer calling method.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information

Select the check on the Results List pane. The Result Details pane displays further
information about the check.

Mon-null this-pointer in method &
Warning: this-pointer of addMewClient may be null
This check may be an issue related to unbounded input values
If appropriate, applying DRS to stubbed function returnPointer() in nnt.cpp line 16 may remove this orange.

You can see:
* The immediate cause of the check.

In this example, the pointer used to call a method addNewClient can be NULL.
* The probable root cause of the check, if indicated.

In this example, the check can be related to a stubbed function returnPointer.

18-71

18 Reviewing Checks

18-72

Step 2: Determine Root Cause of Check

Find an execution path where the pointer is either assigned the value NULL or assigned
values from an undefined function or unknown function inputs. In the latter case, the
software assumes that the pointer can be NULL.

Select the check on the Results List pane.

If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction and trace back to the root cause.

If the Result Details pane shows the line number of probable cause for the check, in
the Polyspace user interface, right-click the Source pane. Select Go To Line.

If the Result Details pane does not lead you to the root cause, using the Source pane
in the Polyspace user interface, find how the pointer used to call the method can be
NULL.

1

Right-click the pointer and select Search For All References.
Find each previous instance where the pointer is assigned an address.

For each instance, on the Source pane, place your cursor on the pointer. The
tooltip indicates whether the pointer can be NULL.

Possible fix: If the pointer can be NULL, place a check for NULL immediately after
the assignment.

if(ptr==NULL)
/* Error handling*/
else {

!
If the pointer is not NULL, see if the assignment occurs only in a branch of a
conditional statement. Investigate when that branch does not execute.

Possible fix: Assign a valid address to the pointer in all branches of the conditional
statement.

Review and Fix Out of Bounds Array Index Checks

Review and Fix Out of Bounds Array Index Checks

Follow one or more of these steps until you determine a fix for the Out of bounds array
index check. There are multiple ways to fix the check. For a description of the check and
code examples, see Out of bounds array index.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information

Place your cursor on the [symbol.

ay size: 10
array index value: [0 .. 10]

Element of global array (int 32): full-range [-2°~ _ 2°

Obtain the following information from the tooltip:

* Array size. The allowed range for array index is 0 to (array size - 1).
* Actual range for array index

In the preceding example, the array size is 10. Therefore, the allowed range for the array
index is 0 to 9. However, the actual range is 0 to 10.

Possible fix: To avoid the out of bounds array index, access the array only if the index is
between 0 and (array size - 1).

#define SIZE 100
int arr[SIZE];

if (i<SIZE)

18-73

18 Reviewing Checks

18-74

val = arr[i]
else
/*Error handling */

Step 2: Determine Root Cause of Check

If you want to know or change the array size, right-click the array variable and select Go
To Definition, if the option exists. Otherwise, trace the data flow starting from the array
index variable. Identify a point where you can constrain the index variable.

To trace the data flow, select the check, and note the information on the Result Details

pane.

If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction.

If the Result Details pane shows the line number of probable cause for the check,
right-click on the Source pane. Select Go To Line.

Otherwise:

1 Find previous instances of the array index variable.

2 Browse through those instances. Find the instance where you constrain the array
index variable to (array size - 1).
Possible fix: If you do not find an instance where you constrain the index variable,
specify a constraint for the variable. For example:
if(index<SIZE)

read(array[index]);

3 Determine if the constraint applies to the instance where the Out of bounds
array index error occurs.
For example, you can constrain the index variable in a for loop using
for(index=0; index<SIZE; index++). However, you access the array
outside the loop where the constraint does not apply.
Possible fix: Investigate why the constraint does not apply. See if you have to
constrain the index variable again.

4 If the index variable is obtained from another variable, trace the data flow for the

second variable. Determine if you have constrained that second variable to (array
size - 1).

Review and Fix Out of Bounds Array Index Checks

Depending on the variable, use the following navigation shortcuts to find previous
instances. You can perform the following steps in the Polyspace user interface only.

Variable

How to Find Previous Instances of Variable

Local Variable

Use one of the following methods:

Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the Search
pane with the current instance highlighted.

