
Polyspace® Code Prover™
User's Guide

R2018a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ User's Guide
© COPYRIGHT 2013–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2013 Online Only Revised for Version 9.0 (Release 2013b)
March 2014 Online Only Revised for Version 9.1 (Release 2014a)
October 2014 Online Only Revised for Version 9.2 (Release 2014b)
March 2015 Online Only Revised for Version 9.3 (Release 2015a)
September 2015 Online Only Revised for Version 9.4 (Release 2015b)
March 2016 Online Only Revised for Version 9.5 (Release 2016a)
September 2016 Online Only Revised for Version 9.6 (Release 2016b)
March 2017 Online Only Revised for Version 9.7 (Release 2017a)
September 2017 Online Only Revised for Version 9.8 (Release 2017b)
March 2018 Online Only Revised for Version 9.9 (Release 2018a)

Introduction to Polyspace Products
1

Polyspace Verification . 1-2
Polyspace Verification . 1-2
Value of Polyspace Verification . 1-2

How Polyspace Verification Works . 1-5
What is Static Verification . 1-5
Exhaustiveness . 1-6

Related Products . 1-7
Polyspace Bug Finder . 1-7
Polyspace Products for Verifying Ada Code 1-7
Tool Qualification and Certification . 1-7

How to Use Polyspace Software
2

Polyspace Verification and the Software
Development Cycle . 2-2

Software Quality and Productivity . 2-2
Best Practices for Verification Workflow 2-3

Implement Process for Verification . 2-4
Overview of the Polyspace Process . 2-4
Define Process to Meet Your Goals . 2-4
Apply Process to Assess Code Quality 2-5
Improve Your Verification Process . 2-5

Sample Workflows for Polyspace Verification 2-6
Overview of Verification Workflows . 2-6

v

Contents

Software Developers and Testers – Standard Development
Process . 2-6

Software Developers and Testers – Rigorous Development
Process . 2-9

Quality Engineers – Code Acceptance Criteria 2-12
Quality Engineers – Certification/Qualification 2-14
Model-Based Design Users — Verifying Generated Code 2-15
Project Managers — Integrating Polyspace Verification with
Configuration Management Tools 2-18

Define Your Requirements . 2-19
Define Broad Requirements for Verification 2-19
Define Specific Requirements for Verification 2-20

Run Polyspace Analysis on Desktop
3

Add Source Files for Analysis in Polyspace User Interface . . . 3-2
Add Sources from Build Command . 3-3
Add Sources Manually . 3-5

Run Polyspace Analysis on Desktop . 3-8
Arrange Layout of Windows for Project Setup 3-9
Set Product and Result Location . 3-9
Start and Monitor Analysis . 3-10
Fix Compilation Errors . 3-11
Open Results . 3-11

Project and Results Folder Contents . 3-13
Files in the Results Folder . 3-13

Storage of Temporary Files . 3-15

Create Project Using Visual Studio Information 3-16

Create Project Using Configuration Template 3-19
Why Use Templates . 3-19
Use Predefined Template . 3-19
Create Your Own Template . 3-20

vi Contents

Update Polyspace Project . 3-24
Change Folder Path . 3-25
Refresh Source List . 3-26
Refresh Project Created from Build Command 3-26
Add Source and Include Folders . 3-26
Manage Include File Sequence . 3-27

Organize Layout of Polyspace User Interface 3-29
Create Your Own Layout . 3-29
Save and Reset Layout . 3-30

Customize Polyspace User Interface . 3-32
Possible Customizations . 3-33
Storage of Polyspace User Interface Customizations 3-34

Run Polyspace Analysis with Windows or Linux
Scripts

4
Run Polyspace Analysis from Command Line 4-2

Specify Sources and Analysis Options Directly 4-2
Specify Sources and Analysis Options in Text File 4-3
Create Options File from Build System 4-3

polyspace-configure Source Files Selection Syntax 4-5

Create Command-Line Script from Project File 4-8
Generate Scripting Files . 4-8
Run an Analysis . 4-9

Run Polyspace Analysis with MATLAB Scripts
5

Run Polyspace Analysis by Using MATLAB Scripts 5-2
Specify Multiple Source Files . 5-2
Check for MISRA C:2012 Violations . 5-3
Check for Specific Defects or Coding Rule Violations 5-4

vii

Find Files That Do Not Compile . 5-4
Run Analysis on Cluster . 5-5

Generate MATLAB Scripts from Polyspace User Interface . . . 5-6

Troubleshoot Polyspace Analysis from MATLAB 5-9

Run Polyspace Analysis on Remote Clusters
6

Run Polyspace Analysis on Remote Clusters 6-2

Run Polyspace Analysis on Remote Clusters Using Scripts . . . 6-4
Run Remote Analysis . 6-4
Manage Remote Analysis . 6-6

Run Polyspace Analysis on Generated Code
7

Run Polyspace Analysis on Code Generated with Embedded
Coder . 7-2

Generate and Analyze Code . 7-2
Review Analysis Results . 7-4

Verify Generated Code Using Polyspace Code Prover 7-7

Analyze Code Generated from Simulink Subsystem 7-10
Open Model . 7-10
Generate Code . 7-11
Analyze Code . 7-12
Review Analysis Results . 7-12
Trace Errors Back to Model and Fix Them 7-13
Check for Coding Rule Violations . 7-16
Annotate Blocks to Justify Results . 7-16

Analyze S-Function Code . 7-18
S-Function Analysis Workflow . 7-18

viii Contents

Compile S-Functions to Be Compatible with Polyspace 7-18
Example S-Function Analysis . 7-19

Recommended Model Configuration Parameters for Polyspace
Analysis . 7-20

Configure Advanced Polyspace Options in Simulink 7-23
Configure Options . 7-23
Share and Reuse Configuration . 7-25

How Polyspace Analysis of Generated Code Works 7-28

Default Polyspace Options for Code Generated with Embedded
Coder . 7-29

Default Options . 7-29
Constraint Specification . 7-29
Recommended Polyspace options for Verifying Generated

Code . 7-30
Hardware Mapping Between Simulink and Polyspace 7-30

Run Polyspace Analysis on Code Generated with
TargetLink . 7-32
Configure and Run Analysis . 7-32
Review Analysis Results . 7-33

Default Polyspace Options for Code Generated with
TargetLink . 7-34

TargetLink Support . 7-34
Default Options . 7-34
Lookup Tables . 7-35
Data Range Specification . 7-35
Code Generation Options . 7-36

Troubleshoot Navigation from Code to Model 7-37
Links from Code to Model Do Not Appear 7-38
Links from Code to Model Do Not Work 7-38
Your Model Already Uses Highlighting 7-38

Run Polyspace on C/C++ Code Generated from MATLAB
Code . 7-40

Prerequisites . 7-40
Run Polyspace Analysis . 7-40
Review Analysis Results . 7-42

ix

Run Analysis for Specific Design Range 7-44

Configure Advanced Polyspace Options in MATLAB
Coder App . 7-47
Configure Options . 7-47
Share and Reuse Configuration . 7-49

Run Polyspace Analysis in IDE Plugins
8

Run Polyspace Analysis in Eclipse . 8-2
Configure and Run Analysis . 8-4
Review Analysis Results . 8-6

Specify Polyspace Compiler Options Through Eclipse
Project . 8-8

Eclipse Refers Directly to Your Compilation Toolchain 8-8
Eclipse Uses Your Compilation Toolchain Through Build

Command . 8-9

Running Polyspace on AUTOSAR Code
9

Using Polyspace in AUTOSAR Software Development 9-2
Check if Implementation of Software Components Follow
Specifications . 9-2

Assess Impact of Edits to Specifications 9-3
Check Code Implementation for Run-time Errors and Mismatch

with Specifications . 9-4
Check Code Implementation Against Specification Updates . . 9-4

Benefits of Polyspace for AUTOSAR . 9-6
Polyspace Modularizes Analysis Based on AUTOSAR

Components . 9-7
Polyspace Detects Mismatch Between Code and AUTOSAR XML

Spec . 9-10

x Contents

Run Polyspace on AUTOSAR Code . 9-15
Run Polyspace in User Interface . 9-15
Run Polyspace Using Scripts . 9-19
Open Code Prover Results . 9-20

Troubleshoot Polyspace Analysis of AUTOSAR Code 9-22
View Project Completion Status . 9-22
View Errors in AUTOSAR XML Parsing 9-23
View Compilation Errors in Code . 9-25

Run Polyspace on AUTOSAR Code with Conservative
Assumptions . 9-28

Configure Polyspace Analysis
10

Specify Polyspace Analysis Options . 10-2
Polyspace User Interface . 10-2
Windows or Linux Scripts . 10-3
MATLAB Scripts . 10-3
Eclipse and Eclipse-based IDEs . 10-4
Simulink . 10-4
MATLAB Coder App . 10-4

Configure Target and Compiler Options
11

Specify Target Environment and Compiler Behavior 11-2
Extract Options from Build Command 11-3
Specify Options Explicitly . 11-4

Provide Standard Library Headers for Polyspace Analysis . . . 11-6

Requirements for Project Creation from Build Systems 11-8
Compiler Requirements . 11-8
Build Command Requirements . 11-9

xi

Language Extensions Supported by Default 11-11

Supported Keil or IAR Language Extensions 11-13
Special Function Register Data Type 11-13
Keywords Removed During Preprocessing 11-14

Supported C++ 2011 Language Extensions 11-15

Remove or Replace Keywords Before Compilation 11-18
Remove Unrecognized Keywords . 11-18
Remove Unrecognized Function Attributes 11-20

Gather Compilation Options Efficiently 11-22

Configure Inputs and Stubbing Options
12

Specify External Constraints . 12-2
Create Constraint Template . 12-2
Create Constraint Template After Analysis 12-3
Update Existing Template . 12-4
Specify Constraints in Code . 12-4

External Constraints for Polyspace Analysis 12-6

Constrain Global Variable Range . 12-11

Constrain Function Inputs . 12-13

Constrain Stubbed Functions . 12-15

XML File Format for Constraints . 12-17
Syntax Description — XML Elements 12-17
Valid Modes and Default Values . 12-22

xii Contents

Configure Multitasking Analysis
13

Analyze Multitasking Programs in Polyspace 13-2
Configure Analysis . 13-3
Review Analysis Results . 13-4

Auto-Detection of Thread Creation and Critical Section in
Polyspace . 13-6

Multitasking Routines that Polyspace Can Detect 13-6
Example of Automatic Thread Detection 13-8
Naming Convention for Automatically Detected Threads . . . 13-11
Limitations of Automatic Thread Detection 13-12

Configuring Polyspace Multitasking Analysis Manually . . . 13-14
Specify Options for Multitasking Analysis 13-14
Adapt Code for Code Prover Multitasking Analysis 13-15

Protections for Shared Variables in Multitasking Code 13-19
Detect Unprotected Access . 13-19
Protect Using Critical Sections . 13-20
Protect Using Temporally Exclusive Tasks 13-21
Protect Using Priorities . 13-22

Configure Coding Rules Checking and Code Metrics
Computation

14
Check for Coding Rule Violations . 14-2

Configure Coding Rules Checking . 14-2
Review Coding Rule Violations . 14-4

Avoid Violations of MISRA C 2012 Rules 8.x 14-7

Create Custom Coding Rules . 14-11

Format of Custom Coding Rules File 14-13

xiii

Compute Code Complexity Metrics . 14-14
Impose Limits on Metrics . 14-14
Comment and Justify Limit Violations 14-17

HIS Code Complexity Metrics . 14-18
Project . 14-18
File . 14-18
Function . 14-18

Coding Rule Sets and Concepts
15

Polyspace MISRA C 2004 and MISRA AC AGC Checkers 15-2

MISRA C:2004 and MISRA AC AGC Coding Rules 15-3
Supported MISRA C:2004 and MISRA AC AGC Rules 15-3
Troubleshooting . 15-4
List of Supported Coding Rules . 15-4
Unsupported MISRA C:2004 and MISRA AC AGC Rules . . . 15-44

Software Quality Objective Subsets (C:2004) 15-47
Rules in SQO-Subset1 . 15-47
Rules in SQO-Subset2 . 15-48

Software Quality Objective Subsets (AC AGC) 15-53
Rules in SQO-Subset1 . 15-53
Rules in SQO-Subset2 . 15-54

Polyspace MISRA C:2012 Checkers . 15-57

Software Quality Objective Subsets (C:2012) 15-59
Guidelines in SQO-Subset1 . 15-59
Guidelines in SQO-Subset2 . 15-60

Coding Rule Subsets Checked Early in Analysis 15-64
MISRA C: 2004 and MISRA AC AGC Rules 15-64
MISRA C: 2012 Rules . 15-74

Unsupported MISRA C:2012 Guidelines 15-84

xiv Contents

Polyspace MISRA C++ Checkers . 15-85

MISRA C++ Coding Rules . 15-86
Supported MISRA C++ Coding Rules 15-86
Unsupported MISRA C++ Rules . 15-111

Software Quality Objective Subsets (C++) 15-116
SQO Subset 1 – Direct Impact on Selectivity 15-116
SQO Subset 2 – Indirect Impact on Selectivity 15-118

Polyspace JSF C++ Checkers . 15-123

JSF C++ Coding Rules . 15-124
Supported JSF C++ Coding Rules 15-124
Unsupported JSF++ Rules . 15-147

Configure Verification of Modules or Libraries
16

Provide Context for C Code Verification 16-2
Control Variable Range . 16-2
Control Function Call Sequence . 16-2
Control Stubbing Behavior . 16-3

Provide Context for C++ Code Verification 16-4
Control Variable Range . 16-4
Control Function Call Sequence . 16-4

Verify C Application Without main Function 16-6
Generate main Function . 16-6
Manually Write main Function . 16-6

Verify C++ Classes . 16-10
Verification of Classes . 16-10
Methods and Class Specifics . 16-12

xv

Interpret Polyspace Code Prover Results
17

Interpret Polyspace Code Prover Results 17-2
Interpret Result . 17-3
Find Root Cause of Result . 17-5

Code Prover Result and Source Code Colors 17-10
Result Colors . 17-10
Source Code Colors . 17-13
Global Variable Colors . 17-15

Code Prover Run-Time Checks . 17-17
Data Flow Checks . 17-17
Numerical Checks . 17-18
Static Memory Checks . 17-18
Control Flow Checks . 17-19
C++ Checks . 17-19
Other Checks . 17-20

Dashboard . 17-21

Concurrency Modeling . 17-27

Results List . 17-29

Source . 17-33

Result Details . 17-41

Call Hierarchy . 17-44

Variable Access . 17-47

Code Prover Analysis Following Red and Orange Checks . . 17-55
Code Following Red Check . 17-56
Green Check Following Orange Check 17-56
Gray Check Following Orange Check 17-57
Red Check Following Orange Check 17-58
Red Checks in Unreachable Code . 17-59

Order of Code Prover Run-Time Checks 17-61

xvi Contents

Orange Checks in Code Prover . 17-63
When Orange Checks Occur . 17-63
Why Review Orange Checks . 17-63
How to Review Orange Checks . 17-64
How to Reduce Orange Checks . 17-64

Managing Orange Checks . 17-66
Software Development Stage . 17-67
Quality Goals . 17-69

Critical Orange Checks . 17-71
Path . 17-71
Bounded Input Values . 17-72
Unbounded Input Values . 17-72

Limit Display of Orange Checks . 17-74

Software Quality Objectives . 17-77
Comparing Verification Results Against Software

Quality Objectives . 17-84

Reduce Orange Checks . 17-86
Provide Context for Verification . 17-86
Improve Verification Precision . 17-87
Follow Coding Rules . 17-87
Reduce Application Size . 17-88

Test Orange Checks for Run-Time Errors 17-90
Run Tests for Full Range of Input . 17-90
Run Tests for Specified Range of Input 17-92

Limitations of Automatic Orange Tester 17-94
Unsupported Platforms . 17-94
Unsupported Polyspace Options . 17-94
Options with Restrictions . 17-94
Unsupported C Routines . 17-94

xvii

Reviewing Checks
18

Review and Fix Absolute Address Usage Checks 18-3

Review and Fix Correctness Condition Checks 18-4
Step 1: Interpret Check Information 18-4
Step 2: Determine Root Cause of Check 18-7
Step 3: Trace Check to Polyspace Assumption 18-9

Review and Fix Division by Zero Checks 18-10
Step 1: Interpret Check Information 18-10
Step 2: Determine Root Cause of Check 18-11
Step 3: Look for Common Causes of Check 18-14
Step 4: Trace Check to Polyspace Assumption 18-14

Review and Fix Function Not Called Checks 18-16
Step 1: Interpret Check Information 18-16
Step 2: Determine Root Cause of Check 18-16
Step 3: Look for Common Causes of Check 18-17

Review and Fix Function Not Reachable Checks 18-18
Step 1: Interpret Check Information 18-18
Step 2: Determine Root Cause of Check 18-18

Review and Fix Function Not Returning Value Checks 18-20
Step 1: Interpret Check Information 18-20
Step 2: Determine Root Cause of Check 18-20

Review and Fix Illegally Dereferenced Pointer Checks 18-22
Step 1: Interpret Check Information 18-22
Step 2: Determine Root Cause of Check 18-25
Step 3: Look for Common Causes of Check 18-27
Step 4: Trace Check to Polyspace Assumption 18-28

Review and Fix Incorrect Object Oriented Programming
Checks . 18-30

Step 1: Interpret Check Information 18-30
Step 2: Determine Root Cause of Check 18-31

Review and Fix Invalid C++ Specific Operations Checks . . . 18-33
Step 1: Interpret Check Information 18-33

xviii Contents

Step 2: Determine Root Cause of Check 18-34
Step 3: Trace Check to Polyspace Assumption 18-35

Review and Fix Invalid Shift Operations Checks 18-36
Step 1: Interpret Check Information 18-36
Step 2: Determine Root Cause of Check 18-37
Step 3: Look for Common Causes of Check 18-40
Step 4: Trace Check to Polyspace Assumption 18-40

Review and Fix Invalid Use of Standard Library Routine
Checks . 18-42

Step 1: Interpret Check Information 18-42
Step 2: Trace Check to Polyspace Assumption 18-44

Invalid Use of Standard Library Floating Point Routines . . 18-45
What the Check Looks For . 18-45
Single-Argument Functions Checked 18-46
Functions with Multiple Arguments 18-47

Review and Fix Non-initialized Local Variable Checks 18-49
Step 1: Interpret Check Information 18-49
Step 2: Determine Root Cause of Check 18-49
Step 3: Look for Common Causes of Check 18-50
Step 4: Trace Check to Polyspace Assumption 18-51

Review and Fix Non-initialized Pointer Checks 18-53
Step 1: Interpret Check Information 18-53
Step 2: Determine Root Cause of Check 18-53
Step 3: Trace Check to Polyspace Assumption 18-55

Review and Fix Non-initialized Variable Checks 18-56
Step 1: Interpret Check Information 18-56
Step 2: Determine Root Cause of Check 18-57
Step 3: Trace Check to Polyspace Assumption 18-57

Review and Fix Non-Terminating Call Checks 18-59
Step 1: Determine Root Cause of Check 18-59
Step 2: Look for Common Causes of Check 18-60

Identify Function Call with Run-Time Error 18-62

Review and Fix Non-Terminating Loop Checks 18-64
Step 1: Interpret Check Information 18-64

xix

Step 2: Determine Root Cause of Check 18-64
Step 3: Look for Common Causes of Check 18-66

Identify Loop Operation with Run-Time Error 18-68

Review and Fix Null This-pointer Calling Method Checks . . 18-71
Step 1: Interpret Check Information 18-71
Step 2: Determine Root Cause of Check 18-72

Review and Fix Out of Bounds Array Index Checks 18-73
Step 1: Interpret Check Information 18-73
Step 2: Determine Root Cause of Check 18-74
Step 3: Look for Common Causes of Check 18-76
Step 4: Trace Check to Polyspace Assumption 18-76

Review and Fix Overflow Checks . 18-78
Step 1: Interpret Check Information 18-78
Step 2: Determine Root Cause of Check 18-79
Step 3: Look for Common Causes of Check 18-82
Step 4: Trace Check to Polyspace Assumption 18-82

Detect Overflows in Buffer Size Computation 18-83

Review and Fix Return Value Not Initialized Checks 18-85
Step 1: Interpret Check Information 18-85
Step 2: Determine Root Cause of Check 18-85
Step 3: Look for Common Causes of Check 18-87
Step 4: Trace Check to Polyspace Assumption 18-87

Review and Fix Uncaught Exception Checks 18-89
Step 1: Interpret Check Information 18-89
Step 2: Determine Root Cause of Check 18-89

Review and Fix Unreachable Code Checks 18-92
Step 1: Interpret Check Information 18-92
Step 2: Determine Root Cause of Check 18-93
Step 3: Look for Common Causes of Check 18-95

Review and Fix User Assertion Checks 18-98
Step 1: Determine Root Cause of Check 18-98
Step 2: Look for Common Causes of Check 18-101
Step 3: Trace Check to Polyspace Assumption 18-101

xx Contents

Find Relations Between Variables in Code 18-103
Insert Pragma to Determine Variable Relation 18-103
Further Exploration . 18-105

Review Polyspace Results on AUTOSAR Code 18-107

Fix or Comment Polyspace Results
19

Address Polyspace Results Through Bug Fixes or
Comments . 19-2

Comment in Results File . 19-3
Comment or Annotate in Code . 19-4

Annotate Code and Hide Known or Acceptable Results 19-6
Code Annotation Syntax . 19-6
Syntax Examples . 19-9

Short Names of Code Prover Run-Time Checks 19-12
Checks . 19-12
Code Complexity Metrics . 19-13

Annotate Code for Known or Acceptable Results
(Deprecated) . 19-15

Add Annotations from the Polyspace Interface 19-15
Add Annotations Manually . 19-16

Define Custom Annotation Format . 19-20
Define Annotation Syntax Format . 19-23
Map Your Annotation to the Polyspace Annotation Syntax . . 19-28

Annotation Description Full XML Template 19-30
Example . 19-34

Import Comments from Previous Polyspace Analysis 19-37
Import Comments from Another Analysis Result 19-37
View Imported Comments That Do Not Apply 19-38
Disable Automatic Comment Import from Last Analysis . . . 19-39

xxi

Import Existing MISRA C: 2004 Justifications to MISRA C:
2012 Results . 19-40

Mapping Multiple MISRA C: 2004 Annotations to the Same
MISRA C: 2012 Result . 19-41

Justify Coding Rule Violations Using Code Prover Checks . 19-43
Rules About Data Type Conversions 19-43
Rules About Pointer Arithmetic . 19-45

Manage Results
20

Filter and Group Results . 20-2
Filter Results . 20-4
Group Results . 20-9

Prioritize Check Review . 20-11

Generate Reports
21

Generate Reports . 21-2
Generate Reports from User Interface 21-2
Generate Reports from Command Line 21-4

Export Polyspace Analysis Results . 21-6
Export Results to Text File . 21-6
Export Results to MATLAB Table . 21-8
View Exported Results . 21-8

Export Global Variable List . 21-10
Export Variable List to Text File . 21-10
Export Variable List to MATLAB Table 21-12
View Exported Variable List . 21-12

Visualize Code Prover Analysis Results in MATLAB 21-15
Export Results to MATLAB Table . 21-15

xxii Contents

Generate Graphs from Results and Include in Report 21-15

Customize Existing Code Prover Report Template 21-19
Prerequisites . 21-19
View Components of Template . 21-19
Change Components of Template . 21-21
Further Exploration . 21-24