2 On the Search pane, select the previous instances.
Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable 1 Select the option Show In Variable Access View.
Right-click the variable. If On the Variable Access pane, the current instance of
the option Show In the variable is shown.
Variable Access View 2 On this pane, select the previous instances of the
appears, the variable is a el
global variable.
Write operations on the variable are indicated with 4
and read operations with ».
Function return value 1 Find the function definition.
ret=func(); Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is not
available to Polyspace, selecting the option takes you to
the function declaration.
2 In the definition of func, identify each return

statement. The variable that the function returns is your
new variable to trace back.

18-75

18 Reviewing Checks

18-76

You can also determine if variables in any operation are related from some previous
operation. See “Find Relations Between Variables in Code” on page 18-103.

Step 3: Look for Common Causes of Check

Look for common causes of the Out of bounds array index check.

* See if you are starting the array index variable from 0.

* In the condition that constrains your array index variable, see if you use <= when you
intended to use <.

» Ifacheck occurs in or immediately after a for or while loop, determine if you have
to reduce the number of runs of the loop.

» Ifyou use the sizeof function to constrain your array, see if you are dividing
sizeof(array) by sizeof(array[0]) to obtain the array size.

sizeof (array) returns the array size in bytes.

Step 4: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in

your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you constrain the array index using a function whose definition you do not
provide. Then:
1 Polyspace cannot determine that the array index variable is constrained.

2 When you use this variable as array index, an Out of bounds array index error can
occur.

3 Ifyou know that the variable is constrained to the array size, add a comment and
justification describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

Review and Fix Out of Bounds Array Index Checks

For instance, constraining a global variable in one function and using it as array index in
a second function causes vulnerabilities in your code. If a new function is called between
the previous two functions and modifies your global variable, the constraint no longer
applies.

18-77

18 Reviewing Checks

Review and Fix Overflow Checks

18-78

Follow one or more of these steps until you determine a fix for the Overflow check. There
are multiple ways to fix the check. For a description of the check and code examples, see
Overflow.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information

Place your cursor on the operation that overflows.

return{val=2);

-‘]Pmbabla cause for 'Overflow'. Stubbed function 'getVal'

operator * on type mnt 32
left full-range [-2°) . 2°'-1]
right: 2
result: even values in [-2° __ 2147483646 (0x7FFFFFFE)]
(result is truncated)

Obtain the following information from the tooltip:
* The operand variable you can constrain to avoid the overflow.
In the preceding example, the left operand, val, has full range of values.

Possible fix: To avoid the overflow, perform the multiplication only if val is in a certain
range.

if(val < INT MAX/2)
return(val*2);

Review and Fix Overflow Checks

else
/* Alternate action */

* The probable root cause for overflow, if indicated in the tooltip.

In the preceding example, the software identifies a stubbed function, getVal, as
probable cause.

Possible fix: To avoid the overflow, constrain the return value of getVal. For instance,
specify that getVal returns values in a certain range, for example, 1. .10. For more
information, see “Constrain Stubbed Functions” on page 12-15.

Step 2: Determine Root Cause of Check

Trace the data flow starting from the operand variable that you want to constrain.
Identify a suitable point to specify your constraint.

In the following example, trace the data flow starting from tempVal.

val = func();
iempVal = val;

iempVa1++ ;
In this example, you might find that:
1 tempVal obtains a full-range of values from val.

Possible fix: Assign val to tempVal only if val is less than a certain value.
2 val obtains a full-range of values from func.

Possible fix: Constrain the return value of func, either in the body of func or
through the Polyspace Constraint Specification interface, if func is stubbed. For
more information, see “Constrain Stubbed Functions” on page 12-15.

To trace the data flow, select the check and note the information on the Result Details
pane.

» If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction.

18-79

18 Reviewing Checks

18-80

» If the Result Details pane shows the line number of probable cause for the check,
right-click on the Source pane. Select Go To Line.

* Otherwise:
1 Find the previous write operation on the operand variable.

Example: The previous write operation on tempVal is tempVal=val.
2 At the previous write operation, identify a new variable to trace back.

Place your cursor on the variables involved in the write operation to see their
values. The values help you decide which variable to trace.

Example: At tempVal=val, you find that val has a full-range of values.
Therefore, you trace val.

3 Find the previous write operation on the new variable. Continue tracing back in
this way until you identify a point to specify your constraint.

Example: The previous write operation on val is val=func(). You can choose to
specify your constraint on the return value of func.

Depending on the variable, use the following navigation shortcuts to find previous
instances. You can perform the following steps in the Polyspace user interface only.