Sample Report Template Customizations 21-25
Add List of Recursive Functions . 21-25
Show Red Run-Time Checks Only . 21-26
Show Non-Justified Run-Time Checks Only 21-27
Add Chapter for Functional Design Errors 21-27

Software Quality with Polyspace Metrics
22

Code Quality Metrics . 22-2
Summary Tab . 22-2
Code Metrics Tab . 22-5
Coding Rules Tab . 22-5
Run-Time Checks Tab . 22-7

Generate Code Quality Metrics . 22-11
Upload Results to Polyspace Metrics After Remote Verificatio
n . 22-11

Upload Local Verification Results to Polyspace Metrics 22-11

View Code Quality Metrics . 22-14
Open Metrics Interface . 22-14
View All Projects and Runs . 22-14
Review Metrics for Particular Project or Run 22-16

Compare Metrics Against Software Quality Objectives 22-18
Apply Predefined Objectives to Metrics 22-18
Customize Software Quality Objectives 22-20

View Trends in Code Quality Metrics 22-25

Web Browser Requirements for Polyspace Metrics 22-28

xxiii

Elements in Custom Software Quality Objectives File 22-29
HIS Metrics . 22-29
Non-HIS Metrics . 22-30

Troubleshoot Verification Problems
23

View Error Information When Analysis Stops 23-3
View Error Information in User Interface 23-3
View Error Information in Log File . 23-4

Troubleshoot Compilation and Linking Errors 23-7
Issue . 23-7
Possible Cause: Deviations from ANSI C99 Standard 23-8
Possible Cause: Linking Errors . 23-9
Possible Cause: Conflicts with Polyspace Function Stubs . . 23-10

Reduce Verification Time . 23-12
Issue . 23-12
Possible Cause: Temporary Folder on Network Drive 23-12
Possible Cause: Large and Complex Application 23-13
Possible Cause: Too Many Entry Points for Multitasking

Applications . 23-15

Understand Verification Results . 23-17
Issue . 23-17
Possible Cause: Relation to Prior Code Operations 23-17
Possible Cause: Software Assumptions 23-18

Contact Technical Support . 23-21
Provide System Information . 23-21
Provide Information About the Issue 23-21

Polyspace Cannot Find the Server . 23-23
Message . 23-23
Possible Cause . 23-23
Solution . 23-23

Job Manager Cannot Write to Database 23-24
Message . 23-24

xxiv Contents

Possible Cause . 23-24
Workaround . 23-24

Compiler Not Supported for Project Creation from Build
Systems . 23-26

Issue . 23-26
Cause . 23-26
Solution . 23-26

Slow Build Process When Polyspace Traces the Build 23-36
Issue . 23-36
Cause . 23-36
Solution . 23-36

Check if Polyspace Supports Build Scripts 23-37
Issue . 23-37
Possible Cause . 23-37
Solution . 23-37

Troubleshooting Project Creation from MinGW Build 23-39
Issue . 23-39
Cause . 23-39
Solution . 23-39

Troubleshooting Project Creation from Visual Studio
Build . 23-40

Cannot Create Project from Visual Studio Build 23-40
Compilation Error After Creating Project from Visual Studio

Build . 23-40

Could Not Find Include File . 23-42
Issue . 23-42
Cause . 23-42
Solution . 23-42

Conflicting Universal Unique Identifiers (UUIDs) 23-44
Issue . 23-44
Solution . 23-44

Data Type Not Recognized . 23-46
Issue . 23-46
Cause . 23-46
Solution . 23-46

xxv

Undefined Identifier Error . 23-48
Issue . 23-48
Possible Cause: Missing Files . 23-48
Possible Cause: Unrecognized Keyword 23-48
Possible Cause: Declaration Embedded in #ifdef

Statements . 23-49
Possible Cause: Project Created from Non-Debug Build . . . 23-50

Unknown Function Prototype Error . 23-52
Issue . 23-52
Cause . 23-52
Solution . 23-52

Error Related to #error Directive . 23-54
Issue . 23-54
Cause . 23-54
Solution . 23-54

Large Object Error . 23-56
Issue . 23-56
Cause . 23-56
Solution . 23-56

Errors Related to Generic Compiler 23-59
Issue . 23-59
Cause . 23-59
Solution . 23-59

Errors Related to Keil or IAR Compiler 23-61
Missing Identifiers . 23-61

Errors Related to Diab Compiler . 23-62
Issue . 23-62
Cause . 23-62
Solution . 23-62

Errors Related to TASKING Compiler 23-65
Issue . 23-65
Cause . 23-65
Solution . 23-66

Errors from In-Class Initialization (C++) 23-67

xxvi Contents

Errors from Double Declarations of Standard Template Library
Functions (C++) . 23-68

Errors Related to GNU Compiler . 23-69
Issue . 23-69
Cause . 23-69
Solution . 23-69

Errors Related to Visual Compilers . 23-70
Import Folder . 23-70
pragma Pack . 23-70
C++/CLI . 23-71

Conflicting Declarations in Different Translation Units . . . 23-72
Issue . 23-72
Possible Cause: Variable Declaration and Definition

Mismatch . 23-73
Possible Cause: Function Declaration and Definition

Mismatch . 23-74
Possible Cause: Macro-dependent Definitions 23-75
Possible Cause: Keyword Redefined as Macro 23-76
Possible Cause: Differences in Structure Packing 23-77

Errors from Conflicts with Polyspace Header Files 23-78
Issue . 23-78
Cause . 23-78
Solution . 23-78

C++ Standard Template Library Stubbing Errors 23-80
Issue . 23-80
Cause . 23-80
Solution . 23-80

Lib C Stubbing Errors . 23-81
Extern C Functions . 23-81
Functional Limitations on Some Stubbed Standard ANSI

Functions . 23-82

Errors from Assertion or Memory Allocation Functions . . . 23-83
Issue . 23-83
Cause . 23-83
Solution . 23-83

xxvii

Eclipse Java Version Incompatible with Polyspace Plug-in . 23-84
Issue . 23-84
Cause . 23-84
Solution . 23-84

Reasons for Unchecked Code . 23-86
Issue . 23-86
Possible Cause: Compilation Errors 23-87
Possible Cause: Early Red or Gray Check 23-87
Possible Cause: Incorrect Options . 23-90

Source Files or Functions Not Displayed in Results List . . . 23-91
Issue . 23-91
Possible Cause: Files Not Verified . 23-91
Possible Cause: Filters Applied . 23-93

Coding Rule Violations Not Displayed 23-95
Issue . 23-95
Possible Cause: Rule Checker Not Enabled 23-95
Possible Cause: Rule Violations in Header Files 23-95
Possible Cause: Rule Violations in Macros 23-95
Possible Cause: Compilation Errors 23-96

Incorrect Behavior of Standard Library Math Functions . . . 23-97
Issue . 23-97
Cause . 23-97
Solution . 23-97

Insufficient Memory During Report Generation 23-98
Message . 23-98
Possible Cause . 23-98
Solution . 23-98

Errors with Temporary Files . 23-99
No Access Rights . 23-99
No Space Left on Device . 23-99
Cannot Open Temporary File . 23-100

Error from Special Characters . 23-101
Issue . 23-101
Cause . 23-101
Workaround . 23-101

xxviii Contents

Error from Disk Defragmentation and Antivirus Software 23-102
Issue . 23-102
Possible Cause . 23-102
Solution . 23-102

License Error –4,0 . 23-103
Issue . 23-103
Cause . 23-103
Solution . 23-103

Glossary

xxix

Introduction to Polyspace Products

• “Polyspace Verification” on page 1-2
• “How Polyspace Verification Works” on page 1-5
• “Related Products” on page 1-7

1

Polyspace Verification
In this section...
“Polyspace Verification” on page 1-2
“Value of Polyspace Verification” on page 1-2

Polyspace Verification
Polyspace products verify C, C++, and Ada code by detecting run-time errors before code
is compiled and executed.

To verify the source code, you set up verification parameters in a project, run the
verification, and review the results. A graphical user interface helps you to efficiently
review verification results. The software assigns a color to operations in the source code
as follows:

• Green – Indicates that the operation is proven to not have certain kinds of error.
• Red – Indicates that the operation is proven to have at least one error.
• Gray – Indicates unreachable code.
• Orange – Indicates that the operation can have an error along some execution paths.

The color-coding helps you to quickly identify errors and find the exact location of an
error in the source code. After you fix errors, you can easily run the verification again.

Value of Polyspace Verification
Polyspace verification can help you to:

• “Enhance Software Reliability” on page 1-2
• “Decrease Development Time” on page 1-3
• “Improve the Development Process” on page 1-4

Enhance Software Reliability

Polyspace software enhances the reliability of your C/C++ applications by proving code
correctness and identifying run-time errors. Using advanced verification techniques,
Polyspace software performs an exhaustive verification of your source code.

1 Introduction to Polyspace Products

1-2

Because Polyspace software verifies all executions of your code, it can identify code that:

• Never has an error
• Always has an error
• Is unreachable
• Might have an error

With this information, you know how much of your code does not contain run-time errors,
and you can improve the reliability of your code by fixing errors.

You can also improve the quality of your code by using Polyspace verification software to
check that your code complies with established coding standards, such as the MISRA C®,
MISRA® C++ or JSF® C++ standards.1

Decrease Development Time

Polyspace software reduces development time by automating the verification process and
helping you to efficiently review verification results. You can use it at any point in the
development process. However, using it during early coding phases allows you to find
errors when it is less costly to fix them.

You use Polyspace software to verify source code before compile time. To verify the
source code, you set up verification parameters in a project, run the verification, and
review the results. This process takes significantly less time than using manual methods
or using tools that require you to modify code or run test cases.

Color-coding of results helps you to quickly identify errors. You will spend less time
debugging because you can see the exact location of an error in the source code. After
you fix errors, you can easily run the verification again.

Polyspace verification software helps you to use your time effectively. Because you know
the parts of your code that do not have errors, you can focus on the code with proven (red
code) or potential errors (orange code).

Reviewing code that might have errors (orange code) can be time-consuming, but
Polyspace software helps you with the review process. You can use filters to focus on
certain types of errors or you can allow the software to identify the code that you should
review.

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA Consortium.

 Polyspace Verification

1-3

Improve the Development Process

Polyspace software makes it easy to share verification parameters and results, allowing
the development team to work together to improve product reliability. Once verification
parameters have been set up, developers can reuse them for other files in the same
application.

Polyspace verification software supports code verification throughout the development
process:

• An individual developer can find and fix run-time errors during the initial coding
phase.

• Quality assurance engineers can check overall reliability of an application.
• Managers can monitor application reliability by generating reports from the
verification results.

1 Introduction to Polyspace Products

1-4

How Polyspace Verification Works
Polyspace software uses static verification to prove the absence of run-time errors. Static
verification derives the dynamic properties of a program without actually executing it.
This differs significantly from other techniques, such as run-time debugging, in that the
verification it provides is not based on a given test case or set of test cases. The dynamic
properties obtained in the Polyspace verification are true for all executions of the
software.

What is Static Verification
Static verification is a broad term, and is applicable to any tool that derives dynamic
properties of a program without executing the program. However, most static verification
tools only verify the complexity of the software, in a search for constructs that may be
potentially erroneous. Polyspace verification provides deep-level verification identifying
almost all run-time errors and possible access conflicts with global shared data.

Polyspace verification works by approximating the software under verification, using
representative approximations of software operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable i never overflows the range of tab, a traditional approach
would be to enumerate each possible value of i. One thousand checks would be required.

Using the static verification approach, the variable i is modelled by its domain variation.
For instance, the model of i is that it belongs to the static interval [0..999]. (Depending
on the complexity of the data, convex polyhedrons, integer lattices and more elaborate
models are also used for this purpose).

By definition, an approximation leads to information loss. For instance, the information
that i is incremented by one every cycle in the loop is lost. However, the important fact is
that this information is not required to ensure that no range error will occur; it is only
necessary to prove that the domain variation of i is smaller than the range of tab. Only
one check is required to establish that — and hence the gain in efficiency compared to
traditional approaches.

 How Polyspace Verification Works

1-5

Static code verification has an exact solution. However, this exact solution is not practical,
as it would require the enumeration of all possible test cases. As a result, approximation
is required for a usable tool.

Exhaustiveness
Nothing is lost in terms of exhaustiveness. The reason is that Polyspace verification works
by performing upper approximations. In other words, the computed variation domain of a
program variable is a superset of its actual variation domain. As a result, Polyspace
verifies run-time error items that require checking.

1 Introduction to Polyspace Products

1-6

Related Products
In this section...
“Polyspace Bug Finder” on page 1-7
“Polyspace Products for Verifying Ada Code” on page 1-7
“Tool Qualification and Certification” on page 1-7

Polyspace Bug Finder
For information about Polyspace Bug Finder™ , see https://www.mathworks.com/
products/polyspace-bug-finder/.

Polyspace Products for Verifying Ada Code
For information about Polyspace products that verify Ada code, see the following:

https://www.mathworks.com/products/polyspaceclientada/

https://www.mathworks.com/products/polyspaceserverada/

Tool Qualification and Certification
You can use the DO Qualification Kit and IEC Certification Kit products to qualify
Polyspace Products for C/C++ for DO and IEC Certification.

To view the artifacts available with these kits, use the Certification Artifacts Explorer.
Artifacts included in the kits are not accessible from the MathWorks® web site.

For more information on the IEC Certification Kit, see IEC Certification Kit (for ISO 26262
and IEC 61508).

For more information on the DO Qualification Kit, see DO Qualification Kit (for DO-178).

 Related Products

1-7

https://www.mathworks.com/products/polyspace-bug-finder/
https://www.mathworks.com/products/polyspace-bug-finder/
https://www.mathworks.com/products/polyspaceclientada/
https://www.mathworks.com/products/polyspaceserverada/
https://www.mathworks.com/products/iec-61508/
https://www.mathworks.com/products/iec-61508/
https://www.mathworks.com/products/do-178/

How to Use Polyspace Software

• “Polyspace Verification and the Software Development Cycle” on page 2-2
• “Implement Process for Verification” on page 2-4
• “Sample Workflows for Polyspace Verification” on page 2-6
• “Define Your Requirements” on page 2-19

2

Polyspace Verification and the Software Development
Cycle

In this section...
“Software Quality and Productivity” on page 2-2
“Best Practices for Verification Workflow” on page 2-3

Software Quality and Productivity
The goal of most software development teams is to maximize both quality and
productivity. However, when developing software, there are three related variables to
consider: cost, quality, and time.

Quality

Cost Time

Changing the requirements for one of these variables affects the other two.

Generally, the criticality of your application determines the balance between these three
variables – your quality model. With classical testing processes, development teams
generally try to achieve their quality model by testing all modules in an application until
each module meets the required quality level. Unfortunately, this process often ends
before quality requirements are met, because the available time or budget has been
exhausted.

Polyspace verification allows a different process. Polyspace verification can support both
productivity improvement and quality improvement at the same time. However, you must
balance the aims of these activities.

You should not perform code verification at the end of the development process. To
achieve maximum quality and productivity, integrate verification into your development
process, considering time and cost restrictions.

2 How to Use Polyspace Software

2-2

This section describes how to integrate Polyspace verification into your software
development cycle. It explains both how to use Polyspace verification in your current
development process, and how to change your process to get more out of verification.

Best Practices for Verification Workflow
Polyspace verification can be used throughout the software development cycle. However,
to maximize both quality and productivity, the most efficient time to use it is early in the
development cycle.

Validation Testing

Integration Testing

Module Testing

Requirements

Functional Design

Coding

Code
Analysis

Code
Verification

Polyspace Verification in the Development Cycle

Typically, verification is conducted in two stages. First, you verify code as it is written, to
check coding rules and quickly identify obvious defects. Once the code is stable, you
verify it again before module/unit testing, with more stringent verification and review
criteria.

Using verification early in the development cycle improves both quality and productivity,
because it allows you to find and manage defects soon after the code is written. This
saves time because each user is familiar with their own code, and can quickly determine
why the code contains defects. In addition, defects are cheaper to fix at this stage, since
they can be addressed before the code is integrated into a larger system.

 Polyspace Verification and the Software Development Cycle

2-3

Implement Process for Verification
In this section...
“Overview of the Polyspace Process” on page 2-4
“Define Process to Meet Your Goals” on page 2-4
“Apply Process to Assess Code Quality” on page 2-5
“Improve Your Verification Process” on page 2-5

Overview of the Polyspace Process
Polyspace verification cannot magically produce quality code at the end of the
development process. However, if you integrate Polyspace verification into your
development process, Polyspace verification helps you to measure the quality of your
code, identify issues, and ultimately achieve your own quality goals.

To implement Polyspace verification within your development process, you must perform
each of the following steps:

1 Define your quality goals.
2 Define a process to match your quality goals.
3 Apply the process to assess the quality of your code.
4 Improve the process.

Define Process to Meet Your Goals
Once you have defined your quality goals, you must define a process that allows you to
meet those goals. Defining the process involves actions both within and outside Polyspace
software.

These actions include:

• Communicating coding standards (coding rules) to your development team.
• Setting Polyspace analysis options. For more information, see “Specify Polyspace

Analysis Options” on page 10-2.
• Setting review criteria for consistent review of results. For more information, see

“Limit Display of Orange Checks” on page 17-74.

2 How to Use Polyspace Software

2-4

Apply Process to Assess Code Quality
Once you have defined a process that meets your quality goals, it is up to your
development and testing teams to apply it consistently to all software components.

This process includes:

1 Running a Polyspace verification on each software component as it is written.
2 Reviewing verification results consistently. See “Address Polyspace Results Through

Bug Fixes or Comments” on page 19-2.
3 Saving review comments for each component, so they are available for future review.
4 Performing additional verifications on each component, as defined by your quality

goals.

Improve Your Verification Process
Once you review initial verification results, you can assess both the overall quality of your
code, and how well the process meets your requirements for software quality,
development time, and cost restrictions.

Based on these factors, you may want to take actions to modify your process. These
actions may include:

• Reassessing your quality goals.
• Changing your development process to produce code that is easier to verify.
• Changing Polyspace analysis options to improve the precision of the verification.
• Changing Polyspace options to change how verification results are reported.

For more information, see “Reduce Orange Checks” on page 17-86.

 Implement Process for Verification

2-5

Sample Workflows for Polyspace Verification
In this section...
“Overview of Verification Workflows” on page 2-6
“Software Developers and Testers – Standard Development Process” on page 2-6
“Software Developers and Testers – Rigorous Development Process” on page 2-9
“Quality Engineers – Code Acceptance Criteria” on page 2-12
“Quality Engineers – Certification/Qualification” on page 2-14
“Model-Based Design Users — Verifying Generated Code” on page 2-15
“Project Managers — Integrating Polyspace Verification with Configuration Management
Tools” on page 2-18

Overview of Verification Workflows
Polyspace verification supports two goals at the same time:

• Reducing the cost of testing and validation
• Improving software quality

You can use Polyspace verification in different ways depending on your development
context and quality model.

This section provides sample workflows that show how to use Polyspace verification in a
variety of development contexts.

Software Developers and Testers – Standard Development
Process
User Description

This workflow applies to software developers and test groups using a standard
development process, where coding rules are not used or followed consistently.

Quality

The main goal of Polyspace verification is to improve productivity while maintaining or
improving software quality. Verification helps developers and testers find and fix bugs

2 How to Use Polyspace Software

2-6

more quickly than other processes. It also improves software quality by identifying bugs
that otherwise might remain in the software.

In this process, the goal is not to completely prove the absence of errors. The goal is to
deliver code of equal or better quality that other processes, while optimizing productivity
to provide a predictable time frame with minimal delays and costs.

Verification Workflow

This process involves file-by-file verification immediately after coding, and again just
before functional testing.

The verification workflow consists of the following steps:

 Sample Workflows for Polyspace Verification

2-7

1 The project leader configures a Polyspace project to perform robustness verification,
using default Polyspace options.

Note This means that verification uses the automatically generated “main” function.
This main will call unused procedures and functions with full range parameters.

2 Each developer performs file-by-file verification as they write code, and reviews
verification results.

3 The developer fixes red errors and examines gray code identified by the verification.
4 Until coding is complete, the developer repeats steps 2 and 3 as required..
5 Once a developer considers a file complete, they perform a final verification.
6 The developer fixes red errors, examines gray code, and performs a selective orange

review.

Note The goal of the selective orange review is to find as many bugs as possible
within a limited period of time.

Using this approach, it is possible that some bugs may remain in unchecked oranges.
However, the verification process represents a significant improvement from other testing
methods.

Costs and Benefits

When using verification to detect bugs:

• Red and gray checks – Reviewing red and gray checks provides a quick method to
identify real run-time errors in the code.

• Orange checks – Selective orange review provides a method to identify potential run-
time errors as quickly as possible. The time required to find one bug varies from 5
minutes to 1 hour, and is typically around 30 minutes. This represents an average of
two minutes per orange check review, and a total of 20 orange checks per package in
Ada and 60 orange checks per file in C.

Disadvantages to this approach:

• Number of orange checks – If you do not use coding rules, your verification results
will contain more orange checks.

• Unreviewed orange checks – Some bugs may remain in unchecked oranges.

2 How to Use Polyspace Software

2-8

Software Developers and Testers – Rigorous Development
Process
User Description

This workflow applies to software developers and test engineers working within
development groups. These users are often developing software for embedded systems,
and typically use coding rules.

These users typically want to find bugs early in the development cycle using a tool that is
fast and iterative.

Quality

The goal of Polyspace verification is to improve software quality with equal or increased
productivity.

Verification can prove the absence of run-time errors, while helping developers and
testers to find and fix defects efficiently.

Verification Workflow

This process involves both code analysis and code verification during the coding phase,
and thorough review of verification results before module testing. It may also involve
integration analysis before integration testing.

 Sample Workflows for Polyspace Verification

2-9

Compilation
and Linking

Writing
Code

Textual
Requirements

Hand-written
Code

Module
Design

Object
Code

Application
Design

Development Artifact

Software Development Activity

Code Analysis Code Verification

Verification of
C and C++ Code

Module Testing

Integration Testing

Workflow for Code Verification

Note Solid arrows in the figure indicate the progression of software development
activities.

The verification workflow consists of the following steps:

1 The project leader configures a Polyspace project to perform contextual verification.
This involves:

• Using Data Range Specifications (DRS) to define initialization ranges for input
data. For example, if a variable “x” is read by functions in the file, and if x can be
initialized to any value between 1 and 10, this information should be included in
the DRS file.

• Creates a “main” program to model call sequence, instead of using the
automatically generated main.

• Sets options to check the properties of some output variables. For example, if a
variable “y” is returned by a function in the file and should always be returned
with a value in the range 1 to 100, then Polyspace can flag instances where that
range of values might be breached.

2 How to Use Polyspace Software

2-10

2 The project leader configures the project to check the required coding rules.
3 Each developer performs file-by-file verification as they write code, and reviews both

coding rule violations and verification results.
4 The developer fixes coding rule violations and red errors, examines gray code, and

performs a selective orange review.
5 Until coding is complete, the developer repeats steps 2 and 3 as required.
6 Once a developer considers a file complete, they perform a final verification.
7 The developer or tester performs an exhaustive orange review on the remaining

orange checks.

Note The goal of the exhaustive orange review is to examine orange checks that are
not reviewed as part of selective reviews. When you fix coding rule violations, the
total number of orange checks is reduced, and the remaining orange checks are
likely to reveal problems with the code.

Optionally, an additional verification can be performed during the integration phase. The
purpose of this additional verification is to track integration bugs, and review:

• Red and gray integration checks;
• The remaining orange checks with a selective review: Integration bug tracking.

Costs and Benefits

With this approach, Polyspace verification typically provides the following benefits:

• Fewer orange checks in the verification results (improved selectivity). The number of
orange checks is typically reduced to 3–5 per file, yielding an average of 1 bug. Often,
several of the orange checks represent the same bug.

• Fewer gray checks in the verification results.
• Typically, each file requires two verifications before it can be checked-in to the
configuration management system.

• The average verification time is about 15 minutes.

Note If the development process includes data rules that determine the data flow
design, the benefits might be greater. Using data rules reduces the potential of
verification finding integration bugs.

 Sample Workflows for Polyspace Verification

2-11

If performing the optional verification to find integration bugs, you may see the following
results. On a typical 50,000 line project:

• A selective orange review may reveal one integration bug per hour of code review.
• Selective orange review takes about 6 hours to complete. This is long enough to

review orange checks throughout the whole application and represents a step towards
an exhaustive orange check review. Spending more time is unlikely to be efficient.

• An exhaustive orange review would take between 4 and 6 days, assuming that 50,000
lines of code contains approximately 400–800 orange checks. Exhaustive orange
review is typically recommended only for high-integrity code, where the consequences
of a potential error justify the cost of the review.

Quality Engineers – Code Acceptance Criteria
User Description

This workflow applies to quality engineers who work outside of software development
groups, and are responsible for independent verification of software quality and
adherence to standards.

These users generally receive code late in the development cycle, and may even be
verifying code that is written by outside suppliers or other external companies. They are
concerned with not just detecting bugs, but measuring quality over time, and developing
processes to measure, control, and improve product quality going forward.

Quality

The main goal of Polyspace verification is to control and evaluate the safety of an
application.

The criteria used to evaluate code can vary widely depending on the nature of the
application. For example:

• You may be satisfied with zero red checks.
• In addition to zero red checks, you may want to conduct an exhaustive orange check

review.

Typically, these criteria become increasingly stringent as a project advances from early, to
intermediate, and eventually to final delivery.

2 How to Use Polyspace Software

2-12

For more information on defining these criteria, see “Customize Software Quality
Objectives” on page 22-20.

Verification Workflow

This process usually involves both code analysis and code verification before validation
phase, and thorough review of verification results based on defined quality goals.

Note Verification is often performed multiple times, as multiple versions of the software
are delivered.

The verification workflow consists of the following steps:

1 Quality engineering group defines clear quality goals for the code to be written,
including specific quality levels for each version of the code to be delivered (first,
intermediate, or final delivery) For more information, see “Customize Software
Quality Objectives” on page 22-20.

2 Development group writes code according to established standards.
3 Development group delivers software to the quality engineering group.
4 The project leader configures the Polyspace project to meet the defined quality goals,

as described in “Define Process to Meet Your Goals” on page 2-4.

 Sample Workflows for Polyspace Verification

2-13

5 Quality engineers perform verification on the code.
6 Quality engineers review red errors, gray code, and the number of orange checks

defined in the process.

Note The number of orange checks reviewed often depends on the version of
software being tested (first, intermediate, or final delivery). This can be defined by
quality level (see “Define Broad Requirements for Verification” on page 2-19).

7 Quality engineers create reports documenting the results of the verification, and
communicate those results to the supplier.

8 Quality engineers repeat steps 5–7 for each version of the code delivered.

Costs and Benefits

The benefits of code verification at this stage are the same as with other verification
processes, but the cost of correcting faults is higher, because verification takes place late
in the development cycle.

It is possible to perform an exhaustive orange review at this stage, but the cost of doing
so can be high. If you want to review all orange checks at this phase, it is important to use
development and verification processes that minimize the number of orange checks. This
includes:

• Developing code using strict coding and data rules.
• Providing accurate manual stubs for unresolved function calls.
• Using DRS to provide accurate data ranges for input variables.

Taking these steps will minimize the number of orange checks reported by the
verification, and make it more likely that remaining orange checks represent real issues
with the software.

Quality Engineers – Certification/Qualification
User Description

This workflow applies to quality engineers who work with applications requiring outside
quality certification, such as IEC 61508 certification or DO-178 qualification.

These users must perform a set of activities to meet certification requirements.

2 How to Use Polyspace Software

2-14

You can use the “IEC Certification Kit (for ISO 26262 and IEC 61508)” to help qualify
Polyspace products within an IEC 61508, ISO 26262, EN 50128, or other related
functional-safety standard certification environment.

You can use the “DO Qualification Kit (for DO-178)” to help qualify Polyspace products
within an DO-178 qualification environment.

Model-Based Design Users — Verifying Generated Code
User Description

This workflow applies to users who have adopted model-based design to generate code
for embedded application software.

These users generally use Polyspace software in combination with several other
MathWorks products, including Simulink®, Embedded Coder® , and Simulink Design
Verifier™ products. In many cases, these customers combine application components that
are manually written code with those created using generated code.

Quality

The goal of Polyspace verification is to improve the quality of the software by identifying
implementation issues in the code, and proving that the code is both semantically and
logically correct.

Polyspace verification allows you to find run-time errors:

• In hand-coded portions within the generated code
• In the model used for production code generation
• In the integration of manually written and generated code

Verification Workflow

The workflow is different for manually written code, generated code, and mixed code.
Polyspace products can perform code verification as part of any of these workflows. The
following figure shows a suggested verification workflow for manually written and mixed
code.

 Sample Workflows for Polyspace Verification

2-15

Executable
Specification

Textual
Requirements

Compilation
and Linking

Code
Generation

Textual
Requirements

Hand-written
Code

Generated
Code

Model Used
for Code

Generation

Module
Design

Object
Code

Application
Design

Modeling

Development Artifact

Software Development Activity

Code Analysis Code Verification

Code Analysis Code Verification

Verification of
C and C++ Code

Module Testing

Integration Testing

Workflow for Verification of Generated and Mixed Code

Note Solid arrows in the figure indicate the progression of software development
activities.

The verification workflow consists of the following steps:

1 The project leader configures a Polyspace project to meet defined quality goals.
2 Developers manually code sections of the application.
3 Developers or testers perform Polyspace verification of manually coded sections

within the generated code, and review verification results according to the
established quality goals.

4 Developers create Simulink model based on requirements.

2 How to Use Polyspace Software

2-16

5 Developers validate model to prove it is logically correct (using tools such as
Simulink Model Advisor, and the Simulink Coverage™ and Simulink Design Verifier
products).

6 Developers generate code from the model.
7 Developers or testers perform Polyspace verification on the entire software

component, including both manually written and generated code.
8 Developers or testers review verification results according to the established quality

goals.

Note Polyspace Code Prover allows you to quickly track issues identified by the
verification back to the block in the Simulink model.

Costs and Benefits

Simulink Design Verifier verification can identify errors in textual designs or executable
models that are not identified by other methods. The following table shows how errors in
textual designs or executable models can appear in the resulting code.

Examples of Common Run-Time Errors

Type of Error Design or Model Errors Code Errors
Arithmetic
errors

• Incorrect Scaling
• Unknown calibrations
• Untested data ranges

• Overflows/Underflows
• Division by zero
• Square root of negative numbers

Memory
corruption

• Incorrect array specification in state
machines

• Incorrect legacy code (look-up
tables)

• Out of bound array indexes
• Pointer arithmetic

Data truncation • Unexpected data flow • Overflows/Underflows
• Wrap-around

Logic errors • Unreachable states
• Incorrect Transitions

• Non initialized data
• Dead code

 Sample Workflows for Polyspace Verification

2-17

Project Managers — Integrating Polyspace Verification with
Configuration Management Tools
User Description

This workflow applies to project managers responsible for establishing check-in criteria
for code at different development stages.

Quality

The goal of Polyspace verification is to test that code meets established quality criteria
before being checked in at each development stage.

Verification Workflow

The verification workflow consists of the following steps:

1 Project manager defines quality goals, including individual quality levels for each
stage of the development cycle.

2 Project leader configures a Polyspace project to meet quality goals.
3 Developers or testers run verification at the following stages:

• Daily check-in — On the files currently under development. Compilation must
complete without the permissive option.

• Pre-unit test check-in — On the files currently under development.
• Pre-integration test check-in — On the whole project, ensuring that compilation

can complete without the permissive option. This stage differs from daily check-in
because link errors are highlighted.

• Pre-build for integration test check-in — On the whole project, with multitasking
aspects accounted for as required.

• Pre-peer review check-in — On the whole project, with multitasking aspects
accounted for as required.

4 Developers or testers review verification results for each check-in activity to confirm
the code meets the required quality level. For example, the transition criterion could
be: “No defect found in 20 minutes of selective orange review”

2 How to Use Polyspace Software

2-18

Define Your Requirements
Before launching verification, define your requirements from the verification process.
Defining your requirements helps decide which analysis options and results are relevant
for you.

Define Broad Requirements for Verification
This example shows how to define your broad requirements before you begin a Polyspace
Code Prover verification, and then implement them in your verification process.

1 Prepare a set of quality levels for your application. A quality level chart can be like
this:

Software Quality Levels
Criteria Software Quality Levels

QL1 QL2 QL3 QL4
Document static information X X X X
Enforce MISRA C coding rules in SQO-
subset1

X X X X

Review all red checks X X X X
Review all gray checks X X X X
Review critical orange checks X X X
Review all orange checks X X
Enforce MISRA C coding rules in SQO-
subset2

 X X

Analyze dataflow X X
2 Depending on the quality level that you want to implement, choose your verification

options. The options appear on the Configuration pane in the Polyspace user
interface.

For instance, if you want to implement level QL1, under Coding Rules & Code
Metrics, for the option Check MISRA C:2004, select SQO-subset1.

3 Depending on the quality level that you want to implement, plan your review process
for the verification results. Your review process involves options in the Polyspace
interface.

 Define Your Requirements

2-19

For instance, if you want to implement level QL1, on the Results List pane, filter
only red and gray checks.

Define Specific Requirements for Verification
This example shows how to define specific requirements before you begin a Polyspace
Code Prover verification, and then implement them in your verification process.

Specify Code Constructs

1 Prepare a list of constructs that you want to retain in your code or remove from it.
2 On the Configuration pane, specify the verification options corresponding to your

requirements.

For instance, you can have the following requirements and choose the corresponding
options.

Requirement Option
Detect overflows only on signed integer
computations.

Under Check Behavior, for Detect
overflows, select signed.

Allow a pointer to one structure field to
point to another field of the same
structure.

Under Check Behavior, select Enable
pointer arithmetic across fields.

Do not allow global variables to be
initialized by default.

Under Inputs & Stubbing, select
Ignore default initialization of
global variables.

Specify Coding Rules

1 Prepare a list of coding rules for your code.
2 On the Configuration pane, under the Coding Rules & Code Metrics node, specify

your coding rules. For more information, see “Check for Coding Rule Violations” on
page 14-2.

Specify Results to Review

1 Prepare a list of files or list of checks that you want to review.

2 How to Use Polyspace Software

2-20

2 After you run your verification, apply appropriate filters to focus your review on those
files or checks. For more information, see “Filter and Group Results” on page 20-2.

 Define Your Requirements

2-21

Run Polyspace Analysis on Desktop

• “Add Source Files for Analysis in Polyspace User Interface” on page 3-2
• “Run Polyspace Analysis on Desktop” on page 3-8
• “Project and Results Folder Contents” on page 3-13
• “Storage of Temporary Files” on page 3-15
• “Create Project Using Visual Studio Information” on page 3-16
• “Create Project Using Configuration Template” on page 3-19
• “Update Polyspace Project” on page 3-24
• “Organize Layout of Polyspace User Interface” on page 3-29
• “Customize Polyspace User Interface” on page 3-32

3

Add Source Files for Analysis in Polyspace User
Interface

To begin the Polyspace analysis, you must specify the path to your source files and
headers.

You can specify your source paths explicitly or extract them from a build command
(makefile). If you use a build command for building your source code or build your source
code in an IDE (using an underlying build command), try extracting from the build
command first. If Polyspace cannot trace your build command, manually add the paths to
your source and include folders. You will also have to specify the target and compiler
options later. See “Target and Compiler”.

Provide the source paths in a project. The source files show on the Project Browser
pane.

3 Run Polyspace Analysis on Desktop

3-2

A corresponding .psprj file is created in the location where you saved the project. When
you create a project, choose the default location for saving or enter a new location. To
change the default location, select Tools > Preferences and use the options on the
Project and Results Folder tab.

Add Sources from Build Command
Select File > New Project. Select Create from build command.

After providing a project name and location, on the next screen, enter this information:

• The build command, exactly as you run it on your code.
• The folder from which you run your build command.

 Add Source Files for Analysis in Polyspace User Interface

3-3

When you click Run, Polyspace runs the build command and extracts the information
necessary for creating a Polyspace project, specifically, source paths and compiler
information.

If you build your source code within an IDE such as Visual Studio®, in the field for
specifying the build command, enter the path to your executable, for instance, C:

3 Run Polyspace Analysis on Desktop

3-4

\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE
\VCExpress.exe. When you click Run, Polyspace opens your IDE. In your IDE, perform
a complete build of your code. When you close your IDE, Polyspace extracts your source
paths and compiler information.

When you create a project from your build command, the Project Browser pane shows
your source folders but not the include folders. In case you want to verify that your
include folders were extracted, open the project file (with extension .psprj) in a text
editor.

You can use additional options to modify the default project creation from build command.
For instance, to create a Polyspace project despite build errors, in the Add advanced
configure options field, you can enter the option -allow-build-error. To look up
allowed options, see polyspace-configure.

Add Sources Manually
Select File > New Project.

After providing a project name and location, on the next screen, enter or navigate to the
root folder containing your source files. With the Add recursively box checked, click Add
Source Folders. All files in the folder and subfolders are added to your project.

 Add Source Files for Analysis in Polyspace User Interface

3-5

On the next screen, add include folders. The analysis looks for include files relative to the
include folder paths that you specify. For instance, if your code contains the preprocessor
directive #include<../mylib.h> and you include the folder:

C:\My_Project\MySourceFiles\Includes

the folder C:\My_Project\MySourceFiles must contain a file mylib.h.

3 Run Polyspace Analysis on Desktop

3-6

For Standard Library headers such as stdio.h, if you know the path to the headers from
your compiler, specify them explicitly. Otherwise, the analysis uses Polyspace
implementation of the Standard Library headers, which in some special cases, might not
match your compiler implementation.

Your project file with source and include folders show in the Project Browser pane.
Later, if you add files to one of these folders, you can update your project. Right-click the
folder that you want to update, or the entire Project Source Files folder, and select
Refresh Source Folder.

You can also right-click to exclude files or add more folders to the project. The files that
you add the first time are copied to the first module in your project. If you add new files
later, you must explicitly right-click and add them to a module.

See Also

More About
• “Run Polyspace Analysis on Desktop” on page 3-8

 See Also

3-7

Run Polyspace Analysis on Desktop
After you specify your source files and compiler on page 3-2, you can run the Polyspace
analysis. This topic describes how to run an analysis in the Polyspace user interface,
monitor progress, fix compilation issues, and open analysis results as available.

During analysis, Polyspace first compiles your code and then checks for bugs (Bug Finder)
or proves code correctness (Code Prover). If you encounter compilation errors, read the
error message and diagnose the root cause of the error. Often, to resolve the errors, you
have to set some Polyspace configuration options and rerun the analysis.

You can run the analysis in the Polyspace user interface or by using scripts.

3 Run Polyspace Analysis on Desktop

3-8

Arrange Layout of Windows for Project Setup
In the user interface, for a convenient distribution of windows, select Window > Reset
Layout > Project Setup.

Set Product and Result Location
To switch products or create a separate folder for each run, use the dropdown beside the
Run button.

 Run Polyspace Analysis on Desktop

3-9

The results are stored in a subfolder Module_# of the project folder. To use a different
folder naming convention or different storage location for results, select Tools >
Preferences and use the options on the Project and Results Folder tab.

Start and Monitor Analysis
If your project has multiple modules, select the module that you want to analyze. Start the
analysis. Monitor progress on the Output Summary pane.

• Bug Finder: You can see some results after partial analysis, because certain defect
checkers do not need cross-functional information and can show results as soon as a
function is analyzed. If results are available while the analysis is still running, you see
the following icon beside the Run button:

The icon indicates the number of results available. Click the icon to open the results.
Once the analysis is over, the Running label in the icon changes to Completed. You
can click the icon again to reload the full set of results.

• Code Prover: You can see results only after the analysis is complete. Code Prover is
more likely to report compilation errors because it does a more rigorous analysis and
must follow stricter rules for compilation. The progress bar distinguishes between the
various phases of analysis starting from compilation.

3 Run Polyspace Analysis on Desktop

3-10

Fix Compilation Errors
If compilation errors occur, the analysis continues with the remaining files that do not
compile. The Dashboard pane shows that some files did not compile and links to the
Output Summary pane for details. The Output Summary pane shows compilation
errors with a icon.

To diagnose further, select the error message to see more details. Identify the line in your
code responsible for the compilation error. You can use the error message details to
understand how the line compiled with your compiler and what additional information
Polyspace needs to mimic your compiler. See if you can work around the error using a
Polyspace option. For more information, see “Troubleshooting in Polyspace Code Prover”.

For more precise run-time error checking in Code Prover, it is recommended that you fix
all compilation errors. Use the option Stop analysis if a file does not
compile (-stop-if-compile-error).

Open Results
After analysis, the results open automatically. To open results that you have closed,
double-click the result on the Project Browser pane.

 Run Polyspace Analysis on Desktop

3-11

The Bug Finder (Code Prover) results are stored in a .psbf (.pscp) file in the results
folder. For instance, if you save your project in C:\Projects\, a .psbf file for the Bug
Finder analysis results on the first module Module_1 is stored in C:\Projects
\Module_1\BF_Result. See also “Project and Results Folder Contents” on page 3-13.

See Also

More About
• “Run Polyspace Analysis from Command Line” on page 4-2
• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-2
• “Interpret Polyspace Code Prover Results” on page 17-2
• “Address Polyspace Results Through Bug Fixes or Comments” on page 19-2
• “Filter and Group Results” on page 20-2

3 Run Polyspace Analysis on Desktop

3-12

Project and Results Folder Contents
When you run an analysis in the Polyspace user interface, Polyspace generates files that
contain information about configuration options and analysis results.

The organization of Polyspace files in the physical folder location follows the hierarchy
displayed in the Polyspace user interface. The project folder contains a subfolder for each
module. In each module folder, there is one or more result subfolder, named Result_#.
The number of result folders depends on whether you overwrite or retain previous results
for each new run. To use a different folder naming convention or different storage
location for results, select Tools > Preferences and use the options on the Project and
Results Folder tab.

The project folder has the project file with extension .psprj. If you open a project from a
previous release in the user interface, the project is upgraded for the new release. A
backup of the old project file is saved with the extension .bak.psprj.

Files in the Results Folder
Some of the files and folders in the results folder are described below:

• Polyspace_release_project_name_date-time.log — A log file associated with
each analysis.

• ps_results.pscp — An encrypted file containing your Polyspace results. Open this
file in the Polyspace environment to view your results.

• ps_sources.db — A non-encrypted database file listing source files and macros.
• drs-template.xml — A template generated when you use constraint specification.
• ps_comments.db — An encrypted database file containing your comments and
justifications.

• comments_bak — A subfolder used to import comments between results.
• .status and .settings — Two folders that store files required to relaunch the

analysis.
• Polyspace-Doc — When you generate a report, by default, your report is saved in

this folder with the name ProjectName_ReportType. For example, a developer
report in PDF format would be, myProject_Developer.pdf.

• Polyspace-Instrumented — When the software runs the Automatic Orange Tester
(AOT) at the end of a static verification, the software creates the Polyspace-

 Project and Results Folder Contents

3-13

Instrumented folder. The Polyspace-Instrumented folder contains files
associated with the configuration and running of the Automatic Orange Tester.

See Also
-results-dir

3 Run Polyspace Analysis on Desktop

3-14

Storage of Temporary Files
Polyspace produces some temporary files when performing an analysis. If your analysis
runs slow or you encounter errors such as running out of disk space, check your
temporary file location. For more information on possible errors, see:

• “Errors with Temporary Files” on page 23-99
• “Reduce Verification Time” on page 23-12

To determine where to store temporary files, Polyspace looks for these environment
variables in the following order:

• RTE_TMP_DIR: Define this environment variable only if you want to store Polyspace
temporary files in a folder different from the standard temporary folders (defined by
TMPDIR and such). You can see the current standard temporary folder by using the
MATLAB® function tempdir.

Note This path must be an absolute path to an existing folder on which the current
user has access rights (for reading and writing).

• TMPDIR
• TMP
• TEMP

If one of these variables is defined, Polyspace uses that path for storing temporary files. If
these environment variables are not defined, Polyspace stores temporary files in:

• /tmp on Linux® and Mac
• Folder specified with the USERPROFILE environment variable, folder returned from

GetWindowsDirectoryW Windows® API, or Temp directory on Windows

 Storage of Temporary Files

3-15

Create Project Using Visual Studio Information
To create a Polyspace project, you can trace your Visual Studio build.

1 In the Polyspace interface, select File > New Project.
2 In the Project – Properties window, under Project Configuration, select Create

from build command and click Next.

3 In the field Specify command used for building your source files, enter the full
path to the Visual Studio executable. For instance, "C:\Program Files
(x86)\Microsoft Visual Studio 10.0\Common7\IDE\VCExpress.exe".

4 In the field Specify working directory for running build command, enter C:\.

Click .

This action opens the Visual Studio environment.

3 Run Polyspace Analysis on Desktop

3-16

5 In the Visual Studio environment, create and build a Visual Studio project.

If you already have a Visual Studio project, open the existing project and build a
clean solution. To build a clean solution in Visual Studio 2012, select BUILD >
Rebuild Solution.

6 After the project builds, close Visual Studio.

Polyspace traces your Visual Studio build and creates a Polyspace project.

The Polyspace project contains the source files from your Visual Studio build and the
relevant Target & Compiler options.

7 If you update your Visual Studio project, to update the corresponding Polyspace
project, on the Project Browser, right-click the project name and select Update
Project.

 Create Project Using Visual Studio Information

3-17

See Also

More About
• “Troubleshooting Project Creation from Visual Studio Build” on page 23-40

3 Run Polyspace Analysis on Desktop

3-18

Create Project Using Configuration Template
A configuration template is a predefined set of analysis options for a specific compilation
environment.

Why Use Templates
Use templates to simplify your project setup. For instance, after you configure a project
for a specific compilation environment, you can create a template out of the configuration.
Using the template, you can reuse the configuration for projects that have the same
compilation environment.

When creating a new project, you can do one of the following:

• Use an existing template to automatically set analysis options for your compiler.

Polyspace software provides predefined templates for common compilers such as IAR,
Kiel, Visual and VxWorks. For additional templates, see Polyspace Compiler
Templates.

• Set analysis options manually. You can then save your options as a template and reuse
them later. You can also share the template with other users and enforce consistent
usage of Polyspace Bug Finder in your organization.

Use Predefined Template
1 Select File > New Project.
2 On the Project – Properties dialog box, after specifying the project name and location,

under Project configuration, select Use template.
3 On the next screen, select the template that corresponds to your compiler. For

further details on a template, select the template and view the Description column
on the right.