Review and Fix Overflow Checks

Variable How to Find Previous Instances of Variable

Local Variable Use one of the following methods:
» Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the Search
pane with the current instance highlighted.

2 On the Search pane, select the previous instances.

Browse the source code.
1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable 1 Select the option Show In Variable Access View.
Right-click the variable. If On the Variable Access pane, the current instance of
the option Show In the variable is shown.

Variable Access View 2 On this pane, select the previous instances of the

appears, the variable is a
global variable.

variable.

Write operations on the variable are indicated with 4
and read operations with P .

Function return value 1 Find the function definition.

ret=func(); Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is not
available to Polyspace, selecting the option takes you to
the function declaration.

2 In the definition of func, identify each return
statement. The variable that the function returns is your
new variable to trace back.

You can also determine if variables in any operation are related from some previous
operation. See “Find Relations Between Variables in Code” on page 18-103.

18-81

18 Reviewing Checks

18-82

Tip To distinguish between integer and float overflows, use the Detail column on the
Results List pane. Click the column header so that integer and float overflows are
grouped together. If you do not see the Detail column, right-click any other column
header and enable this column.

Step 3: Look for Common Causes of Check

If the operation causing the overflow occurs in a loop or in the body of a recursive
function:
* See if you can reduce the number of loop runs or recursions.

* See if you can place an exit condition in the loop or recursive function before the
operation overflows.

Step 4: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in

your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on

page 19-2.

For instance, you are using a volatile variable in your code. Then:

1 Polyspace assumes that the volatile variable is full-range at every step in the code.

2 An operation using that variable can overflow and is therefore orange.

3 Ifyou know that the variable takes a smaller range of values, add a comment and
justification in your code describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

Detect Overflows in Buffer Size Computation

Detect Overflows in Buffer Size Computation

If you are computing the size of a buffer from unsigned integers, for the Detect
overflows option, instead of the default value signed, use signed-and-unsigned.
Using this option helps you detect an overflow at the buffer computation stage.
Otherwise, you might see an error later due to insufficient buffer. This option is available
on the Check Behavior node in the Configuration pane.

For this example, save the following C code in a file display. c:

#include <stdlib.h>
#include <stdio.h>

int get value(void);

void display(unsigned int num_items) {

int *array;

array = (int *) malloc(num_items * sizeof(int)); // overflow error
if (array) {

for (unsigned int ctr = 0; ctr < num_items; ctr++) {
array[ctr] = get value();

}

for (unsigned int ctr = 0; ctr < num_items; ctr++) {
printf("Value is %d.\n", ctr, array[ctr]);

}

free(array);

}
}

void main() {
display(33000);

Create a Polyspace project and add display. ¢ to the project.
2 On the Configuration pane, select the following options:
+ Target & Compiler: From the Target processor type drop-down list, select a
type with 16-bit int such as c167.
* Check Behavior: From the Detect overflows drop-down list, select signed.
3 Run the verification and open the results.

18-83

18 Reviewing Checks

18-84

Polyspace detects an orange Illegally dereferenced pointer error on the line
array[ctr] = get value() and a red Non-terminating loop error on the for
loop.

This error follows from an earlier error. For a 16-bit int, there is an overflow on the
computation num_items * sizeof(int). Polyspace does not detect the overflow
because it occurs in computation with unsigned integers. Instead Polyspace wraps
the result of the computation causing the Illegally dereferenced pointer error
later.

From the Detect overflows drop-down list, select signed-and-unsigned.

5 Polyspace detects a red Overflow error in the computation num_items *
sizeof(int).

See Also

Polyspace Analysis Options
Detect overflows (-scalar-overflows-checks)

Polyspace Results
Overflow | Illegally dereferenced pointer

Review and Fix Return Value Not Initialized Checks

Review and Fix Return Value Not Initialized Checks

Follow one or more of these steps until you determine a fix for the Return value not
initialized check. There are multiple ways to fix this check. For a description of the check
and code examples, see Return value not initialized.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information

Select the check on the Results List pane. On the Result Details pane, view further
information about the check.

Initialized return value
Warning: function may return a non-nitialized value
This check may be a path-related issue, which is not dependent on input values
If appropriate, applying DRS to stubbed function inputRep in file.c line & may remove this orange.