If your compiler does not appear in the list of predefined templates, select
Baseline_C or Baseline_C++.

4 On the next screen, add your source files and include folders.

 Create Project Using Configuration Template

3-19

https://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates
https://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates

Create Your Own Template
This example shows how to save a configuration from an existing project and create a
new project using the saved configuration.

• To create a template from a project that is open on the Project Browser pane:

1 Right-click the project configuration that you want to use, and then select Save As
Template.

2 Enter a description for the template, then click Proceed. Save your template file.

Suppose you create a Code Prover configuration template that runs Code Prover
analysis to a precision level of 1 and a verification level of 1. See:

• Precision level (-O)
• Verification level (-to)

You can enter this description for the template.

• When you create a new project, to use a saved template:

3 Run Polyspace Analysis on Desktop

3-20

1
Select .

2 Navigate to the template that you saved earlier, and then click Open. The new
template appears in the Custom templates folder on the Templates browser.
Select the template for use.

 Create Project Using Configuration Template

3-21

3 Run Polyspace Analysis on Desktop

3-22

See Also

More About
• “Specify Polyspace Analysis Options” on page 10-2
• “Analysis Options”

 See Also

3-23

Update Polyspace Project
To analyze your C/C++ source files with Bug Finder or Code Prover in the Polyspace user
interface, you create a Polyspace project. During development, you can simply update this
project and rerun the analysis for updated results. This topic describes the updates that
you can make.

To begin updates, right-click your project on the Project Browser pane. You see a
different set of options depending on the node that you right-click.

3 Run Polyspace Analysis on Desktop

3-24

Change Folder Path
If you have moved the source folder that you added to your project, modify the path in
your Polyspace project. You can also modify the folder path to point to a different version
of the code in your version control system.

 Update Polyspace Project

3-25

In the Project Browser, right-click the top sources folder and select Modify
Path.Change the path to the new location.

To resync the files under this source folder, right-click your source folder and select
Refresh Source Folder.

Refresh Source List
If you made changes to files in a folder already added to the project, you do not need to
re-add the folder to your project. Refreshing your source file list looks for new files,
removed files, and moved files.

Right-click your source folder and select Refresh Source Folder. The files in your
Polyspace project refresh to match your file system.

Refresh Project Created from Build Command
If you created your project automatically from your build system, to update the project
later by rerunning your build command, right-click the project folder and select Update
Project.

You see the information that you entered when creating the original project. Click Run to
retrace your build command and recreate the Polyspace project.

Add Source and Include Folders
If you want to change which files or folders are active in your project without removing
them from your project tree, right-click the file or folder and select Exclude Files. The

file appears with an symbol in your project indicating it is not considered for analysis.
You can reinclude the files for analysis by right-clicking and selecting Include Files.

3 Run Polyspace Analysis on Desktop

3-26

If you want to add additional source folders or include folders, right-click your project or
the Source or Include folder in your project. Select Add Source Folder or Add Include
Folder.

Before running an analysis, you must copy the source files to a module. Select the source
files that you want to copy. To select multiple files together, press the Ctrl key while
selecting the files. Right-click your selection. Select Copy to > Module_n. n is the
module number.

Manage Include File Sequence
You can change the order of include folders to manage the sequence in which include files
are compiled.

When multiple include files by the same name exist in different folders, you might want to
change the order of include folders instead of reorganizing the contents of your folders.
For a particular include file name, the software includes the file in the first include folder
under Project_Name > Include.

In the following figure, Folder_1 and Folder_2 contain the same include file
include.h. If your source code includes this header file, during compilation, Folder_2/
include.h is included in preference to Folder_1/include.h.

To change the order of include folders, in your project, expand the Include folder. Select

the include folder or folders that you want to move. To move the folder, click either or

.

 Update Polyspace Project

3-27

See Also

Related Examples
• “Add Source Files for Analysis in Polyspace User Interface” on page 3-2

3 Run Polyspace Analysis on Desktop

3-28

Organize Layout of Polyspace User Interface
The Polyspace user interface has two default layouts of panes.

The default layout for project setup has the following arrangement of panes:

Project Browser Configuration
Output Summary

The default layout for results review has the following arrangement of panes:

Results List Result Details
Dashboard

You can create and save your own layout of panes. If the current layout of the user
interface does not meet your requirements, you can use a saved layout.

You can also change to one of the default layouts of the Polyspace user interface. Select
Window > Reset Layout > Project Setup or Window > Reset Layout > Results
Review.

Create Your Own Layout
To create your own layout, you can close some of the panes, open some panes that are not
visible by default, and move existing panes to new locations.

To open a closed pane, select Window > Show/Hide View > pane_name.

To move a pane to another location:

1 Float the pane in one of three ways:

• Click and drag the blue bar on the top of the pane to float all tabs in that pane.

For instance, if Project Browser and Results List are tabbed on the same pane,
this action floats the pane together with its tabs.

• Click and drag the tab at the bottom of the pane to float only that tab.

 Organize Layout of Polyspace User Interface

3-29

For instance, if Project Browser and Results List are tabbed on the same pane,
dragging out Project Browser creates a pane with only Project Browser on it
and floats this new pane.

• Click on the top right of the pane to float all tabs in that pane.
2 Drag the pane to another location until it snaps into a new position.

If you want to place the pane in its original location, click in the upper-right corner
of the floating pane.

For instance, you can create your own layout for reviewing results.

Save and Reset Layout
After you have created your own layout, you can save it. You can change from another
layout to this saved layout.

• To save your layout, select Window > Save Current Layout As. Enter a name for this
layout.

3 Run Polyspace Analysis on Desktop

3-30

• To use a saved layout, select Window > Reset Layout > layout_name.
• To remove a saved layout from the Reset Layout list, select Window > Remove

Custom Layout > layout_name.

See Also

More About
• “Customize Polyspace User Interface” on page 3-32
• “Organize Layout of Polyspace User Interface” on page 3-29

 See Also

3-31

Customize Polyspace User Interface

In this section...
“Possible Customizations” on page 3-33
“Storage of Polyspace User Interface Customizations” on page 3-34

You can customize various aspects of the Polyspace user interface, for instance, default
project storage locations or default font size of source code. Select Tools > Preferences.

3 Run Polyspace Analysis on Desktop

3-32

Possible Customizations
Change Default Font Size

To change the default font size in the Polyspace user interface, select the Miscellaneous
tab.

• To increase the font size of labels on the user interface, select a value for GUI font
size.

For example, to increase the default size by 1 point, select +1.
• To increase the font size of the code on the Source pane and the Code Editor pane,

select a value for Source code font size.

When you restart Polyspace, you see the increased font size.

Specify External Text Editor

You can change the default text editor for opening source files from the Polyspace
interface. By default, if you open your source file from the user interface, it opens on a
Code Editor tab. If you prefer editing your source files in an external editor, you can
change this default behavior.

To change the text editor, select the Editors tab. From the Text editor drop-down list,
select External. In the Text editor field, specify the path to your text editor. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

To make sure that your source code opens at the correct line and column in your text
editor, specify command-line arguments for the editor using Polyspace macros, $FILE,
$LINE and $COLUMN. Once you specify the arguments, when you right-click a check on
the Results List pane and select Open Editor, your source code opens at the location of
the check.

Polyspace has already specified the command-line arguments for these editors: Emacs,
Notepad++ (Windows only), UltraEdit, VisualStudio, WordPad (Windows only) or
gVim. If you are using one of these editors, select it from the Arguments drop-down list.

 Customize Polyspace User Interface

3-33

If you are using another text editor, select Custom from the drop-down list, and enter the
command-line options in the field provided.

For console-based text editors, you must create a terminal. For example, to specify vi:

1 In the Text Editor field, enter /usr/bin/xterm.
2 From the Arguments drop-down list, select Custom.
3 In the field to the right, enter -e /usr/bin/vi $FILE.

To revert back to the built-in editor, on the Editors tab, from the Text editor drop-down
list, select Built In.

Create Custom Review Status

When reviewing Polyspace results, you can assign a status such as To fix or
Justified. See “Address Polyspace Results Through Bug Fixes or Comments” on page
19-2.

You can create your own statuses to assign. To create a new status, select the Review
Statuses tab.

Storage of Polyspace User Interface Customizations
The software stores the settings that you specify through the Polyspace Preferences in the
following file:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks \MATLAB\
$Release\Polyspace\polyspace.prf

• Linux: /home/$User/.matlab/$Release/Polyspace/polyspace.prf

Here, $Drive is the drive where the operating system files are located such as C:, $User
is the username and $Release is the release number.

The following file stores the location of all installed Polyspace products across various
releases:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks\MATLAB
\polyspace_shared\polyspace_products.prf

3 Run Polyspace Analysis on Desktop

3-34

• Linux : /home/$User/.matlab/polyspace_shared/polyspace_products.prf

 Customize Polyspace User Interface

3-35

Run Polyspace Analysis with
Windows or Linux Scripts

• “Run Polyspace Analysis from Command Line” on page 4-2
• “polyspace-configure Source Files Selection Syntax” on page 4-5
• “Create Command-Line Script from Project File” on page 4-8

4

Run Polyspace Analysis from Command Line
To run an analysis from a DOS or UNIX® command window, use the command
polyspace-bug-finder-nodesktop or polyspace-code-prover-nodesktop
followed by other options you wish to use. See also:

• polyspace-bug-finder-nodesktop
• polyspace-code-prover-nodesktop

Specify Sources and Analysis Options Directly
At the Windows, Linux or Mac OS X command-line, append sources and analysis options
to the polyspace-bug-finder-nodesktop or polyspace-code-prover-nodesktop
command.

For instance:

• To specify sources, use the -sources option followed by a comma-separated list of
sources.

polyspace-bug-finder-nodesktop -sources C:\mySource\myFile1.c,C:\mySource\myFile2.c

If your current folder contains a sources subfolder with the source files, you can omit
the -sources flag. The analysis considers files in sources and all subfolders under
sources.

• To specify the target processor, use the -target option. For instance, to specify the
m68k processor for your source file file.c, use the command:

polyspace-bug-finder-nodesktop -sources "file.c" -lang c -target m68k

• To check for violation of MISRA C rules, use the -misra2 option. For instance, to
check for only the required MISRA C rules on your source file file.c, use the
command:

polyspace-bug-finder-nodesktop -sources "file.c" -misra2 required-rules

For the full list of analysis options, see:

• “Analysis Options”

For the full list of options, enter the following at the command line:

4 Run Polyspace Analysis with Windows or Linux Scripts

4-2

polyspace-code-prover-nodesktop -help

Specify Sources and Analysis Options in Text File
Instead of specifying the options directly, you can save the options in a text file and use
the text file each time you run the analysis.

1 Create an options file called listofoptions.txt with your options. For example:

#These are the options for MyCodeProverProject
-lang c
-prog MyCodeProverProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-main-generator
-results-dir C:\Polyspace\MyCodeProverProject

2 Run Polyspace using options in the file listofoptions.txt.

polyspace-code-prover-nodesktop -options-file listofoptions.txt

See also -options-file.

Create Options File from Build System
If you use a build command (makefile) to build your source code, you can collect the
sources and compiler options from your build command. Trace your build command to
generate a text file with the required Polyspace options.

1 Create a list of Polyspace options using the configuration tool.

polyspace-configure -output-options-file \
 myOptions buildCommand

where buildCommand is the command you use to build your source code, for
instance make -B.

See also polyspace-configure.

 Run Polyspace Analysis from Command Line

4-3

2 Run Polyspace using the options read from your build.

polyspace-bug-finder-nodesktop -options-file myOptions \
 -results-dir myResults

In addition to the options collected from your build command, you might want to add
further options, for instance, to specify the defect checkers. You can append these
options to the options file, add them directly at the command line or add them
through a second options file (using another -options-file flag).

3 Open the results in the Polyspace user interface.

polyspace-bug-finder myResults

See Also
polyspace-bug-finder-nodesktop | polyspace-code-prover-nodesktop |
polyspace-configure

More About
• “Create Command-Line Script from Project File” on page 4-8

External Websites
• Set up Continuous Code Verification with Jenkins

4 Run Polyspace Analysis with Windows or Linux Scripts

4-4

https://www.mathworks.com/matlabcentral/answers/279990-how-do-i-use-polyspace-bug-finder-with-jenkins

polyspace-configure Source Files Selection Syntax
When you create projects by using polyspace-configure, you can include or exclude
source files whose paths match the pattern that you pass to the options -include-
sources or -exclude-sources. You can specify these two options multiple times and
combine them at the command line.

This folder structure applies to these examples.

To try these examples, use the demo files in matlabroot\help\toolbox\codeprover
\examples\sources-select. matlabroot is your MATLAB installation folder.

Run this command:

polyspace-configure -allow-overwrite -include-sources glob_pattern \
-print-excluded-sources -print-included-sources make -B

glob_pattern is the glob pattern that you use to match the paths of the files you want
to include or exclude from your project. In the table, the examples assume that sources
is a top-level folder.

Glob Pattern Syntax Example
No special characters, slashes ('/'), or
backslashes ('\').

Pattern matches corresponding files, but
not folders.

-include-sources 'main.c' matches:

/sources/app/main.c

 polyspace-configure Source Files Selection Syntax

4-5

Glob Pattern Syntax Example
Pattern contains '*' or '?' special
characters.

'*' matches zero or more characters in file
or folder name.

'?' matches one character in file or folder
name.

The matches do not include path
separators.

-include-sources 'b?.c' matches:

/sources/lib/b/b1.c

/sources/lib/b/b2.c

-include-sources 'app/*.c' matches:

/sources/app/main.c

Pattern starts with slash '/' (UNIX) or
drive letter (Windows).

Pattern matches absolute path only.

-include-sources '/a' does not match
anything.

-include-sources '/sources/app'
matches:

/sources/app/main.c
Pattern ends with a slash (UNIX), backslash
(Windows), or '**'.

Pattern matches all files under specified
folder.

'**' is ignored if it is at the start of the
pattern.

-include-sources 'a/' matches

/sources/lib/a/a1.c

/sources/lib/a/a2.c

Pattern contains '/**/' (UNIX) or '**\'
(Windows). Pattern matches zero or more
folders in the specified path.

-include-sources 'lib/**/?1.c'
matches:

/sources/lib/a/a1.c

/sources/lib/b/b1.c

4 Run Polyspace Analysis with Windows or Linux Scripts

4-6

Glob Pattern Syntax Example
Pattern starts with '.' or '..'.

Pattern matches paths relative to the path
where you run the command.

If you start polyspace-configure from /
sources/lib/a,

-include-sources '../lib/**/b?.c'
matches:

/sources/lib/b/b1.c

/sources/lib/b/b2.c
Pattern is a UNC path on Windows . If your files are on server myServer:

\\myServer\sources\lib\b**
matches:

\\myServer\sources\lib\b\b1.c

\\myServer\sources\lib\b\b2.c

polyspace-configure does not support these glob patterns:

• Absolute paths relative to the current drive on Windows.

For instance, \foo\bar.
• Relative paths to the current folder.

For instance, C:foo\bar.
• Extended length paths in Windows.

For instance, \\?\foo.
• Paths that contain '.' or '..' except at the start of the pattern.

For instance, /foo/bar/../a?.c.
• The '*' character by itself.

 polyspace-configure Source Files Selection Syntax

4-7

Create Command-Line Script from Project File
In this section...
“Generate Scripting Files” on page 4-8
“Run an Analysis” on page 4-9

This example shows how to use a project file that you configured in the Polyspace
interface to generate the necessary information to run from the command line. If you
have already spent time configuring your project in the Polyspace interface, this
command is useful to extract your setup work for scripting.

Generate Scripting Files
Generate a script from the demo Polyspace project, Code_Prover_Example.psprj.

1 In the Polyspace interface, open the example project by selecting Help > Examples
> Code_Prover_Example.psprj.

This example has been set up and configured with analysis options.
2 Open a command-line terminal and navigate to your Polyspace_Workspace folder.

By default it is:

• Linux — /home/USER/Polyspace_Workspace
• Windows — Users\USER\Documents\Polyspace_Workspace
• Mac — USER/Polyspace_Workspace

3 Navigate down to the example project:

cd Examples/R2017b/Code_Prover_Example
4 Run the script generation command .

matlabroot/polyspace/bin/polyspace ...
 -generate-launching-script-for Code_Prover_Example.psprj

Here, matlabroot is your installed program folder, for example C:\Program
Files\MATLAB\R2017b.

Polyspace generates the following folder:

Code_Prover_Example

4 Run Polyspace Analysis with Windows or Linux Scripts

4-8

The folder contains:

• source_command.txt — List of source files
• options_command.txt — List of the analysis options
• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — Shell

script that calls the correct commands

For more details about what files are generated and how to use them, see -generate-
launching-script-for.

Run an Analysis
After you have completed, “Generate Scripting Files” on page 4-8, you can use the files to
run an analysis from the command line. The launching script makes integrating into
continuous integration tools such as Jenkins, easier. Here are a few examples of how to
use the generated files to run an analysis.

• Run the generated script locally by using the launchingCommand.bat file.

Code_Prover_Example\launchingCommand.bat

• Run the generated script and change the results folder.

Code_Prover_Example\launchingCommand.bat ...
 -results-dir Results_Code_Prover_Example_RTE_Only

The extra -results-dir option overrides the results folder specified in the
options_command.txt file.

• Send the analysis to a remote server and store the results in Polyspace Metrics.

Code_Prover_Example\launchingCommand.bat ...
 -add-to-results-repository -batch -scheduler MJS@NoteHost

• Run the analysis from the command line with the -options-file option.

matlabroot/polyspace/bin/polyspace-code-prover-nodesktop -options-file ...
 Code_Prover_Example/options_command.txt

See Also
-generate-launching-script-for

 See Also

4-9

Related Examples
• “Run Polyspace Analysis from Command Line” on page 4-2

External Websites
• Set up Continuous Code Verification with Jenkins

4 Run Polyspace Analysis with Windows or Linux Scripts

4-10

https://www.mathworks.com/matlabcentral/answers/279990-how-do-i-use-polyspace-bug-finder-with-jenkins

Run Polyspace Analysis with
MATLAB Scripts

• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-2
• “Generate MATLAB Scripts from Polyspace User Interface” on page 5-6
• “Troubleshoot Polyspace Analysis from MATLAB” on page 5-9

5

Run Polyspace Analysis by Using MATLAB Scripts
You can automate the analysis of your C/C++ code by using MATLAB scripts. In your
script, you specify your source files and analysis options such as compiler, run an analysis,
and read the analysis results to MATLAB tables.

For instance, use this script to run a Polyspace Bug Finder analysis on a sample file:

proj = polyspace.Project

% Specify sources and includes
sourceFile = fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c');
includeFolder = fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');

% Configure analysis
proj.Configuration.Sources = {sourceFile};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

See also polyspace.Project.

Specify Multiple Source Files
You can specify a folder containing all your source files. For instance:

sourceFolder = fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');
proj.Configuration.Sources = {fullfile(sourceFolder,'*')};

You can also specify multiple source folders in the cell array.

You can specify a folder that contains all your source files directly or in subfolders. For
instance:

5 Run Polyspace Analysis with MATLAB Scripts

5-2

sourceFolder = fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');
proj.Configuration.Sources = {fullfile(sourceFolder,'**')};

If you do not want to analyze all files in a folder, you can explicitly specify which files to
analyze. For instance:

sourceFolder = fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');
file1 = fullfile(sourceFolder,'numerical.c');
file2 = fullfile(sourceFolder,'staticmemory.c');
proj.Configuration.Sources = {file1, file2};

You can explicitly exclude files from analysis. For instance:

% Specify source folder.
sourceFolder = fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');
proj.Configuration.Sources = {fullfile(sourceFolder,'**')};

% Specify files to exclude.
file1 = fullfile(sourceFolder,'security.c');
file2 = fullfile(sourceFolder,'tainteddata.c');
proj.Configuration.InputsStubbing.DoNotGenerateResultsFor = ['custom=' file1 ...
 ',' file2];

However, this method of exclusion does not apply to Code Prover run-time error checking.

Check for MISRA C:2012 Violations
You can customize the Polyspace analysis to check for MISRA C:2012 rule violations.

Set options for checking MISRA C:2012 rules. Disable the regular Bug Finder analysis,
which looks for defects.

% Enable MISRA C checking
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory';

% Disable defect checking
proj.Configuration.BugFinderAnalysis.EnableCheckers = false;

% Run analysis
bfStatus = proj.run('bugFinder');

 Run Polyspace Analysis by Using MATLAB Scripts

5-3

% Read summary of results
misraSummary = proj.Results.getSummary('misraC2012');

Check for Specific Defects or Coding Rule Violations
Instead of the default set of defect or coding rule checkers, you can specify your own set.

To disable MISRA C:2012 rules 8.1 to 8.4:

% Disable rules
misraRules = polyspace.CodingRulesOptions('misraC2012');

misraRules.rule_8_1 = false;
misraRules.rule_8_2 = false;
misraRules.rule_8_3 = false;
misraRules.rule_8_4 = false;

% Configure analysis
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = misraRules;

See also polyspace.CodingRulesOptions.

To enable Bug Finder defects, use the class polyspace.DefectsOptions. One
difference between coding rules and defects class is that coding rule checkers are
enabled by default. You disable the ones that you do not want. All defect checkers are
disabled by default. You enable the ones that you want.

Find Files That Do Not Compile
If one or more of your files contain a compilation error, the analysis continues with the
remaining files. You can choose to stop analysis on compilation errors.

proj.Configuration.EnvironmentSettings.StopWithCompileError = true;

However, it is more convenient to let the analysis complete and capture all compilation
errors from the analysis log file. For more information, see “Troubleshoot Polyspace
Analysis from MATLAB” on page 5-9.

5 Run Polyspace Analysis with MATLAB Scripts

5-4

Run Analysis on Cluster
You can run an analysis on a cluster instead of your local desktop. Once you have set up
connection to a server, you can run the analysis in batch mode. For setup information, see
“Set Up Server for Metrics and Remote Analysis”.

Specify that the analysis must run on a server. Specify a folder on your desktop where
results are downloaded after analysis.

proj.Configuration.MergedComputingSettings.BatchBugFinder = true;
proj.Configuration.ResultsDir = fullfile(pwd,'results');

Run analysis as usual.

proj.run('bugFinder');

Open the results from the results folder location.

pslinkfun('openresults', '-resultsfolder', proj.Configuration.ResultsDir);

If the analysis is complete and the results have been downloaded, they open in the
Polyspace user interface.

See Also
polyspace.Project | polyspaceCodeProver

Related Examples
• “Generate MATLAB Scripts from Polyspace User Interface” on page 5-6
• “Visualize Code Prover Analysis Results in MATLAB” on page 21-15
• “Troubleshoot Polyspace Analysis from MATLAB” on page 5-9

 See Also

5-5

Generate MATLAB Scripts from Polyspace User Interface
You can specify analysis options in the Polyspace user interface and later generate a
MATLAB script for easier reuse of those options.

In the user interface, to determine which options to specify, you have tooltips,
autocompletion of function names, compilation assistant, context-sensitive help and so on.
After you specify the options, you can generate a MATLAB script. For subsequent
analyses, you can modify and run the script without opening the Polyspace user interface.

To start an analysis in the Polyspace user interface, create a project. In the project:

• You specify source and include folders during project creation.
• You specify analysis options such as compiler or multitasking in your project
configuration. You also enable or disable checkers.

From this project, you can generate a script that contains your sources, includes and
other analysis options. To begin, select File > New Project. For details, see “Add Source
Files for Analysis in Polyspace User Interface” on page 3-2.

This example uses a sample project. To open the project, select Help > Examples >
Code_Prover_Example.psprj. You see the options in the project configuration. For
instance, on the Target & Compiler node, you see a generic compiler and an i386
processor.

5 Run Polyspace Analysis with MATLAB Scripts

5-6

1 Open MATLAB.

For instance, select Tools > Open MATLAB.
2 Create a polyspace.Options object from the sample Polyspace project.

projectFile = fullfile(matlabroot, 'polyspace', 'examples', 'cxx', ...
 'Code_Prover_Example', 'Code_Prover_Example.psprj');
opts = polyspace.loadProject(projectFile);

3 Append the object to a MATLAB script.

filePath = opts.toScript('runPolyspace.m','append');

Open the script runPolyspace.m. You see the options that you specified from the
user interface. For instance, you see the compiler and target processor.

opts.TargetCompiler.Compiler = 'generic';
opts.TargetCompiler.Target = 'i386';

Later, you can run the script to create a polyspace.Options object.

run(filePath);

The preceding example converts the sample project Code_Prover_Example directly to a
script. When you open the sample project in the user interface, a copy is loaded into your

 Generate MATLAB Scripts from Polyspace User Interface

5-7

Polyspace workspace. If you make changes to the sample project, the changes are made
to the copied version. To see the changes in your MATLAB script, provide the copied
project path to the loadProject method. To see the location of your workspace, select
Tools > Preferences and view the Project and Results Folder tab.

See Also

Related Examples
• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-2

5 Run Polyspace Analysis with MATLAB Scripts

5-8

Troubleshoot Polyspace Analysis from MATLAB
When you run a Polyspace analysis on your C/C++ code, if one or more of your files fail to
compile, the analysis continues with the remaining files. You can choose to stop the
analysis on compilation errors.

proj = polyspace.Project;
proj.Configuration.EnvironmentSettings.StopWithCompileError = true;

However, it is more convenient to let the analysis complete and capture all compilation
errors.

The compilation errors are displayed in the analysis log that appears on the MATLAB
command window. The analysis log also contains the options used and the various stages
of analysis. The lines that indicate errors begin with the Error: string. Find these lines
and extract them to a log file for easier scanning. Produce a warning to indicate that
compilation errors occurred.

The function runPolyspace defined later captures the output from the command
window using the evalc function and stores lines starting with Error: in a file
error.log. You can call runPolyspace with paths to your source and include folders.

[status, resultsSummary] = runPolyspace('/path/to/sources', '/path/to/includes');

The function is defined as follows.

function [status, resultsSummary] = runPolyspace(sourcePath, libPath)
% runPolyspace takes two string arguments: source and include folder.
% The files in the source folder are analyzed for defects.
% If one or more files fail to compile, the errors are saved in a log.
% A warning on the screen indicates that compilation errors occurred.

 proj = polyspace.Project;

 % Specify sources
 proj.Configuration.Sources = {fullfile(sourcePath,'*')};

 % Specify compiler and paths to libraries
 proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
 proj.Configuration.EnvironmentSettings.IncludeFolders = {fullfile(libPath,'*')};

 % Run analysis

 Troubleshoot Polyspace Analysis from MATLAB

5-9

 runMode = 'bugFinder';
 [logFileContent,status] = evalc('proj.run(runMode)');

 % Open file for writing errors
 errorFile = fopen('error.log','wt+');

 % Check log file for compilation errors
 numErrors = 0;

 log = strsplit(logFileContent,'\n');
 errorLines = find(contains(log, {'Error:'}, 'IgnoreCase', true));
 for ii=1:numel(errorLines)
 fprintf(errorFile, '%s\n', log{errorLines(ii)});
 numErrors = numErrors + 1;
 end

 if numErrors
 warning('%d compilation error(s). See error.log for details.', numErrors);
 end

 fclose(errorFile);

 % Read results
 resultsSummary = proj.Results.getSummary('defects');

The analysis log is also captured in a file Polyspace_R20##n_ProjectName_date-
time.log. Instead of capturing the output from the command window, you can search
this file.

You can adapt this script for other purposes. For instance, you can capture warnings in
addition to errors. The lines with warnings begin with warning:. The warnings indicate
situations where the analysis proceeds despite an issue. The analysis makes an
assumption to work around the issue. If the assumption is incorrect, you can see errors
later or in rare cases, incorrect analysis results.

See Also
polyspace.Project

5 Run Polyspace Analysis with MATLAB Scripts

5-10

Related Examples
• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-2
• “Troubleshooting in Polyspace Code Prover”

 See Also

5-11

Run Polyspace Analysis on Remote
Clusters

• “Run Polyspace Analysis on Remote Clusters” on page 6-2
• “Run Polyspace Analysis on Remote Clusters Using Scripts” on page 6-4

6

Run Polyspace Analysis on Remote Clusters
Before running a batch analysis in the Polyspace user interface, you must set up your
project’s source files, analysis options, and remote analysis settings. If you have not done
so, see:

• “Add Source Files for Analysis in Polyspace User Interface” on page 3-2
• “Set Up Server for Metrics and Remote Analysis”

To start a remote analysis:

1 Select a project to analyze.
2 On the Configuration pane, select Run Settings.
3 Select Run Bug Finder analysis on a remote cluster.
4 If you want to store your results in the Polyspace Metrics repository, select Upload

results to Polyspace Metrics.

Otherwise, clear this check box.
5

Select the button.
6 To monitor the analysis, select Tools > Open Job Monitor. In the Polyspace Job

Monitor, follow your queued job to monitor progress.

Once the analysis is complete, you can open your results from the Results folder, or
download them from Polyspace Metrics.

If the analysis stops after compilation and you have to restart the analysis, to avoid
restarting from the compilation phase, use the option -submit-job-from-
previous-compilation-results.

Note If you choose to upload results to Polyspace Metrics, your results are not
downloaded automatically after verification. Use the Polyspace Metrics web dashboard to
view the results and download them to your desktop. For more information, see “View
Code Quality Metrics” on page 22-14.

6 Run Polyspace Analysis on Remote Clusters

6-2

See Also

More About
• “Set Up Server for Metrics and Remote Analysis”
• “Run Polyspace Analysis on Remote Clusters Using Scripts” on page 6-4

 See Also

6-3

Run Polyspace Analysis on Remote Clusters Using
Scripts

Before you run a remote analysis, you must set up a server for this purpose. For more
information, see “Set Up Server for Metrics and Remote Analysis”.

Run Remote Analysis
Use the following command to run a remote analysis:

matlabroot\polyspace\bin\polyspace-code-prover-nodesktop
-batch -scheduler NodeHost | MJSName@NodeHost [options]

where:

• matlabroot is your MATLAB installation folder.
• NodeHost is the name of the computer that hosts the head node of your MATLAB

Distributed Computing Server™ cluster.

MJSName is the name of the MATLAB Job Scheduler (MJS) on the head node host.

If you set up communications with a cluster from the Polyspace user interface, you can
determine NodeHost and MJSName from the user interface. Select Metrics > Metrics
and Remote Server Settings. Open the MATLAB Distributed Computing Server
Admin Center. Under MATLAB Job Scheduler, see the Name and Hostname
columns for MJSName and NodeHost. For details, see “Configure for an MJS”
(MATLAB Distributed Computing Server).

• options are the analysis options. These options are the same as that of a local
analysis. For instance, you specify the results folder using the option -results-dir.

For more information, see “Run Polyspace Analysis from Command Line” on page 4-2.

After compilation, the software submits the analysis job to the cluster and provides you a
job ID. You can also read the ID from the file ID.txt in the results folder. Use the
polyspace-jobs-manager command with the job ID to monitor your analysis and
download results after analysis is complete. For more information, see “Manage Remote
Analysis” on page 6-6.

6 Run Polyspace Analysis on Remote Clusters

6-4

If the analysis stops after compilation and you have to restart the analysis, to avoid
restarting from the compilation phase, use the option -submit-job-from-previous-
compilation-results.

Tip In Windows, to avoid typing the commands each time, you can save the commands in
a batch file. In Linux, you can relaunch the analysis using a .sh file.

1 Save your analysis options in a file listofoptions.txt. See “Specify Sources and
Analysis Options in Text File” on page 4-3.

To specify your sources, in the options file, instead of -sources, use -sources-
list-file. This option is available only for remote analysis and allows you to
specify your sources in a separate text file.

2 Create a file launcher.bat in a text editor like Notepad.
3 Enter the following commands in the file.

echo off
set POLYSPACE_PATH=matlabroot\polyspace\bin
set RESULTS_PATH=C:\Results
set OPTIONS_FILE=C:\Options\listofoptions.txt
"%POLYSPACE_PATH%\polyspace-code-prover-nodesktop.exe" -batch -scheduler localhost
 -results-dir %RESULTS_PATH% -options-file %OPTIONS_FILE%
pause

Where matlabroot is your MATLAB installation folder, and localhost is the name
of the computer that hosts the head node of your MATLAB Distributed Computing
Server cluster.

4 Replace the definitions of the following variables in the file:

• POLYSPACE_PATH: Enter the actual location of the .exe file.
• RESULTS_PATH: Enter the path to a folder. The files generated during compilation

are saved in the folder.
• OPTIONS_FILE: Enter the path to the file listofoptions.txt.

5 Double-click launcher.bat to run the analysis.

If you run a Polyspace analysis, a Windows .bat or Linux .sh file is automatically
generated for you. The file is in the .settings subfolder in your results folder. You can
relaunch the analysis using this file.

 Run Polyspace Analysis on Remote Clusters Using Scripts

6-5

Manage Remote Analysis
To manage remote analyses, use this command:

matlabroot\polyspace\bin\polyspace-jobs-manager action [options]
 [-scheduler schedulerOption]

where:

• matlabroot is your MATLAB installation folder
• schedulerOption is one of the following:

• Name of the computer that hosts the head node of your MATLAB Distributed
Computing Server cluster (NodeHost).

• Name of the MJS on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Discover Clusters and Use Cluster
Profiles” (Parallel Computing Toolbox)

If you do not specify a job scheduler, polyspace-job-manager uses the scheduler
specified in the Polyspace Preferences > Server Configuration > Job scheduler
host name.

• action [options] refer to the possible action commands to manage jobs on the
scheduler:

6 Run Polyspace Analysis on Remote Clusters

6-6

Action Options Task
listjobs None Generate a list of Polyspace jobs on the

scheduler. For each job, the software
produces the following information:

• ID — Verification or analysis identifier.
• AUTHOR — Name of user that submitted

job.
• APPLICATION — Name of Polyspace

product, for example, Polyspace Code
Prover or Polyspace Bug Finder.

• LOCAL_RESULTS_DIR — Results folder
on local computer, specified through the
Tools > Preferences > Server
Configuration tab.

• WORKER — Local computer from which
job was submitted.

• STATUS — Status of job, for example,
running and completed.

• DATE — Date on which job was
submitted.

• LANG — Language of submitted source
code.

 Run Polyspace Analysis on Remote Clusters Using Scripts

6-7

Action Options Task
download -job ID -results-

folder
FolderPath

Download results of analysis with specified
ID to folder specified by FolderPath.

When the analysis job is queued on the
server, the command polyspace-code-
prover-nodesktop returns a job id.
Additionally, a file ID.txt in the results
folder contains the job id in this format:

job_id;server_name:project_name version_number

For instance, 92;localhost:Demo 1.0.

If you do not use the -results-folder
option, the software downloads the result to
the folder you specified when starting
analysis, using the -results-dir option.

After downloading results, use the
Polyspace user interface to view the results.
See “Interpret Polyspace Code Prover
Results” on page 17-2.

getlog -job ID Open log for job with specified ID.
remove -job ID Remove job with specified ID.
promote -job ID Promote job with specified ID in the queue.
demote -job ID Demote job with specified ID in the queue.

See Also

More About
• “Set Up Server for Metrics and Remote Analysis”
• “Run Polyspace Analysis on Remote Clusters” on page 6-2

6 Run Polyspace Analysis on Remote Clusters

6-8

External Websites
• Set up Continuous Code Verification with Jenkins

 See Also

6-9

https://www.mathworks.com/matlabcentral/answers/279990-how-do-i-use-polyspace-bug-finder-with-jenkins

Run Polyspace Analysis on
Generated Code

7

Run Polyspace Analysis on Code Generated with
Embedded Coder

If you generate code from a Simulink model using Embedded Coder or TargetLink®, you
can analyze the generated code for bugs or run-time errors with Polyspace from within
the Simulink environment. You do not have to manually set up a Polyspace project.

This topic uses Embedded Coder for code generation. For analysis of TargetLink-
generated code, see “Run Polyspace Analysis on Code Generated with TargetLink” on
page 7-32.

For a tutorial with a specific model, see “Analyze Code Generated from Simulink
Subsystem” on page 7-10.

Generate and Analyze Code

Configure Code Generation and Generate Code

To configure code generation and generate code from a model or subsystem, do one of the
following:

• Select Code > C/C++ > Embedded Coder Quick Start. Follow the on-screen
instructions.

• Configure code generation through Simulink configuration parameters. The chief
parameters to set are:

• Type (Simulink): Select Fixed-step.

7 Run Polyspace Analysis on Generated Code

7-2

• Solver (Simulink): Select auto (Automatic solver selection) or Discrete (no
continuous states).

• System target file (Simulink Coder): Enter ert.tlc or autosar.tlc. If you derive
target files from ert.tlc, you can also specify them.

• “Code-to-model” (Simulink Coder): Select this option to enable links from code to
model.

For the full list of parameters to set, see “Recommended Model Configuration
Parameters for Polyspace Analysis” on page 7-20.

Alternatively, run the Code Generation Advisor with the objective Polyspace and
check if the required parameters are already set. See “Configure Model for Code
Generation Objectives by Using Code Generation Advisor” (Embedded Coder).

To generate code, select Code > C/C++ > Build Model. There is an equivalent
option for a subsystem.

Configure Code Analysis

Select Code > Polyspace > Options. Change default values of these options if needed.

• “Product mode”: Choose Code Prover or Bug Finder.
• Settings from: Enable checking of MISRA coding rules in addition to the default

checks specified in the project configuration. The default Bug Finder checks look for
bugs and the Code Prover checks look for run-time errors.

• “Input”, “Tunable parameters” and “Output”: Constrain inputs, tunable parameters or
outputs for a more precise Code Prover analysis.

• “Output folder”: Specify a dedicated folder for results. The default analysis saves the
results in a folder results_modelName in the current working folder.

• “Open results automatically after verification”

Analyze Code

To analyze the code, select Code > Polyspace > Verify Code Generated for > Model.
There is an equivalent option for a subsystem.

You can follow the progress of the analysis in the MATLAB command window.

 Run Polyspace Analysis on Code Generated with Embedded Coder

7-3

The results open automatically unless explicitly disabled. By default, the results are saved
in a folder results_ModelName in the current folder. Each new run overwrites previous
results. You can change these behaviors or save the results to a Simulink project. To make
these changes, select Code > Polyspace > Options.

If you want to open the results later, select Code > Polyspace > Open Results > For
Generated Code.

Review Analysis Results

7 Run Polyspace Analysis on Generated Code

7-4

Review Result in Code

The results appear in the Polyspace user interface on the Results List pane. Click each
result to see the source code and details on the Result Details pane. See also:

•
• “Interpret Polyspace Code Prover Results” on page 17-2
• “Code Prover Result and Source Code Colors” on page 17-10
• “Address Polyspace Results Through Bug Fixes or Comments” on page 19-2
• “Filter and Group Results” on page 20-2

Navigate from Code to Model

Links in code comments show blocks that generate the subsequent lines of code. To see
the blocks in the model, click the block names in the links. If you run into issues, see
“Troubleshoot Navigation from Code to Model” on page 7-37.

Alternatively, you can right-click a variable name and select Go to Model. This option is
not available for all variables.

Fix Issue

Investigate whether the issues in your code are related to design flaws in the model.

There can be many design flaws in the model that lead to issues in the generated code.
For instance:

• The generated code might be free of specific run-time errors only for a certain range
of a block parameter. To fix this, you can change the storage class of that block
parameter or use calibration data for the analysis using the configuration parameter
“Tunable parameters”.

• The generated code might be free of specific run-time errors only for a certain range
of inputs. To verify this, you can specify a minimum and maximum value for the Inport
block signals. The Polyspace analysis uses this constrained range. See “Specify Ranges
for Signals” (Simulink).

• Certain transitions in Stateflow® charts can be unreachable.

 Run Polyspace Analysis on Code Generated with Embedded Coder

7-5

If you include handwritten C/C++ code in S-Function blocks, the Polyspace analysis can
reveal possible integration issues between the handwritten and generated code. You can
also analyze the handwritten code in isolation. See “Analyze S-Function Code” on page 7-
18.

Annotate Blocks to Justify Issue

If you do not want to make changes in response to a Polyspace result, annotate the
relevant blocks. After you annotate a block, code operations generated from the block
show results prepopulated with your comments. To annotate a block, right-click the block
and select Polyspace > Annotate Selected Block > Edit. Enter the following:

• Comma-separated list of result acronyms. To justify only type of result, select Only 1
check.

See:

• “Short Names of Bug Finder Defect Checkers” (Polyspace Bug Finder)
• “Short Names of Code Prover Run-Time Checks” on page 19-12

• Status, severity and comment to be assigned to the results.

Sometimes operations in the generated code are known to cause orange checks in Code
Prover. Suppose an operation is known to possibly overflow. The generated code protects
against the overflow by following the operation with a saturation. Polyspace still flags the
possible overflow as an orange check. To automatically justify these checks through code
comments, specify the configuration parameter “Operator annotations” (Simulink Coder).

See Also

More About
• “Configure Advanced Polyspace Options in Simulink” on page 7-23

7 Run Polyspace Analysis on Generated Code

7-6

Verify Generated Code Using Polyspace Code Prover
If you generate C or C++ code from models using Embedded Coder, you can check the
generated code for run-time errors. Polyspace Code Prover proves code correctness, finds
run-time errors, and checks for MISRA-C compliance in generated and handwritten code.

This example contains a demo model from which you can generate code and then analyze
the generated code.

Open Model

Open and explore the example model. The model contains a controller subsystem,
which itself contains many subsystems. One of the subsystems has some issues that can
lead to run-time errors in the generated code.

open_system('psdemo_model_link_sl');

 Verify Generated Code Using Polyspace Code Prover

7-7

Generate and Analyze Code

Generate code from the controller subsystem or one of the subsystems underneath.
Then, run Polyspace Code Prover on the generated code. You can trace back from run-
time errors found in the generated code to corresponding blocks in the model. You can
also check for coding rule violations and add annotations on blocks to justify the
violations. For details, see Analyze Code Generated from Simulink Subsystem.

7 Run Polyspace Analysis on Generated Code

7-8

https://www.mathworks.com/help/codeprover/ug/verify-code-generated-from-simulink-subsystem-1.html

The controller subsystem also contains an S-Function block. You can separately
analyze the C code that the S-Function block refers to. For details, see Analyze S-
Function Code.

 Verify Generated Code Using Polyspace Code Prover

7-9

https://www.mathworks.com/help/codeprover/ug/verify-s-function-code.html
https://www.mathworks.com/help/codeprover/ug/verify-s-function-code.html

Analyze Code Generated from Simulink Subsystem
You can run Polyspace on the code generated from a Simulink model or subsystem.

• Polyspace Bug Finder checks the code for bugs or coding rule violations (for instance,
MISRA C: 2012 rules).

• Polyspace Code Prover exhaustively checks the code for run-time errors.

If you use Embedded Coder for code generation, this tutorial shows how to run Polyspace
on the generated code from within Simulink.

Open Model
Open the example model.

modelName = 'psdemo_model_link_sl';
open_system(modelName)

7 Run Polyspace Analysis on Generated Code

7-10

Generate Code
Generate code for the controller subsystem in your model.

1 Right-click the controller subsystem and select C/C++ Code > Build This
Subsystem.

2 In the dialog box, select Build.

Equivalent MATLAB Code:

 Analyze Code Generated from Simulink Subsystem

7-11

subsysPath = 'psdemo_model_link_sl/controller';
rtwbuild(subsysPath);

Analyze Code
Analyze the code generated for the controller subsystem.

1 Choose a product, Bug Finder or Code Prover, to analyze the code.

Right-click the controller subsystem and select Polyspace > Options. For
Product mode, choose Code Prover or Bug Finder.

2 Analyze the generated code.

Right-click the controller subsystem and select Polyspace > Verify Generated
Code for > Selected Subsystem. Follow the progress of analysis in the MATLAB
Command Window.

Equivalent MATLAB Code:

opts = polyspace.ModelLinkOptions('C');
mlopts = pslinkoptions(subsysPath);
mlopts.VerificationMode = 'CodeProver';
mlopts.PrjConfigFile = generateProject(opts, 'polyspaceProject');
pslinkrun(subsysPath, mlopts);

To analyze with Bug Finder, replace CodeProver with BugFinder. For more information
on the code, see polyspace.ModelLinkOptions, pslinkoptions and pslinkrun.

Review Analysis Results
After analysis, the results are displayed in the Polyspace user interface.

If you run Bug Finder, the results consist of bugs detected in the generated code. If you
run Code Prover, the results consist of checks that are color-coded as follows:

• Green (proven code): The check does not fail for the data constraints provided. For
instance, a division operation does not cause a Division by Zero error.

• Red (verified error): The check always fails for the set of data constraints provided.
For instance, a division operation always causes a Division by Zero error.

7 Run Polyspace Analysis on Generated Code

7-12

• Orange (possible error): The check indicates unproven code and can fail for certain
values of the data constraints provided. For instance, a division operation sometimes
causes a Division by Zero error.

• Gray (unreachable code): The check indicates a code operation that cannot be
reached for the data constraints provided.

Review each analysis result in detail. For instance, in your Code Prover results:

1 On the Results List pane, select the red Out of bounds array index check.
2 On the Source pane, place your cursor on the red check to view additional

information. For instance, the tooltip on the red [operator states the array size and
possible values of the array index. The Result Details pane also provides this
information.

The error occurs in a handwritten C file Command_strategy_file.c. The C file is inside
an S-Function block Command_Strategy in the controller subsystem.

Trace Errors Back to Model and Fix Them
For code generated from the model, you can trace an error back to your model. These
sections show how to trace specific Code Prover results back to the model.

Error 1: Out of bounds array index

1 On the Results List pane, select the orange Out of bounds array index error that
occurs in the file controller.c.

2 On the Source pane, click the link S5:76 in comments above the orange error.

/* Transition: '<S5>:75' */
/* Transition: '<S5>:76' */
(*i)++;

/* Outport: '<Root>/FaultTable' */
controller_Y.FaultTable[*i] = 10;

You see that the error occurs due to a transition in the Stateflow chart
synch_and_asynch_monitoring. You can trace the error to the input variable index of
the Stateflow chart.

 Analyze Code Generated from Simulink Subsystem

7-13

You can avoid the Out of bounds array index in several ways. One way is to constrain
the input variable index using a Saturation block before the Stateflow chart.

Error 2: Overflow

1 On the Results List pane, select the orange Overflow error shown below. The error
appears in the file controller.c.

2 On the Source pane, review the error. To trace the error back to the model, click the
link S2/Gain in comments above the orange error.