Returned value of reply (int 32): fullrange [-23'1 o 231-1]

View the probable cause of check, if mentioned on the Result Details pane.

In the preceding example, the software identifies a stubbed function, inputRep, as
probable cause.

Possible fix: To avoid the check, constrain the argument or return value of inputRep. For

instance, specify that inputRep returns values in a certain range, for example, 1. .10.
For more information, see “Constrain Stubbed Functions” on page 12-15.

Step 2: Determine Root Cause of Check

Determine the root cause of the check in the function body. You can perform the following
steps in the Polyspace user interface only.

18-85

18 Reviewing Checks

18-86

Navigate to the function definition.

Right-click the function call containing the check. Select Go To Definition, if the
option exists.

In the function body, check if a return statement occurs before the closing brace of
the function.

If a return statement does not exist:
a On the Search pane, search for the word return, or manually scroll through the
function body and look for return statements.

b For each return statement, determine if the statement appears in a scope
smaller than function scope.

For instance, a return statement occurs only in one branch of an if-else
statement.

Possible fix: See if you can place the return statement at the end of the function
body. For instance, replace the following code

int func(int ch) {
switch(ch) {
case 1: return 1;

break;
case 2: return 2;
break;
}
}
with

int func(int ch) {
int temp;
switch(ch) {

case 1l: temp = 1;
break;
case 2: temp = 2;
break;

}

return temp;

}

For information on how to enforce this practice, see Number of Return
Statements.

Review and Fix Return Value Not Initialized Checks

Step 3: Look for Common Causes of Check
Look for common causes of the Return value not initialized check.

* See if the return statements appear in if-else, for or while blocks. Identify
conditions when the function does not enter the block.

For instance, the function might not enter a while block for certain function inputs.
Possible fix:

* See if you can place the return statement at the end of the function body.

¢ Otherwise, determine how to avoid the condition when the function does not enter
the block.

For instance, if a function does not enter a block for certain inputs, see if you must
pass different inputs.

* See if you have code constructs such as goto that interrupt the normal control flow.
See if there are conditions when return statements in your function cannot be
reached because of these code constructs.

Possible fix:
* Avoid goto statements. For information on how to enforce this practice, see

Number of Goto Statements.

* Otherwise, determine how to avoid the condition when return statements in your
function cannot be reached.

Step 4: Trace Check to Polyspace Assumption

See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in

your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you have a return statement in branches of an if-elseif block but you
do not have the final else block. The condition you are testing in the i f-elseif blocks
involve variables obtained from an undefined function. Then:

1 Polyspace assumes that for certain values of those variables, none of the if-elseif
blocks are entered.

18-87

18 Reviewing Checks

18-88

2 Therefore, it is possible that the return statements are not reached.

3 Ifyou know that those values of the variables do not occur, add a comment and
justification describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.
Disabling This Check

You can disable this check. If you disable this check, Polyspace assumes the following
about a function return value if the function is missing return statements:

» If the return value is a non-pointer variable, it has full-range of values allowed by its
type.

» If the return value is a pointer, it can be NULL-valued or point to a memory block at an
unknown offset.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).

Review and Fix Uncaught Exception Checks

Review and Fix Uncaught Exception Checks

Follow one or more of these steps until you determine a fix for the Uncaught exception
check. For a description of the check and code examples, see Uncaught exception.

Step 1: Interpret Check Information

Select the check on the Results List pane. On the Result Details pane, view further
information about the check.

A red or orange Uncaught exception check can arise due to the following reasons.

Message in Result Details |Description

Function throws or call to The function body contains a throw statement or a
function throws. function call that leads to a throw statement.

Possible Fix: Navigate to the function containing the
throw statement. Catch the exception as early as possible
by using a try-catch block.

Exception raised is not The function header contains a throw declaration. The
specified in the throw list. data types in the declaration do not match the data type in
throw statements in the function body.

Possible Fix: Change the data type in the throw
declaration or the throw statements in the function body.

Step 2: Determine Root Cause of Check

If you do not catch an exception, it propagates up the function call hierarchy from the
function where the exception originates to the main function. If you fix a red or orange
Uncaught exception check in the function where the exception originates, the later
Uncaught exception checks are also fixed.

Navigate to the Uncaught exception check in the function where the exception
originates. You can start from an arbitrary Uncaught exception check on the Source
pane in the Polyspace user interface.