/* Gain: '<S2>/Gain' incorporates:
* Inport: '<Root>/Battery Info'

7 Run Polyspace Analysis on Generated Code

7-14

* Inport: '<Root>/Rotation'
* Sum: '<S2>/Sum1'
*/

Gain = (int16_T)(((int16_T)((in_rotation + in_battery_info) >> 1) * 24576) >>
 10);

You see that the error occurs in the Fault Management subsystem inside a Gain
block following a Sum block.

You can avoid the Overflow in several ways. One way is to constrain the value of the
signal in_battery_info that is fed to the Sum block. To constrain the signal:

1 Double-click the Inport block Battery info that provides the input signal
in_battery_info to the controller subsystem.

2 On the Signal Attributes tab, change the Maximum value of the signal.

The errors in this model occur due to one of the following:

• Faulty scaling, unknown calibrations and untested data ranges coming out of a
subsystem into an arithmetic block.

• Array manipulation in Stateflow event-based modelling and handwritten lookup table
functions.

• Saturations leading to unexpected data flow inside the generated code.
• Faulty Stateflow programming.

 Analyze Code Generated from Simulink Subsystem

7-15

Once you identify the root cause of the error, you can modify the model appropriately to
fix the issue.

Check for Coding Rule Violations
To check for coding rule violations, before starting code analysis:

1 Right-click the controller subsystem and select Polyspace > Options.
2 In the Configuration Parameters dialog box, select an appropriate option in the

Settings from list. For instance, select Project configuration and MISRA C
2012 AGC Checking.

It is recommended that you run Bug Finder for checking MISRA C:2012 rules. For
Product mode, choose Bug Finder.

3 Click Apply or OK and rerun the analysis.

Annotate Blocks to Justify Results
You can justify your results by adding annotations to your blocks. During code analysis,
Polyspace Code Prover reads your annotations and populates the result with your
justification. Once you justify a result, you do not have to review it again.

1 On the Results List pane, from the drop-down list in the upper left corner, select
File.

2 In the file controller.c, in the function controller_step(), select the violation
of MISRA C:2012 rule 10.4. The Source pane shows that an addition operation
violates the rule.

3 On the Source pane, click the link S2/Sum1 in comments above the addition
operation.

/* Gain: '<S2>/Gain' incorporates:
* Inport: '<Root>/Battery Info'
* Inport: '<Root>/Rotation'
* Sum: '<S2>/Sum1'
*/
Gain = (int16_T)(((int16_T)((in_rotation + in_battery_info) >> 1) * 24576) >>
 10);

You see that the rule violation occurs in a Sum block.

7 Run Polyspace Analysis on Generated Code

7-16

To annotate this block and justify the rule violation:

a Right-click the block and select Polyspace > Annotate Selected Block > Edit.
b Select MISRA-C-2012 for Annotation type and enter information about the rule

violation. Set the Status to No action planned and the Severity to Unset.
c Click Apply or OK. The words Polyspace annotation appear below the block,

indicating that the block contains a code annotation.
d Regenerate code and rerun the analysis. The Severity and Status columns on

the Results List pane are prepopulated with your annotations.

See Also

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 7-2

 See Also

7-17

Analyze S-Function Code
If you want to check your S-Function code for bugs or errors, you can run Polyspace
directly from your S-Function block in Simulink.

S-Function Analysis Workflow
To verify an S-Function with Polyspace, follow this recommended workflow:

1 Compile your S-Function to be compatible with Polyspace.
2 Select your Polyspace options.
3 Run a Polyspace Code Prover verification using one of the two analysis modes:

• This Occurrence — Analyzes the specified occurrence of the S-Function with the
input for that block.

• All Occurrences — Analyzes the S-Function code with input values from every
occurrence of the S-Function.

4 Review results in the Polyspace interface.

• For information about navigating through your results, see “Filter and Group
Results” on page 20-2.

• For help reviewing and understanding the results, see “Polyspace Code Prover
Results”.

Compile S-Functions to Be Compatible with Polyspace
Before you analyze your S-Function with Polyspace Code Prover , you must compile your
S-Function with one of following tools:

• The Legacy Code Tool with the
def.Options.supportCoverageAndDesignVerifier set to true. See
legacy_code.

• The SFunctionBuilder block, with Enable support for Design Verifier selected on
the Build Info tab of the SFunctionBuilder dialog box.

• The Simulink Coverage function slcovmex, with the option -sldv.

7 Run Polyspace Analysis on Generated Code

7-18

Example S-Function Analysis
This example shows the workflow for analyzing S-Functions with Polyspace. You use the
model psdemo_model_link_sl and the S-Function Command_Strategy.

1 Open the model and use the Legacy Code Tool to compile the S-Function
Command_Strategy.

% Open Model
psdemo_model_link_sl

% Compile S-Function Command_Strategy
def = legacy_code('initialize');
def.SourceFiles = { 'command_strategy_file.c' };
def.HeaderFiles = { 'command_strategy_file.h' };
def.SFunctionName = 'Command_Strategy';
def.OutputFcnSpec = 'int16 y1 = command_strategy(uint16 u1, uint16 u2)';
def.IncPaths = { fullfile(matlabroot, ...
 'toolbox','polyspace','pslink','pslinkdemos','psdemo_model_link_sl') };
def.SrcPaths = def.IncPaths;
def.Options.supportCoverageAndDesignVerifier = true;
legacy_code('compile',def);

2 Open the subsystem psdemo_model_link_sl/controller.
3 Right-click the S-Function block Command_Strategy and select Polyspace >

Options.
4 In the Configuration Parameters dialog box, make sure that the following parameters

are set:

• Product mode — Code Prover
• Settings from — Project configuration and MISRA C 2012 checking
• Open results automatically after verification — On

5 Apply your settings and close the Configuration Parameters.
6 Right-click the Command_Strategy block and select Polyspace > Verify S-Function

> This Occurrence.
7 Follow the analysis in the MATLAB Command Window. When the analysis is finished,

your results open in the Polyspace interface.

 Analyze S-Function Code

7-19

Recommended Model Configuration Parameters for
Polyspace Analysis

For Polyspace analyses, set the following parameter configurations before generating
code. If you do not use the recommended value for SystemTargetFile, you get an error.
For other parameters, if you do not use the recommended value, you get a warning.

Grouping Command-Line Name and Location in
Configuration

Code Generation

Name: SystemTargetFile (Simulink
Coder)

Value: An Embedded Coder Target Language
Compiler (TLC) file.

For example ert.tlc or autosar.tlc.

Location: Code Generation

Name: System target file

Value: Embedded Coder
target file

Name: MatFileLogging (Simulink Coder)

Value: 'off'

Location: Code Generation
> Interface

Name: MAT-file logging

Value: Not selected
Name: GenerateReport (Simulink Coder)

Value: 'on'

Location: Code Generation
> Report

Name: Create code-
generation report

Value: Selected
Name: IncludeHyperlinksInReport
(Simulink Coder)

Value: 'on'

Location: Code Generation
> Report

Name: Code-to-model

Value: Selected

7 Run Polyspace Analysis on Generated Code

7-20

Grouping Command-Line Name and Location in
Configuration

Name: GenerateSampleERTMain (Embedded
Coder)

Value: 'off'

Location: Code Generation
> Templates

Name: Generate an
example main program

Value: Not selected
Name: GenerateComments (Simulink
Coder)

Value: 'on'

Location: Code Generation
> Comments

Name: Include comments

Value: Selected

Optimization

Name: DefaultParameterBehavior
(Simulink Coder)

Value: 'Inlined'

Location: Optimization

Name: Default parameter
behavior

Value: Inlined
Name: InitFltsAndDblsToZero (Simulink
Coder)

Value: 'on'

Location: Optimization

Name: Use memset to
initialize floats and
doubles to 0.0

Value: Not selected
Name: ZeroExternalMemoryAtStartup
(Simulink Coder)

Value: 'on'

Location: Optimization

Name: Remove root level
I/O zero initialization

Value: Not selected

Solver

Name: SolverType (Simulink)

Value: 'Fixed-Step'

Location: Solver

Name: Type

Value: Fixed-step

 Recommended Model Configuration Parameters for Polyspace Analysis

7-21

Grouping Command-Line Name and Location in
Configuration

Name: Solver (Simulink)

Value: 'FixedStepDiscrete'

Location: Solver

Name: Solver

Value: discrete (no
continuous states)

7 Run Polyspace Analysis on Generated Code

7-22

Configure Advanced Polyspace Options in Simulink
Before analyzing generated code in Simulink, you can change some of the default options.
This topic shows how to configure the options and save this configuration.

For getting started with Polyspace analysis in Simulink, see “Run Polyspace Analysis on
Code Generated with Embedded Coder” on page 7-2.

Configure Options

 Configure Advanced Polyspace Options in Simulink

7-23

7 Run Polyspace Analysis on Generated Code

7-24

Set basic options

The commonly used options appear in Simulink Configuration Parameters. Select Code >
Polyspace > Options.

Set advanced options

Select Code > Polyspace > Options. From the Configuration Parameters window, you
can access a wider set of options for configuring the analysis. Click the Configure button
beside Project configuration.

For instance, you can:

• Run the code analysis on a remote cluster. Use the option Run Bug Finder or Code
Prover analysis on a remote cluster.

If you use this option, after starting the analysis, you can follow the progress of the
analysis on the remote cluster through the Job Monitor window. Select Code >
Polyspace > Open Job Monitor.

• Stub certain functions for the analysis and then constrain the function output. Use the
options Functions to stub (-functions-to-stub) and Constraint setup
(-data-range-specifications).

If a basic option in the Configuration Parameters window directly conflicts with an
advanced option in the Polyspace window, the former prevails. For instance, in this
situation, Polyspace checks for MISRA C: 2012 rules:

• “Settings from (C)”: You select this basic option Project configuration and
MISRA C 2012 checking for generated code.

• Check MISRA C:2012 (-misra3): You disable this advanced option.

Share and Reuse Configuration
You can share the basic or advanced options across multiple models.

 Configure Advanced Polyspace Options in Simulink

7-25

• Basic options: You can share and reuse the options set in the Configuration Parameters
window. See “Share a Configuration for Multiple Models” (Simulink).

• Advanced options: The advanced options are saved in a separate Polyspace project
associated with your analysis. Share this project across multiple models.

The next sections show how to reuse the advanced options. You can specify the advanced
options just once. You can reuse these advanced options across multiple models and set
only the basic options individually in each model.

Set options from model

Set the advanced options as needed. To see where the associated project file is stored or

change the name of the file, on the Polyspace window toolbar, click the icon.

Reuse options in another model

To reuse the advanced options in another model, open the Configuration Parameters
window from the model. Select Code > Polyspace > Options.

• Select Use custom project file. Provide the path to the project file previously created
(extension .psprj).

• For Settings from, select Project configuration so that the settings in your
project are used.

If you want to check for additional issues, for instance MISRA C: 2012 violations,
select Project configuration and MISRA C 2012 checking for generated
code.

See Also

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 7-2

7 Run Polyspace Analysis on Generated Code

7-26

• “Run Polyspace Analysis on Code Generated with TargetLink” on page 7-32
• “Default Polyspace Options for Code Generated with Embedded Coder” on page 7-

29
• “Default Polyspace Options for Code Generated with TargetLink” on page 7-34

 See Also

7-27

How Polyspace Analysis of Generated Code Works
When you run Polyspace on generated code, the software automatically reads the
following information from the generated code:

• initialize() functions
• terminate() functions
• step() functions
• List of parameter variables
• List of input variables

If you run Code Prover, the software uses this information to generate a main function
that:

1 Initializes parameters using the Polyspace option Parameters (-variables-
written-before-loop).

2 Calls initialization functions using the option Initialization functions (-
functions-called-before-loop).

3 Initializes inputs using the option Inputs (-variables-written-in-loop).
4 Calls the step function using the option Step functions (-functions-called-

in-loop).
5 Calls the terminate function using the option Termination functions (-

functions-called-after-loop).

The main function conceptually looks like this:
init parameters \\ -variables-written-before-loop
init_fct() \\ -functions-called-before-loop
 while(1){ \\ start main loop
 init inputs \\ -variables-written-in-loop
 step_fct() \\ -functions-called-in-loop
}
terminate_fct() \\ -functions-called-after-loop

Code Prover uses this generated main function to perform the subsequent analysis.

For C++ code that is generated with Embedded Coder, the initialize(), step(), and
terminate() functions and associated variables are either class members or have global
scope.

7 Run Polyspace Analysis on Generated Code

7-28

Default Polyspace Options for Code Generated with
Embedded Coder

In this section...
“Default Options” on page 7-29
“Constraint Specification” on page 7-29
“Recommended Polyspace options for Verifying Generated Code” on page 7-30
“Hardware Mapping Between Simulink and Polyspace” on page 7-30

Default Options
For Embedded Coder code, the software sets the following verification options by default:

-sources path_to_source_code
-D PST_ERRNO
-D main=main_rtwec
-I matlabroot\polyspace\include
-I matlabroot\extern\include
-I matlabroot\rtw\c\libsrc
-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include
-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]
-results-dir results

Note matlabroot is the MATLAB installation folder.

Constraint Specification
You can constrain inputs, parameters, and outputs to lie within specified ranges. Use
these configuration parameters:

• “Input”
• “Tunable parameters”
• “Output”

The software automatically creates a Polyspace constraints file using information from the
MATLAB workspace and block parameters.

 Default Polyspace Options for Code Generated with Embedded Coder

7-29

You can also manually define a constraints file in the Polyspace user interface. See
“Specify External Constraints” on page 12-2. If you define a constraints file, the
software appends the automatically generated information to the constraints file you
create. Manually defined constraint information overrides automatically generated
information for all variables.

The software supports the automatic generation of constraint specifications for the
following kinds of generated code:

• Code from standalone models
• Code from configured function prototypes
• Reusable code
• Code generated from referenced models and submodels

Recommended Polyspace options for Verifying Generated
Code
For Embedded Coder code, the software automatically specifies values for the following
verification options:

• -main-generator
• -functions-called-in-loop
• -functions-called-before-loop
• -functions-called-after-loop
• -variables-written-in-loop
• -variables-written-before-loop

In addition, for the option -server, the software uses the value specified in the Send to
Polyspace server check box on the Polyspace pane. These values override the
corresponding option values in the Configuration pane of the Polyspace user interface.

You can specify other verification options for your Polyspace Project through the
Polyspace Configuration pane. See “Configure Advanced Polyspace Options in Simulink”
on page 7-23.

Hardware Mapping Between Simulink and Polyspace
The software automatically imports target word lengths and byte ordering (endianness)
from Simulink model hardware configuration settings. The software maps Device vendor

7 Run Polyspace Analysis on Generated Code

7-30

and Device type settings on the Simulink Configuration Parameters > Hardware
Implementation pane to Target processor type settings on the Polyspace
Configuration pane.

The software creates a generic target for the verification.

 Default Polyspace Options for Code Generated with Embedded Coder

7-31

Run Polyspace Analysis on Code Generated with
TargetLink

You can analyze code generated from Simulink models with TargetLink.

You have fewer capabilities for code generated with TargetLink compared to code
generated with Embedded Coder. For instance, you cannot add annotations to your blocks
that carry over to the generated code and justify known issues.

Configure and Run Analysis
Configure code analysis

Select Code > Polyspace > Options. Change default values of these options if needed.

• “Product mode”: Choose Bug Finder or Code Prover.
• “Settings from (C)”: Enable checking of MISRA or JSF coding rules in addition to the

default checks.
• “Output folder”: Specify a dedicated folder for results. The default analysis runs Code

Prover on generated code and saves the results in a folder results_modelName in
the current working folder.

• “Enable additional file list”: Add C files that are not part of the generated code.
• “Open results automatically after verification”

Analyze code

To analyze the code, select Code > Polyspace > Verify Code Generated for > Selected
Target Link Subsystem. You cannot analyze code generated from the entire model.

You can follow the progress of the analysis in the MATLAB command window.

The results open automatically unless explicitly disabled. By default, the results are saved
in a folder results_ModelName in the current folder. Each new run overwrites previous
results. You can change these behaviors or save the results to a Simulink project using
appropriate configuration parameters.

7 Run Polyspace Analysis on Generated Code

7-32

Note Verification of a 3,000 block model takes approximately one hour to verify, or about
15 minutes per 2,000 lines of generated code.

Review Analysis Results
Review result in code

The results appear on the Results List pane. Click each result to see the source code and
details on the Result Details pane.

Navigate from code to model

Links in code comments show blocks that generate the subsequent lines of code. To see
the blocks in the model, click the block names.

Fix issue

Investigate whether the issues in your code are related to design flaws in the model.

For instance, you might need to constrain the range of signal from Inport blocks. See
“Specify Ranges for Signals” (Simulink).

 Run Polyspace Analysis on Code Generated with TargetLink

7-33

Default Polyspace Options for Code Generated with
TargetLink

In this section...
“TargetLink Support” on page 7-34
“Default Options” on page 7-34
“Lookup Tables” on page 7-35
“Data Range Specification” on page 7-35
“Code Generation Options” on page 7-36

TargetLink Support
The Windows version of Polyspace Code Prover is supported for versions 3.5 and 4.0 of
the dSPACE® Data Dictionary and TargetLink Code Generator.

Polyspace Code Prover does support CTO generated code. However, for better results,
MathWorks recommends that you disable the CTO option in TargetLink before generating
code. For more information, see the dSPACE documentation.

Because Polyspace Code Prover extracts information from the dSPACE Data Dictionary,
you must regenerate the code before performing an analysis.

Default Options
Polyspace sets the following options by default:

-sources path_to_source_code
-results-dir results_folder_name
-I path_to_source_code
-D PST_ERRNO
-I dspaceroot\matlab\TL\SimFiles\Generic
-I dspaceroot\matlab\TL\srcfiles\Generic
-I dspaceroot\matlab\TL\srcfiles\i86\LCC
-I matlabroot\polyspace\include
-I matlabroot\extern\include
-I matlabroot\rtw\c\libsrc
-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include

7 Run Polyspace Analysis on Generated Code

7-34

-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]
-ignore-constant-overflows
-scalar-overflows-behavior wrap-around
-boolean-types Bool

Note dspaceroot and matlabroot are the dSPACE and MATLAB tool installation
directories respectively.

Lookup Tables
By default, Polyspace provides stubs for the lookup table functions. The dSPACE data
dictionary is used to define the range of their return values. A lookup table that uses
extrapolation returns full range for the type of variable that it returns. You can disable
this behavior from the Polyspace configuration menu.

Data Range Specification
You can constrain inputs, parameters, and outputs to lie within specified data ranges. See
“Specify Ranges for Signals” (Simulink).

The software automatically creates a Polyspace constraints file using the dSPACE Data
Dictionary for each global variable. The constraint information is used to initialize each
global variable to the range of valid values as defined by the min..max information in the
data dictionary. This information allows Polyspace software to model real values for the
system during analysis. Carefully defining the min-max information in the model allows
the analysis to be more precise, because only the range of real values is analyzed.

Note Boolean types are modeled having a minimum value of 0 and a maximum of 1.

You can also manually define a constraint file in the Polyspace user interface. See “Specify
External Constraints” on page 12-2. If you define a constraint file, the software
appends the automatically generated information to the constraint file you create.
Manually defined constraint information overrides automatically generated information
for all variables.

Constraints cannot be applied to static variables. Therefore, the compilation flags -D
static= is set automatically. It has the effect of removing the static keyword from the

 Default Polyspace Options for Code Generated with TargetLink

7-35

code. If you have a problem with name clashes in the global name space, either rename
the variables or disable this option in Polyspace configuration.

Code Generation Options
From the TargetLink Main Dialog, it is recommended to:

• Set the option Clean code
• Unset the option Enable sections/pragmas/inline/ISR/user attributes
• Turn off the compute to overflow (CTO) generation. Polyspace can analyze code

generated with CTO, but the results may not be as precise.

When you install Polyspace, the tlcgOptions variable is updated with
'PolyspaceSupport', 'on' (see variable in 'C:\dSPACE\Matlab\Tl\config
\codegen\tl_pre_codegen_hook.m' file).

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with TargetLink” on page 7-32

External Websites
• dSPACE – TargetLink

7 Run Polyspace Analysis on Generated Code

7-36

http://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm

Troubleshoot Navigation from Code to Model
When you run Polyspace on generated code, in the analysis results, you see links in code
comments. The links show names of blocks that generate the subsequent lines of code. To
see the blocks in the model, you click the block names in the links.

This topic shows the issues that can happen in navigation from code to model.

 Troubleshoot Navigation from Code to Model

7-37

Links from Code to Model Do Not Appear
See if you are looking at source files (.c or .cpp) or header files. Header files are not
directly associated with blocks in the model and do not have links back to the model.

Links from Code to Model Do Not Work
You may encounter issues with the back-to-model feature if:

• Your operating system is Windows Vista™ or Windows 7; and User Account Control
(UAC) is enabled or you do not have administrator privileges.

• You have multiple versions of MATLAB installed.

To reconnect MATLAB and Polyspace:

1 Close Polyspace.
2 At the MATLAB command-line, enter pslinkfun('enablebacktomodel').

When you open your Polyspace results, the hyper-links will highlight the relevant
blocks in your model.

Your Model Already Uses Highlighting
If your model extensively uses block coloring, the coloring from this feature may interfere
with the colors already in your model. You can change the color of blocks when they are
linked to Polyspace results. For instance, to change the color to magenta, use this
command:

color = 'magenta';
HILITE_DATA = struct('HiliteType', 'find', 'ForegroundColor', 'black', ...
 'BackgroundColor', color);
set_param(0, 'HiliteAncestorsData', HILITE_DATA)

The color can be one of the following:

• 'cyan'
• 'magenta'
• 'orange'
• 'lightBlue'

7 Run Polyspace Analysis on Generated Code

7-38

• 'red'
• 'green'
• 'blue'
• 'darkGreen'

 Troubleshoot Navigation from Code to Model

7-39

Run Polyspace on C/C++ Code Generated from MATLAB
Code

After generating C/C++ code from MATLAB code, you can independently check the
generated code for:

• Bugs or defects and coding rule violations: Use Polyspace Bug Finder.
• Run-time errors: Use Polyspace Code Prover.

Whether you generate code in the MATLAB Coder™ app or use codegen, you can follow
the same workflow for checking the generated code.

This tutorial uses the MATLAB Coder example averaging_filter. To copy the required
MATLAB files into a temporary folder and change to the folder, enter:

coderdemo_setup('coderdemo_averaging_filter');

The example shows a Code Prover analysis. You can follow a similar workflow for Bug
Finder.

Prerequisites
To run this tutorial:

• You must have an Embedded Coder license. The MATLAB Coder app does not show
options for running Polyspace unless you have an Embedded Coder license.

• You must be familiar with how to open and use the MATLAB Coder app or the
codegen command. Otherwise, see the MATLAB Coder Getting Started.

Run Polyspace Analysis
In the MATLAB Coder app, generate code from the file averaging_filter.m and
analyze the generated code.

1 Generate code.

From the entry-point function in the file, generate standalone C/C++ code (a static
library, dynamically linked library, or executable program) in the MATLAB Coder app.
The function has one input. Explicitly specify a data type for the input, for instance, a
1 X 100 vector of type double, or provide a file for deriving data types.

7 Run Polyspace Analysis on Generated Code

7-40

2 Analyze the generated code.

After code generation, open the Polyspace pane and click Run.