» If the Uncaught exception check appears on a function definition, see the function
header.

18-89

18 Reviewing Checks

If the check appears on the function name in the header, find another function call
in the body that contains a red or orange Uncaught exception check. If the
check appears on the function return type in the header, you have already found
the function where the exception originates.

If you find another function call with an Uncaught exception check, right-click
the call and select Go To Definition. You go to one level down in the function call
hierarchy to the function definition.

If the option Go To Definition is not available, on the Result Details pane, select

the = icon. Use the Call Hierarchy pane to navigate the function call hierarchy.

Continue navigating down the call hierarchy until you find the function that
contains a throw statement.

If the Uncaught exception check appears on a function call:

1

Right-click the call and select Go To Definition. You go to one level down in the
function call hierarchy to the function definition.

If the option Go To Definition is not available, on the Result Details pane, select

the f* icon. Use the Call Hierarchy pane to navigate the function call hierarchy.

Continue navigating down the call hierarchy until you find the function that
contains a throw statement.

If the Uncaught exception check appears on a new statement, navigate to the
definition of the constructor that you are using for object creation. Use the same root
cause navigation steps as earlier until you find the throw statement that causes the
check.

To navigate to the constructor definition from the new statement:

1
2

Select the Uncaught exception check on the new statement.

On the Result Details pane, select the fx icon.

On the Call Hierarchy pane, double-click the constructor
className: :className.

Possible Fix: Catch the exception as early as possible.

18-90

If the throw statement appears in the function body, place the statement in a try-
catch block.

Review and Fix Uncaught Exception Checks

* You can also catch the exception one level up in the call hierarchy. Place the call to the
function in a try-catch block.

To navigate one level up in the call hierarchy, select the function name in the header.

On the Result Details pane, select the fx icon. On the Call Hierarchy pane, select
each caller denoted by 4 .

18-91

18 Reviewing Checks

Review and Fix Unreachable Code Checks

18-92

Follow one or more of these steps until you determine a fix for the Unreachable code
check. There are multiple ways to fix this check. For a description of the check and code
examples, see Unreachable code.

If you determine that the check represents defensive code, add a comment and
justification in your result or code explaining why you did not change your code. See
“Address Polyspace Results Through Bug Fixes or Comments” on page 19-2.

Step 1: Interpret Check Information

Select the check on the Results List or Source pane.
View the message on the Result Details pane.

The message explains why the block of code is unreachable.

*ID 6: Unreachable code

Unreachable code

If-condition always evaluates to true at line 47 (column &).
Block ends at line 51 (colurmn 4)

3 A code block is usually unreachable when the condition that determines entry into
the block is not satisfied. See why the condition is not satisfied.

a On the Source pane, place your cursor on the variables involved in the condition
to determine their values.

b Using these values, see why the condition is not satisfied.

Note Sometimes, a condition itself is redundant. For example, it is always true or
coupled:

* Through an | | operator to another condition that is always true.
* Through an && operator to another condition that is always false.

For example, in the following code, the condition x%2==0 is redundant because the
first condition x>0 is always true.

assert(x>0);
if(x>0 || x%2 == 0)

Review and Fix Unreachable Code Checks

If a condition is redundant, instead of a block of code, the condition itself is marked
gray.

Step 2: Determine Root Cause of Check
Trace the data flow for each variable involved in the condition.

In the following example, trace the data flow for arg.
void foo(void) {
int x=0;

t.)ar(x);

}

void bar(int arg) {
if(arg==0) {
/*Block 1*/

}
else {

/*Block 2*/
}

}

You might find that bar is called only from foo. Since the only argument of bar has value
0, the else branch of if (arg==0) is unreachable.

Possible fix: If you do not intend to call bar elsewhere and know that the values passed to
bar will not change, you can remove the if-else statement in bar and retain only the
content of Block 1.

To trace the data flow, select the check and note the information on the Result Details
pane.

» If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction.

+ If the Result Details pane shows the line number of probable cause for the check,
right-click on the Source pane. Select Go To Line.

18-93

18 Reviewing Checks

* Otherwise, for each variable involved in the condition, find previous instances and
trace back to the root cause of check. For more information on common root causes,
see “Step 3: Look for Common Causes of Check” on page 18-95.

Depending on the variable, use the following navigation shortcuts to find previous
instances. You can perform the following steps in the Polyspace user interface only.