If the analysis is completed without errors, the Polyspace results open automatically.
If you close the results, you can reopen them from the final page in the app, under
the section Generated Output. The results are stored in a subfolder
results_averaging_filter in the folder containing the MATLAB file.

To script the preceding workflow, run:

 Run Polyspace on C/C++ Code Generated from MATLAB Code

7-41

% Copy demo files into a temporary folder
coderdemo_setup('coderdemo_averaging_filter');

% Generate code
codeName = 'averaging_filter';
codegenFolder = fullfile(pwd, 'codegenFolder');
codegen(codeName, '-config:lib', '-c', '-args', ...
 {zeros(1,100,'double')}, '-d', codegenFolder);

% Configure Polyspace analysis
opts = pslinkoptions('ec');
opts.ResultDir = ['results_',codeName];
opts.OpenProjectManager = 1;

% Run Polyspace
pslinkrun('-codegenfolder', codegenFolder, opts);

Review Analysis Results
After analysis, the Results List pane shows a list of run-time checks. For an explanation
of the result colors, see “Code Prover Result and Source Code Colors” on page 17-10.

Review the results and determine whether to fix the issues.

1 Filter out results that you do not want to review. For instance, you might not want to
see the green checks.

See an overview of the results on the Dashboard pane. Click the orange section of
the pie chart to filter the list of results on the Results List pane to the one orange
check. Click this orange Overflow check and see the source code for the operation
that can overflow.

If results are grouped by family, to see a flat list, on the Results List pane, from the
 dropdown, select None.

7 Run Polyspace Analysis on Generated Code

7-42

2 Find the root cause of each run-time error.

On the Source pane, use right-click navigation tools and tooltips to identify the root
cause of the check. In this case, you see that the + operation overflows because
Polyspace makes an assumption about the input array to the function. The
assumption is that the array elements can have any value allowed by their double
data type. The tooltip on the line buffer[0] = x[i] shows the assumed range.

 Run Polyspace on C/C++ Code Generated from MATLAB Code

7-43

With an Embedded Coder license, you can easily trace back from the generated C
code to the original MATLAB code. See “Interactively Trace Between MATLAB Code
and Generated C/C++ Code” (Embedded Coder).

Run Analysis for Specific Design Range
You can check the generated code for a specific range of inputs. Range specification helps
narrow down the default assumption that inputs are full-range.

To specify a range for inputs:

1 Open the analysis configuration.

In the Polyspace user interface, switch to the Polyspace project created for the
analysis. Select Window > Reset Layout > Project Setup. On the Project Browser
pane, click the project configuration.

7 Run Polyspace Analysis on Generated Code

7-44

2 Specify a design range for the inputs.

In the Configuration pane, on the Inputs & Stubbing node, set up your
constraints. Click Edit beside Constraint setup. Constrain the range of the first
input to [-100..100].

 Run Polyspace on C/C++ Code Generated from MATLAB Code

7-45

You can overwrite the default constraint template or save the constraints elsewhere.
For information on the columns in this window, see “External Constraints for
Polyspace Analysis” on page 12-6.

3 Rerun the analysis from the Coder app (or at the MATLAB command line) and see the
results.

On the Dashboard pane, you do not see the previous orange overflow anymore.

See Also

More About
• “Configure Advanced Polyspace Options in MATLAB Coder App” on page 7-47

7 Run Polyspace Analysis on Generated Code

7-46

Configure Advanced Polyspace Options in MATLAB Coder
App

Before analyzing generated code with Polyspace in the MATLAB Coder App, you can
change some of the default options. This topic shows how to configure the options and
save this configuration.

For getting started with Polyspace analysis in the MATLAB Coder App, see “Run
Polyspace on C/C++ Code Generated from MATLAB Code” on page 7-40.

Configure Options

 Configure Advanced Polyspace Options in MATLAB Coder App

7-47

The default analysis runs Code Prover based on a default project configuration. The
results are stored in a folder result_project_name in the current working folder.

You can change these options in the MATLAB Coder App itself:

• Product mode: Select Code Prover or Bug Finder.
• Results type: Check for MISRA C:2004 (MISRA AC AGC) or MISRA C:2012 rule

violations, in addition to or instead of the default checkers.

7 Run Polyspace Analysis on Generated Code

7-48

• Output folder: Choose an output folder name. To save the results of each run in a
new folder, under Advanced Settings, select Make output folder name unique by
adding a suffix.

• Check code generation options: Choose to see warnings or errors if the code
generation uses options that can result in imprecise Code Prover analysis.

For instance, if the code generation setting Use memset to initialize floats and
doubles to 0.0 is disabled, Code Prover can show imprecise orange checks because of
approximations. See “Orange Checks in Code Prover” on page 17-63.

To see the other default options or update them, under Advanced Settings, click the
Configure button. You see the options on a Configuration pane.

For more information on the options, see Bug Finder Analysis Options (Polyspace Bug
Finder) or Code Prover Analysis Options.

Share and Reuse Configuration
If you change some of the default options in the Configuration pane, your updated
configuration is saved as a .psprj file in the results folder. Using this file, you can reuse
your configuration across multiple MATLAB Coder projects.

To reuse a previous configuration in the current project opened in the MATLAB Coder
App, under Advanced Settings, select Reuse existing configuration. For Template
configuration file, provide the .psprj file that stores the previous configuration.

The Results type option in the MATLAB Coder app still shows Based on Polyspace
configuration but the configuration used is the one that you provided.

More About
• “Run Polyspace on C/C++ Code Generated from MATLAB Code” on page 7-40

 Configure Advanced Polyspace Options in MATLAB Coder App

7-49

Run Polyspace Analysis in IDE
Plugins

8

Run Polyspace Analysis in Eclipse
If you develop code in Eclipse or an Eclipse-based IDE, you can install the Polyspace
plugin and run a Polyspace analysis on the source files in an Eclipse project. You can
check for bugs each time you save your code, or explicitly run an analysis.

This topic describes how to set up a Polyspace analysis in Eclipse and review analysis
results.

8 Run Polyspace Analysis in IDE Plugins

8-2

After you install the Polyspace plugin, you see a Polyspace menu and right-click options
in the Project Explorer to run a Polyspace analysis.

The analysis progress bar, quick run buttons and analysis results appear on specific
panes. To avoid cluttering your window, you can confine these panes to the Polyspace

 Run Polyspace Analysis in Eclipse

8-3

perspective. Select Window > Open Perspective > Other. In the Open Perspective
dialog box, select Polyspace. You can switch back to other perspectives using tabs on the
upper right.

Configure and Run Analysis
Configure analysis

Polyspace analyzes the source files in your Eclipse project. In addition to sources, the
analysis uses the following information:

• Compiler: The compiler toolchain can be extracted from your Eclipse project. If the
project directly refers to a compilation toolchain such as MinGW GCC, the Polyspace
analysis can use the information.

8 Run Polyspace Analysis in IDE Plugins

8-4

If your Eclipse project uses a build command (makefile) that has the compiler
information, you must perform some additional steps to extract this information for
the Polyspace analysis.

If Polyspace cannot extract the compiler information from your build command, you
can also explicitly specify your compiler options explicitly like other analysis options.

See “Specify Polyspace Compiler Options Through Eclipse Project” on page 8-8.

• Other analysis options: You can retain the default analysis options or adjust them to
your requirements. Select Polyspace > Configure Project.

The key options are:

 Run Polyspace Analysis in Eclipse

8-5

• Target & Compiler: If you have not specified your compiler information through
your Eclipse project, use these options.

• Bug Finder Analysis: Specify which defects to check for in a Bug Finder analysis.
• Code Prover Verification, Check Behavior, Precision: Modify the behavior of

checkers in a Code Prover verification.

Note that you cannot run a remote analysis using the Polyspace plugin for Eclipse. To
send the analysis job to a remote cluster, start the analysis from the Polyspace user
interface or using scripts. See “Polyspace Analysis on Clusters”.

Run analysis

After configuration, you can start and stop a Polyspace analysis explicitly from the
Polyspace menu, right-click options on your Eclipse project or quick run buttons in the
Polyspace panes. You can switch between Bug Finder and Code Prover using the icon
on the Polyspace Run pane.

Run analysis when saving code

In the Polyspace perspective, you can set up a Bug Finder analysis that runs each time
you save your code. To enable this analysis, select Polyspace > Run Fast Analysis on
Save. The analysis runs quickly but looks for a reduced set of defects. You get the same
results as if you had specified the analysis option Use fast analysis mode for Bug
Finder (-fast-analysis).

Review Analysis Results
View results after analysis

After analysis, the results appear on the Results List pane. Click each result to see the
source code and details on the Result Details pane.

8 Run Polyspace Analysis in IDE Plugins

8-6

View results as available

Some results of a Bug Finder analysis are often available before the analysis is complete.

If so, the icon in the Polyspace Run - Bug Finder pane turns to . To load available
results, click this icon. The icon shows up again when more results are available.

Address results

Based on the result details, fix your code or justify the result. To justify a result, set its
Status to Justified, No Action Planned or Not a Defect. To hide a justified result
in the next run, add the status as annotation to your source code. For quick annotation,
right-click the result and select Hide Result and Annotate Code.

See Also

Related Examples
• “Specify Polyspace Compiler Options Through Eclipse Project” on page 8-8
• “Interpret Polyspace Code Prover Results” on page 17-2
• “Address Polyspace Results Through Bug Fixes or Comments” on page 19-2
• “Filter and Group Results” on page 20-2

 See Also

8-7

Specify Polyspace Compiler Options Through Eclipse
Project

Polyspace analysis in Eclipse uses a set of default analysis options preconfigured for your
coding language and operating system. For each project, you can customize the analysis
options further.

• Compiler options: You specify the compiler that you use, the libraries that you include
and the macros that are defined for your compilation.

• If your Eclipse project directly refers to a compilation toolchain, the analysis
extracts the compiler options from the project.

See “Eclipse Refers Directly to Your Compilation Toolchain” on page 8-8.
• If the project refers to your compilation toolchain through a build command, the

analysis cannot extract the compiler options. Trace the build command to extract
the options.

See “Eclipse Uses Your Compilation Toolchain Through Build Command” on page 8-
9.

• Other options: Through the other options, you specify which analysis results you want
and how precise you want them to be.To specify these options in Eclipse, select
Polyspace > Configure Project.

For information on how to run Polyspace from Eclipse, see “Run Polyspace Analysis in
Eclipse” on page 8-2.

Eclipse Refers Directly to Your Compilation Toolchain
When setting up your Eclipse project, you might be directly referring to your compilation
toolchain without using a build command. For instance, you might refer to the MinGW
GCC toolchain in the project setup wizard as below.

8 Run Polyspace Analysis in IDE Plugins

8-8

The compiler options from your Eclipse project, such as include paths and preprocessor
macros, are reused for the analysis.

You cannot view the options directly in the Polyspace configuration but you can view them
in your Eclipse editor. In your project properties (Project > Properties), in the Paths
and Symbols node:

• See the include paths under the Includes tab.

During analysis, the paths are implicitly used with the analysis option Include
folders (-I).

• See the preprocessor macros under the Symbols tab.

During analysis, the macros are implicitly used with the analysis option
Preprocessor definitions (-D).

Eclipse Uses Your Compilation Toolchain Through Build
Command
When setting up your Eclipse project, instead of specifying your compilation toolchain
directly, you might be specifying it through a build command. For instance, in the Wind

 Specify Polyspace Compiler Options Through Eclipse Project

8-9

River Workbench IDE (an Eclipse-based IDE), you might specify your build command as
shown in the following figure.

If you use a build command for compilation, the analysis cannot automatically extract the
compiler options. You must trace your build command.

1 Replace your build command:

matlabroot\polyspace\bin\polyspace-configure.exe
 -output-project
PolyspaceWorkspace\Projects\EclipseProjects\Name\Name.psprj buildCommand

Here:

• matlabRoot is the MATLAB installation folder.
• polyspaceworkspace is the folder where your Polyspace files are stored. You

specify this location on the Project and Results Folder tab in your Polyspace
preferences (Tools > Preferences in the Polyspace user interface).

• Name is the name of your Eclipse project.
• buildCommand is the original build command that you want to trace.

For instance, in the preceding example, buildCommand is the following:

%makeprefix% make --no-print-directory
2 Build your Eclipse project. Perform a clean build so that files are recompiled.

8 Run Polyspace Analysis in IDE Plugins

8-10

For instance, select the option Project > Clean. Normally, the option runs your build
command. With your replacement in the previous step, the option also traces the
build to extract the compiler options.

3 Restore the original build command and restart Eclipse.

You can now run analysis on your Eclipse project. The analysis uses the compiler
options that it has extracted.

See Also

Related Examples
• “Run Polyspace Analysis in Eclipse” on page 8-2

 See Also

8-11

Running Polyspace on AUTOSAR
Code

• “Using Polyspace in AUTOSAR Software Development” on page 9-2
• “Benefits of Polyspace for AUTOSAR” on page 9-6
• “Run Polyspace on AUTOSAR Code” on page 9-15
• “Troubleshoot Polyspace Analysis of AUTOSAR Code” on page 9-22
• “Run Polyspace on AUTOSAR Code with Conservative Assumptions” on page 9-28

9

Using Polyspace in AUTOSAR Software Development
Whatever your role in the AUTOSAR software development workflow, you can benefit
from Polyspace. These sections describe some of the situations where you can use
Polyspace to check the C code implementation of Software Components.

For an overview of Polyspace for AUTOSAR, see “Benefits of Polyspace for AUTOSAR” on
page 9-6.

Check if Implementation of Software Components Follow
Specifications
Suppose you are part of an OEM specifying the structure and runtime behavior of the
Software Component-s in the application layer, including the data types, events and
runnables. You want to check if the tier-1 suppliers providing the code implementation of
the Software Component-s follow your specifications.

Check the code implementation of each Software Component individually or see an
overview of results for all Software Component implementations. To see an overview:

1 Run Polyspace on all Software Components and upload all results to Polyspace
Metrics.

2 In the results, see if:

• All runnables are implemented. See if the checker AUTOSAR runnable not
implemented shows any result.

• All runnables implementations conform to data constraints in the specifications.
See if the checker Invalid result of AUTOSAR runnable implementation
shows any result.

• Arguments to Rte_ functions follow data constraints in the specifications. See if
the checker Invalid use of AUTOSAR runtime environment function shows
any result.

• There are other possibilities of run-time errors.

To begin checking the code implementation of Software Component-s against ARXML
specifications:

1 Provide the locations of your ARXML and code folders. Run Polyspace to check the
code implementation of all Software Component-s against ARXML specifications.

9 Running Polyspace on AUTOSAR Code

9-2

If you run verification on a remote server, you can specify that all results must be
uploaded to Polyspace Metrics after verification. Otherwise, you can upload them
later.

See “Run Polyspace on AUTOSAR Code” on page 9-15.
2 Upload all results to Polyspace Metrics. When uploading, make sure you use the same

project name and version number for all results.

See “Generate Code Quality Metrics” on page 22-11.
3 In Polyspace Metrics, click the project name and see a summary of the results.

See “View Code Quality Metrics” on page 22-14.

Alternatively, you can ask for code analysis reports from the suppliers. The reports are
produced individually for each Software Component. To begin, see “Generate Reports” on
page 21-2.

Assess Impact of Edits to Specifications
Suppose you are part of an OEM and want to add to or edit the specifications that you
provide to a tier-1 supplier. Before making the edits, you want to test their potential
impact on the existing code implementation.

Check the code implementation of Software Component-s that are likely to be impacted.
Compare Code Prover analysis results that use the modified specifications with results
that use the original specifications.

To begin comparing verification results for a Software Component:

1 Run Polyspace using the original specifications.

See “Run Polyspace on AUTOSAR Code” on page 9-15.

 Using Polyspace in AUTOSAR Software Development

9-3

2 Upload the result for a Software Component to Polyspace Metrics.

See “Generate Code Quality Metrics” on page 22-11.
3 Rerun Polyspace using the updated specifications.
4 Upload the new result to Polyspace Metrics. Use the same project name but a

different version number when uploading the result.
5 See if there is an increase in the number of red, gray or orange checks.

See “View Trends in Code Quality Metrics” on page 22-25.

Check Code Implementation for Run-time Errors and Mismatch
with Specifications
Suppose you are part of a tier-1 supplier providing the code implementation of Software
Components based on specifications from an OEM. You want to check for run-time errors
such as overflow and division by zero or violations of data constraints in the ARXML
specifications.

Check Software Components that you implemented. Use the advanced option -autosar-
behavior to check specific Software Components.

To begin:

1 Run Polyspace on the code implementation of your Software Component-s.
2 If you update the implementation of a Software Component, you can continue to use

the same project to reanalyze your code. The later analysis only consider the
Software Component-s whose implementation changed since the previous analysis.

See “Run Polyspace on AUTOSAR Code” on page 9-15.

Check Code Implementation Against Specification Updates
Suppose you are part of a tier-1 supplier implementing specifications from an OEM. You
receive some updates to the specifications. If you had been running Polyspace to compare
your code against the specifications, you can quickly check if the specification changes
introduced any errors.

9 Running Polyspace on AUTOSAR Code

9-4

In this case, you will already have set up your project, possibly with additional options to
emulate your compiler. You can reuse these options when creating a new project from the
new ARXML specifications.

See Also

More About
• “Benefits of Polyspace for AUTOSAR” on page 9-6
• “Run Polyspace on AUTOSAR Code” on page 9-15
• “Review Polyspace Results on AUTOSAR Code” on page 18-107

 See Also

9-5

Benefits of Polyspace for AUTOSAR
Polyspace for AUTOSAR runs static program analysis on code implementation of
AUTOSAR Software Component-s. The analysis looks for possible run-time errors or
mismatch with specifications in the AUTOSAR XML (ARXML).

Polyspace for AUTOSAR reads the ARXML specifications that you provide and
modularizes the analysis based on the Software Component-s in the ARXML
specifications. The analysis then checks each module for:

• Mismatch with AUTOSAR specifications: These checks aim to prove that certain
functions are implemented or used in accordance with the specifications in the
ARXML. The checks apply to runnables (functions provided by the Software
Component-s) and to the usage of functions supplied by the Run-Time Environment
(RTE). See also:

• AUTOSAR runnable not implemented
• Invalid result of AUTOSAR runnable implementation
• Invalid use of AUTOSAR runtime environment function

For instance, if an RTE function argument has a value outside the constrained range
defined in the ARXML, the analysis flags a possible issue.

• Run-time errors: These checks aim to prove the absence of certain types of run-time
errors in the bodies of the runnables (for instance, overflow). The proof uses the
specifications in the ARXML to determine precise ranges for runnable arguments and
RTE function return values and output arguments. For instance, the proof considers
only those values of runnable arguments that are specified in their AUTOSAR data
types.

After analysis, you can open the results for each module in the Polyspace user interface.
When reviewing a mismatch between code and ARXML specifications, you can navigate to
the relevant extract of the ARXML.

This topic shows how Polyspace is AUTOSAR-aware and helps in the AUTOSAR
development workflow. For the actual steps for running Polyspace, see:

• “Run Polyspace on AUTOSAR Code” on page 9-15
• “Review Polyspace Results on AUTOSAR Code” on page 18-107

9 Running Polyspace on AUTOSAR Code

9-6

Polyspace Modularizes Analysis Based on AUTOSAR
Components

Polyspace for AUTOSAR modularizes your code by reusing the modularization already
present in your ARXML specifications. The modularization is based on the Software
Component-s in the ARXML specifications. Modularizing your code is essential to avoid
long analysis times and allow more precise analysis.

A Software Component consists of one or more runnables. You implement
runnables through functions.

A Software Component (SWC) is the unit of functionality in the application layer of the
AUTOSAR architecture. A Software Component has an Internal Behavior that consists of
data types, events, one or more runnable entities (tasks), and other information.

 Benefits of Polyspace for AUTOSAR

9-7

The AUTOSAR XML lists the Internal Behavior of a Software Component like this
(AUTOSAR XML schema version 4.0):

 <APPLICATION-SW-COMPONENT-TYPE>
 <SHORT-NAME>swc001</SHORT-NAME>
 <INTERNAL-BEHAVIORS>
 <SWC-INTERNAL-BEHAVIOR>
 <SHORT-NAME>bhv001</SHORT-NAME>
 <DATA-TYPE-MAPPING-REFS>
 ...
 </DATA-TYPE-MAPPING-REFS>
 <EVENTS>
 ...
 </EVENTS>
 <RUNNABLE-ENTITY>
 <SHORT-NAME>foo</SHORT-NAME>
 ...
 </RUNNABLE-ENTITY>
 </SWC-INTERNAL-BEHAVIOR>
 </INTERNAL-BEHAVIORS>
 <APPLICATION-SW-COMPONENT-TYPE>

As a developer, you implement the bodies of these runnable entities through handwritten
C functions or functions generated from a Simulink model.

iOperations_ApplicationError foo(
 Rte_Instance const self,
 app_Array_2_n320to320ConstRef aInput,
 app_Array_2_n320to320Ref aOutput,
 app_Enum001Ref aOut2)
{
 /* Your implementation */
}

Polyspace collects the source code for each Software Component into a module.

Using the information in the AUTOSAR XML, Polyspace for AUTOSAR creates a project
with a separate module for each Software Component. In a single module, Polyspace
collects the source code (.c and .h files) containing the implementation of all runnables
in the Software Component and generates any additional header file required for the
implementation.

A Polyspace project with two modules from two Software Component-s can look like this:

9 Running Polyspace on AUTOSAR Code

9-8

The module name corresponds to the fully qualified name of the Internal Behavior of the
Software Component.

For instance, the name pkg.tst002.swc001.bhv001 corresponds to this XML structure
(AUTOSAR XML schema version 4.0):

<AR-PACKAGE>
 <SHORT-NAME>pkg</SHORT-NAME>
 <AR-PACKAGES>
 <AR-PACKAGE>
 <SHORT-NAME>tst002</SHORT-NAME>
 <ELEMENTS>
 <APPLICATION-SW-COMPONENT-TYPE>
 <SHORT-NAME>swc001</SHORT-NAME>

 Benefits of Polyspace for AUTOSAR

9-9

 ...
 <SWC-INTERNAL-BEHAVIOR>
 <SHORT-NAME>bhv001</SHORT-NAME>
 ...
 </SWC-INTERNAL-BEHAVIOR>
 </APPLICATION-SW-COMPONENT-TYPE>
 </ELEMENTS>
 </AR-PACKAGE>
 </AR-PACKAGES>
</AR-PACKAGE>

If bhv001 has one runnable foo, Polyspace collects the files containing the function foo
and the functions called in foo into one module.

For this modularization, you simply provide the two folders with ARXML and
source files.

Polyspace for AUTOSAR uses the fact that the required information is already present in
your ARXML specifications and modularizes your code. You do not need to know the
details of the ARXML specifications or code implementation for running the analysis. You
simply provide the folders containing your ARXML and source files.

Without this automatic modularization, you have to manually add the implementation of
each Software Component (the files with the entry point functions implementing
runnables, the functions called within, and so on) to a module. Not only that, you have to
define the interface for each runnable, that is, the range of values for inputs based on
their data types.

Polyspace Detects Mismatch Between Code and AUTOSAR
XML Spec
Polyspace for AUTOSAR detects mismatch between the ARXML specifications of
AUTOSAR Software Component-s and their code implementation. The mismatch can
occur at run time between data constraints in the ARXML and actual values of function
arguments in the code. The mismatch detection occurs for certain functions only:
functions implementing the runnables and Rte_ functions used in the runnables. The
arguments of these functions have data types specified in the ARXML.