Variable

How to Find Previous Instances of Variable

Local Variable

Use one of the following methods:
* Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the
Search pane with the current instance
highlighted.

2 On the Search pane, select the previous
instances.

* Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

If the option Show In
Variable Access View
appears, the variable is
a global variable.

Right-click the variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance
of the variable is shown.

2 On this pane, select the previous instances of the
variable.
Write operations on the variable are indicated with

4 and read operations with » .

18-94

Review and Fix Unreachable Code Checks

Variable How to Find Previous Instances of Variable

Function return value 1 Find the function definition.

ret=func(); Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is
not available to Polyspace, selecting the option
takes you to the function declaration.

2 In the definition of func, identify each return
statement. The variable that the function returns is
your new variable to trace back.

You can also determine if variables in any operation are related from some previous
operation. See “Find Relations Between Variables in Code” on page 18-103.

Step 3: Look for Common Causes of Check

Look for common causes of the Unreachable code check.
» Look for the following in your if tests:
* You are testing the variables that you intend to test.
For example, you might have a local variable that shadows a global variable. You
might be testing the local variable when you intend to test the global one.
* You are using parentheses to impose the sequence in which you want operations in

the if test to execute.

For example, if((!a && b) || c¢) imposes a different sequence of operations
fromif(!(a && b) || c). Unless you use parentheses, the operations obey
operator precedence rules. The rules can cause the operations to execute in a
sequence that you did not intend.

* You are using = and == operators in the right places.
Possible fix: Correct errors if any.

* Use Polyspace Bug Finder to check for common defects such as Invalid use of
= operator and Variable shadowing.

+ To avoid errors due to incorrect operation sequence, check for violations of MISRA
C:2012 Rule 12.1.

18-95

http://en.cppreference.com/w/cpp/language/operator_precedence

18 Reviewing Checks

18-96

See if you are performing a test that you have performed previously.

The redundant test typically occurs on the argument of a function. The same test is
performed both in the calling and called function.

void foo(void) {
if (x>0)
bar(x);

}

void bar(int arg) {
if(arg==0) {
}

}

Possible fix: If you intend to call bar later, for example, in yet unwritten code, or reuse
bar in other programs, retain the test in bar. Otherwise, remove the test.

See if your code is unreachable because it follows a break or return statement.

Possible fix: See if you placed the break or return statement at an unintended place.

See if the section of unreachable code exists because you are following a coding
standard. If so, retain the section.

For example, the default block of a switch-case statement is present to capture
abnormal values of the switch variable. If such values do not occur, the block is
unreachable. However, you might violate a coding standard if you remove the block.

See if the unreachable code is related to an orange check earlier in the code.
Following an orange check, Polyspace normally terminates execution paths that
contain an error. Because of this termination, code following an orange check can

appear gray.

For example, Polyspace places an orange check on the dereference of a pointer ptr if
you have not vetted ptr for NULL. However, following the dereference, it considers
that ptris not NULL. If a test 1 f (ptr==NULL) follows the dereference of ptr,
Polyspace marks the corresponding code block unreachable.

For more examples, see:

* “Gray Check Following Orange Check” on page 17-57

Review and Fix Unreachable Code Checks

An exception to this behavior is overflow. If you specify the appropriate Overflow
computation mode, Polyspace wraps the result of an overflow and does not

terminate the execution paths. See Overflow computation mode (-scalar-
overflows-behavior).

* “Left operand of left shift may be negative”

Possible fix: Investigate the orange check. In the above example, investigate why the
test i (ptr==NULL) occurs after the dereference and not before.

18-97

18 Reviewing Checks

Review and Fix User Assertion Checks

18-98

Follow one or more of these steps until you determine a fix for the User assertion check.
There are multiple ways to fix this check. For a description of the check and code
examples, see User assertion.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

How to use this check: Typically you use assert statements during debugging to check
if a condition is satisfied at the current point in your code. For instance, if you expect a
variable var to have values in a range [1, 10] at a certain point in your code, you place
the following statement at that point:

assert(var >=1 && var <= 10);

Polyspace statically determines whether the condition is satisfied.

Therefore, you can judiciously insert assert statements that test for requirements from
your code.

* Ared result for the User assertion check indicates that the requirement is definitely
not met.

* An orange result for the User assertion check indicates that the requirement is
possibly not