9 Running Polyspace on AUTOSAR Code

9-10

AUTOSAR runnables communicate via Rte_ functions.

The implementation of an AUTOSAR runnable uses functions provided by the run-time
environment (RTE) for communication with runnables in other SWCs. For instance, the
function Rte_IWrite_runnable_port_variable can be used to provides write access
to variable from the current runnable.

Rte_IWrite_step_out_e4(self, e4);

The function arguments have data types specified in the ARXML.

These functions have signatures specified in the AUTOSAR standard with parameter data
types that are detailed in ARXML specifications. For instance, the standard defines the
signature of the Rte_IWrite_ function like this, where the type of data is specified in
the ARXML.

void Rte_IWrite_re_p_o([IN Rte_Instance], IN data)

When deploying your implementation, an Run-Time Environment generator uses the
information in the ARXML specifications to create header files with data type definitions
for your application. When developing your implementation, you do not have to worry
about details of communication with other SWCs. You simply use the Rte_ functions and
the data types provided for your implementation.

Likewise, the data types of the inputs, outputs and return value of your runnable are also
listed in the ARXML.

You can constrain data types in the ARXML using data constraints.

In your ARXML specifications, you often limit the values associated with data types using
data constraints. A data constraint specification can look like this (AUTOSAR XML
schema version 4.0):

<APPLICATION-PRIMITIVE-DATA-TYPE>
 <SHORT-NAME>Float_n100p4321to100p8765</SHORT-NAME>
 <CATEGORY>VALUE</CATEGORY>
 <SW-DATA-DEF-PROPS>

 Benefits of Polyspace for AUTOSAR

9-11

 ...
 <DATA-CONSTR-REF DEST="DATA-CONSTR">n320to320</DATA-CONSTR-REF>
..</SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>
...
<DATA-CONSTR>
 <SHORT-NAME>n320to320</SHORT-NAME>
 <DATA-CONSTR-RULES>
 <DATA-CONSTR-RULE>
 <PHYS-CONSTRS>
 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">-320</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">320</UPPER-LIMIT>
 <UNIT-REF DEST="UNIT">/pkg/types/units/NoUnit</UNIT-REF>
 </PHYS-CONSTRS>
 </DATA-CONSTR-RULE>
 </DATA-CONSTR-RULES>
</DATA-CONSTR>

When an Rte_ function uses data types that are constrained this way, the expectation is
that values passed to the function stay within the constrained range. For instance, for the
preceding constraint, if an Rte_IWrite_ function uses a variable of type n320to320, its
value must be within [-320, 320].

If you generate the ARXML in Simulink, the data constraints come from signal ranges in
the model.

At run time, your code implementation can violate data constraints.

The Rte_ functions represent ports in the SWC interface. So, in effect, when you
constrain the data type of an argument in the ARXML, the ports are prepared for data
within that range. However, in your code implementation, when you invoke an Rte_
function, you can pass an argument outside a constrained range.

For instance, in this call to Rte_IWrite_step_out_e4:

Rte_IWrite_step_out_e4(self, e4);

the second argument of Rte_IWrite_step_out_e4 can have the previously defined
data type n320to320. But at run time, your code implementation can pass a value
outside the range [-320, 320]. The argument might be the result of a series of previous
operations and one of those operations can cause the out-of-range value.

9 Running Polyspace on AUTOSAR Code

9-12

app_Enum001 e4;
e4 = Rte_IRead_step_in_e4(self);
...
/* Some operation on e4*/
...
Rte_IWrite_step_out_e4(self, e4);

Polyspace Code Prover checks for possible data constraint violations.

You can either test each invocation of an Rte_ function to check if the arguments are
within the constrained range and also make sure that the tests cover all execution paths
in the runnable. Alternatively, you can use static analysis that guarantees that all
execution paths leading up to the Rte_ function call are considered (up to certain
reasonable assumptions on page 17-55). Polyspace uses static analysis to determine if
arguments to Rte_ functions stay within the constrained range defined in the ARXML
files.

The checks for mismatch detection in a Polyspace analysis can show results like this.
Here, the second argument in the invocation of RTE_IWrite_step_out_e4 violates the
data constraints in the ARXML specifications.

 Benefits of Polyspace for AUTOSAR

9-13

See Also
Invalid result of AUTOSAR runnable implementation | Invalid use of
AUTOSAR runtime environment function

More About
• “Using Polyspace in AUTOSAR Software Development” on page 9-2
• “Run Polyspace on AUTOSAR Code” on page 9-15
• “Review Polyspace Results on AUTOSAR Code” on page 18-107

9 Running Polyspace on AUTOSAR Code

9-14

Run Polyspace on AUTOSAR Code
Polyspace for AUTOSAR runs static program analysis on code implementation of
AUTOSAR Software Component-s. The analysis looks for possible run-time errors or
mismatch with specifications in the AUTOSAR XML (ARXML).

To run Polyspace on code implementation of AUTOSAR software components, provide this
information:

• ARXML folder: This folder contains all the .arxml files that define your AUTOSAR
model. The files specify the data types, runnables, events and other information about
the Software Component-s in your AUTOSAR model.

Note that Polyspace can parse an AUTOSAR XML schema only for releases 3.0 and
later.

• Source code folder: This folder contains the C code implementation of the Software
Component-s. The .c files in this folder contain functions implementing the AUTOSAR
runnables and other called functions. The folder can also contain header files
referenced in your source files.

If you reference header files located in another folder, you can provide that location
separately.

The analysis parses your ARXML files, reads your source files and creates a Polyspace
project with a separate module for each Software Component. Polyspace Code Prover
then checks each module for run-time errors or violations of data constraints in the
ARXML at run-time.

This topic shows how to run Polyspace on code implementation of AUTOSAR Software
Component-s. To try the steps, run a Polyspace analysis on the demo files in matlabroot
\help\toolbox\codeprover\examples\polyspace_autosar.

Run Polyspace in User Interface

 Run Polyspace on AUTOSAR Code

9-15

9 Running Polyspace on AUTOSAR Code

9-16

Read ARXML and Sources

Specify upfront that the project must be created from AUTOSAR specifications.

1 Select File > New. In the Project-Properties window, select Create from AUTOSAR
specification.

2 Specify the two folders containing your ARXML and source files. Click Run.

The software parses your ARXML specifications and C code implementation and creates a
Polyspace project. Each module in the project references C files that implement one
Software Component. The module name corresponds to the fully qualified name of the
Software Component, as specified in the ARXML. See “Benefits of Polyspace for
AUTOSAR” on page 9-6.

If the software fails to parse your ARXML specifications or runs into compilation issues
with your code, see additional details in the Command output or Project status tab.
Investigate the issue further and fix your ARXML files or code accordingly. See
“Troubleshoot Polyspace Analysis of AUTOSAR Code” on page 9-22.

In some cases, you might have to provide additional paths to include folders or macro
definitions to troubleshoot errors.

• To specify paths to include files that are not directly under the source folder, use the
field Specify additional include folders.

This field corresponds to the option -I of polyspace-autosar.
• To specify data type and macro definitions that are not in your source files, use the
field Specify additional macro definitions. Specify a file with the definitions.

This field corresponds to the option -include of polyspace-autosar.
• To specify one of the advanced command-line options associated with polyspace-

autosar, use the field Advanced settings.

For instance, you might want the verification to be performed on a remote cluster and
the results uploaded to Polyspace Metrics. Enter this advanced option:

-extra-project-options "-add-to-results-repository -batch -scheduler localhost"

Here localhost indicates that the same computer serves as the server and client.
Replace it with the name of your server.

 Run Polyspace on AUTOSAR Code

9-17

Configure Project

Once a project is created, you can change some of the default analysis options. For
instance, you can generate a report after analysis using the options in the Reporting
section. For details on how to specify options, see “Specify Polyspace Analysis Options” on
page 10-2.

You do not need the options in these sections for a project generated from an AUTOSAR
description:

• “Inputs and Stubbing”: External data constraints in your ARXML files are extracted
automatically when you create a Polyspace project. You cannot explicitly specify
external constraints.

• “Multitasking”: You cannot perform a multitasking analysis with the Polyspace project
because each module analyzes the implementation of one Software Component. To
detect data races, create a separate project for the entire application and explicitly
add your source folders. Specify the ARXML files relevant for multitasking and run
Bug Finder. For more information, see ARXML files selection (-autosar-
multitasking).

• “Code Prover Verification”: A main function is generated (in the file
psar_prove_main.c) when you create a Polyspace project from an AUTOSAR
description. The main function calls functions that implement runnable entities in the
Software Components. The generated main is needed for the Code Prover analysis.
You cannot change the properties of this main function.

Verify Code

Verify each module individually or all the modules. The verification of a module checks
the code implementation of the corresponding Software Component against the ARXML
specifications and also checks for run-time errors. See “Benefits of Polyspace for
AUTOSAR” on page 9-6.

To verify a single module, select the module and click Run Code Prover. To verify all
modules, from the drop down list beside Run Code Prover, select Run All Modules.

9 Running Polyspace on AUTOSAR Code

9-18

Update Project for Later Changes

If you update your code or ARXML specifications, you can reanalyze the modules. To
begin, right-click your project and select Update AUTOSAR Project. Recreate your
project and rerun verification on the modules.

If you change the code only for specific Software Component-s, only the affected modules
are recreated. The modules correponding to the other Software Components remain
unchanged.

Run Polyspace Using Scripts
Run the polyspace-autosar command with paths to your ARXML and source code
folder. The command parses the ARXML and source files, creates a Polyspace project and
analyzes all modules in the project for run-time errors or violation of data constraints in
the ARXML.

In the first run, specify the path to your ARXML and source files explicitly. In later runs,
specify the file psar_project.xhtml created in the previous run. The analysis detects
changes in the ARXML and source files since the last run and reanalyzes only those
modules where the Software Component implementation changed. If the ARXML
specification changed since the previous analysis, the new analysis reanalyzes all
modules.

For instance, you can run these commands in a .bat script. In the first run, this script
looks for the ARXML specifications in a folder arxml in the current folder, and C source
files in a folder code. The results are stored in a folder polyspace in the current folder.
In later runs, the analysis reuses the result from the previous run through the file
psar_project.xhtml and updates the results only for the Software Component-s
modified since the last run.

echo off
set POLYSPACE_AUTOSAR_PATH=C:\Program Files\MATLAB\R2018a\polyspace\bin

IF NOT EXIST polyspace\psar_project.xhtml (
"%POLYSPACE_AUTOSAR_PATH%\polyspace-autosar" -create-project polyspace \
 -arxml-dir arxml -sources-dir code
) ELSE (
"%POLYSPACE_AUTOSAR_PATH%\polyspace-autosar" \
 -update-project polyspace\psar_project.xhtml

 Run Polyspace on AUTOSAR Code

9-19

)
Pause

Open Code Prover Results
If you run the analysis in the Polyspace user interface, you can open each result directly.

If you run the analysis using scripts, after analysis, you can open the results in several
ways:

• Open the file psar_project.psprj in the Polyspace user interface. Open each
result.

• Open the file psar_project.xhtml from your project folder in a web browser. Click
the Behaviors tab at the top.

You see the list of all Software Component whose Internal Behavior-s are extracted. To
see the results for a Software Component, click the link to the results file (with
extension .pscp).

• Navigate to the folders containing the individual results. Open a result file (with
extension .pscp) in the Polyspace user interface.

The results files are stored in a subfolder AUTOSAR of the project folder. The path to
each result follows the fully qualified name of the Internal Behavior of the Software
Component. For instance, for a fully qualified name pkg.component.bhv, the results
are stored in AUTOSAR\pkg\component\bhv\verification.

To see an overview of results for all Software Component-s, upload the result files to
Polyspace Metrics. To begin, see “Generate Code Quality Metrics” on page 22-11.

See Also
AUTOSAR runnable not implemented | Invalid result of AUTOSAR runnable
implementation | Invalid use of AUTOSAR runtime environment function

More About
• “Benefits of Polyspace for AUTOSAR” on page 9-6

9 Running Polyspace on AUTOSAR Code

9-20

• “Using Polyspace in AUTOSAR Software Development” on page 9-2
• “Run Polyspace on AUTOSAR Code with Conservative Assumptions” on page 9-28
• “Review Polyspace Results on AUTOSAR Code” on page 18-107
• “Troubleshoot Polyspace Analysis of AUTOSAR Code” on page 9-22

 See Also

9-21

Troubleshoot Polyspace Analysis of AUTOSAR Code
To analyze code implementation of AUTOSAR Software Components, Polyspace parses the
AUTOSAR XML specifications, detects the corresponding code implementation, compiles
this code and runs static analysis to detect run-time errors or mismatch between code
and specifications. If an error occurs in any of these steps, you do not see analysis results
for the Software Component containing the error. This topic shows how to diagnose and
fix these errors.

For sound analysis results, Code Prover requires that your AUTOSAR XML must be well-
formed and your code must not have compilation errors. For instance, two elements in
your AUTOSAR XML must not have the same Universal Unique Identifier (UUID). You
might be using other tools to ensure well-formed ARXML and code without compilation
errors. In addition to those tools, you can use the errors during the AUTOSAR XML
parsing and code extraction phases of a Code Prover analysis to find issues in your XML
and code.

After analysis, open the file psar_project.xhtml in a web browser. The file is located
in the results folder. Check the overall project status and drill down to the specific
Software Component-s that have issues. If you create a project in the Polyspace user
interface, the Project Status tab shows this HTML file after project creation.

View Project Completion Status
If the analysis completes successfully, you see a status message like this.

9 Running Polyspace on AUTOSAR Code

9-22

Project Status

Project is marked created on Sat Dec 23 2017 19:37:53 GMT-0500 (Eastern Standard
Time) after completing the following sequence of states in 38.25s:

1 project_created entered as created with success in 0.05s.
2 project_installed entered as created with success in 0.08s.
3 prove_artifacts_created entered as created with success in 1.66s.
4 user_code_extracted entered as created with success in 4.29s.
5 code_verification_configured entered as created with success in 0.2s.
6 code_verification_executed entered as created with success in 31.97s.

In current state, 2 AUTOSAR behaviors are processed, 2 with extracted behavior-
runnables' implementation code and 2 with generated code-prover result.behaviors

▼ behaviors

The message shows how many Software Component-s were detected in the ARXML
specifications, found in the code implementation and analyzed successfully with Code
Prover.

View Errors in AUTOSAR XML Parsing
If an error occurs in parsing of AUTOSAR XML, the project status can look like this.

 Troubleshoot Polyspace Analysis of AUTOSAR Code

9-23

Project Status

Project is marked created on Wed Dec 31 1969 19:25:14 GMT-0500 (Eastern Standard
Time) after completing the following sequence of states in 0.58s:

1 project_created entered as created with success in 0.02s.
2 project_installed entered as created with success in 0.09s.
3 prove_artifacts_created entered as created with

error_in_autosar_prove_artifacts_creation (2 errors, 0 warnings) in 0.47s.

Execution terminates with error_in_autosar_prove_artifacts_creation (2 errors, 1
warnings) and message: ArxmlError(1);InvalidAutosarModel(1)

In current state, 0 AUTOSAR behaviors are processed, 0 with extracted behavior-
runnables' implementation code and 0 with generated code-prover result.behaviors

▼ behaviors

The above message shows that an error occurred when parsing the AUTOSAR XML.

To diagnose further, click the behaviors arrow below the status message (or the
Behaviors tab at the top). You see the status for each Software Component. For instance,
if no Software Component-s are read, a message like this can appear.

Behaviors with Unit-Prove Environment

State after last command execution: error_fail_updating with 2 errors and 1 warning.

Identified errors, in summary, are: ArxmlError(1);InvalidAutosarModel(1)

See detailed log messages.

Click the detailed log messages link. You see the exact location of the error in the XML.

9 Running Polyspace on AUTOSAR Code

9-24

Tip If you run polyspace-autosar at the command-line, you can run only the
AUTOSAR XML parsing phase. Fix all errors in your AUTOSAR XML first before
continuing the analysis.

Use the options -do-not-update-extract-code and -do-not-update-
verification.

View Compilation Errors in Code
If a compilation error is found in the source files, the project status can look like this.

Project Status

Project is marked created on Sat Dec 23 2017 19:37:53 GMT-0500 (Eastern Standard
Time) after completing the following sequence of states in 38.25s:

1 project_created entered as created with success in 0.05s.
2 project_installed entered as created with success in 0.08s.
3 prove_artifacts_created entered as created with success in 1.66s.
4 user_code_extracted entered as created with error_in_user_code_extraction (4

errors, 0 warnings) in 4.29s.
5 code_verification_configured entered as created with success in 0.2s.
6 code_verification_executed entered as created with success (0 errors, 1

warnings) in 31.97s.

Execution terminates with error_in_user_code_extraction (4 errors, 1 warnings) and
message:
FoundNoBehaviorImplementation(1);FoundRunnableEntryPointImplementati
onCompileError(3)

In current state, 2 AUTOSAR behaviors are processed, 2 with extracted behavior-
runnables' implementation code and 2 with generated code-prover result.behaviors

▼ behaviors

 Troubleshoot Polyspace Analysis of AUTOSAR Code

9-25

The above message shows that an error occurred when extracting the code.

To diagnose further, click the behaviors arrow below the status message (or the
behaviors tab at the top). You see the status for each Software Component.

To navigate to the components that have errors, search for the string
error_atLeastOneRunnableInFileThatDoesNotCompile.

ApplicationComponentBehavior - jyb.tst002.swc001.bhv001

...

...

Extracted implementation code

State after last command execution: updated.

Extraction of implementation completes with state
error_atLeastOneRunnableInFileThatDoesNotCompile. Found implementation for 3 of 3
required runnables; extracting 4 files from code-source directory.

▼ extracted runnables implementation-files

Identify which Software Components have an error. To see the specific error message,
click the Extracted runnables implementation-files arrow. You see a link to a .log file
containing the error message.

▼ extracted runnables implementation-files

File ../code/swc001.c is extracted but its code fails to compile with 1 error (see code-
compilation messages at: .extract/swc001.log). It implements all or part of 3 runnables.

9 Running Polyspace on AUTOSAR Code

9-26

Click the link to the .log file. You see the error along with the file and line number.

Tip

• If one or more files do not compile, you can still see analysis results for Software
Component-s where all files passed compilation. In this way, you can analyze certain
Software Component-s while development is still in progress on the others.

• If you run polyspace-autosar at the command-line, you can run only the code
extraction phase. Fix all errors in your code first before continuing the analysis.

Use the options -do-not-update-autosar-prove-environment and -do-not-
update-verification.

See Also
polyspace-autosar

More About
• “Run Polyspace on AUTOSAR Code” on page 9-15
• “Conflicting Universal Unique Identifiers (UUIDs)” on page 23-44
• “Could Not Find Include File” on page 23-42
• “Data Type Not Recognized” on page 23-46

 See Also

9-27

Run Polyspace on AUTOSAR Code with Conservative
Assumptions

Polyspace for AUTOSAR runs static program analysis on code implementation of
AUTOSAR Software Component-s. The analysis looks for possible run-time errors or
mismatch with specifications in the AUTOSAR XML (ARXML).

The default analysis assumes that pointer arguments to runnables and pointers returned
from Rte_ functions are not NULL. For instance, in this example, the analysis assumes
that aInput, aOutput and aOut2 are not NULL. The conditions that compare these
arguments against NULL_PTR always evaluate to false and appear gray in the results.
Here, NULL_PTR is a macro that represents NULL.

iOperations_ApplicationError foo(
 Rte_Instance const self,
 app_Array_2_n320to320ConstRef aInput,
 app_Array_2_n320to320Ref aOutput,
 app_Enum001Ref aOut2)
{
 iOperations_ApplicationError rc = E_NOT_OK;
 if (aInput==NULL_PTR) {
 rc = RTE_E_iOperations_ERR001;
 } else if (aOutput==NULL_PTR) {
 rc = 43;
 } else {
 unsigned int i=0;
 for (;i<2U;++i) {
 aOutput[1-i] = aInput[i];
 }
 if (aOut2!=NULL_PTR) {
 *aOut2 = 1234;
 rc = RTE_E_OK;
 }
 }
 return rc;
}

You might want to run a conservative analysis where pointer arguments to runnables and
pointers returned from Rte_ functions can be NULL-valued. The conservative analysis
helps you determine if you have guarded against the possibility of NULL-valued pointers
within your runnable.

9 Running Polyspace on AUTOSAR Code

9-28

To allow the possibility of NULL-valued pointers from external sources, undefine the
macro RTE_PTR2USERCODE_SAFE. To undefine a macro, use one of these methods
depending on how you run the analysis.

• In the Polyspace user interface, the macro is defined with the option Preprocessor
definitions (-D). Remove the macro from this option and move to the option
Disabled preprocessor definitions (-U).

• If you run polyspace-autosar at the command-line, use the option -U to undefine
the macro.

If you disable the macro, you no longer see unreachable code when comparing pointers
arguments to runnables against NULL. To see the effect of this macro, run a conservative
Polyspace analysis on the demo files in matlabroot\help\toolbox\codeprover
\examples\polyspace_autosar.

See Also
polyspace-autosar

More About
• “Run Polyspace on AUTOSAR Code” on page 9-15

 See Also

9-29

Configure Polyspace Analysis

10

Specify Polyspace Analysis Options
You can change the default options associated with a Polyspace analysis. For instance, you
can:

• Change the set of defects that Bug Finder looks for.

See Find defects (-checkers).
• Change the default behavior of run-time checkers in Code Prover.

See, for instance, Detect overflows (-scalar-overflows-checks).

For the full list of analysis options, see “Analysis Options”.

Depending on how you run Polyspace, you can configure the analysis options accordingly.

Polyspace User Interface
In the Polyspace user interface, you create a project for the analysis. The project can have
one or more modules. Click the Configuration node in a module. On the Configuration
pane, change options as needed.

For more information, see the tooltip on each option. Click the More help link for
context-sensitive help on the options.

10 Configure Polyspace Analysis

10-2

For more information, see “Run Polyspace Analysis on Desktop” on page 3-8.

Windows or Linux Scripts
Provide the options to the polyspace-bug-finder-nodesktop or polyspace-code-
prover-nodesktop command. See also:

• polyspace-bug-finder-nodesktop
• polyspace-code-prover-nodesktop

For instance:

polyspace-code-prover-nodesktop -sources file_name \
 -main-generator main-generator-writes-variables all

You can also provide the options in a text file. See “Run Polyspace Analysis from
Command Line” on page 4-2.

MATLAB Scripts
Create a polyspace.Project object and set the options through the Configuration
property of the object. See also:

• polyspace.Project
• polyspace.Project.Configuration Properties

For instance:

proj = polyspace.Project;
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.BugFinderAnalysis.EnableCheckers = false;

See also “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-2.

 Specify Polyspace Analysis Options

10-3

Eclipse and Eclipse-based IDEs
Select Polyspace > Configure Project. Set the options in the Configuration window.

Some Target & Compiler options are automatically extracted from your Eclipse project.
See “Run Polyspace Analysis in Eclipse” on page 8-2.

Simulink
In your Simulink model, specify the basic options through Simulink Configuration
Parameters. Select Code > Polyspace > Options.

From this window, you can navigate to the full set of Polyspace analysis options.

See:

• “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 7-2
• “Configure Advanced Polyspace Options in Simulink” on page 7-23

MATLAB Coder App
In the MATLAB Coder app, after code generation, specify the basic options through the
Polyspace pane. From this window, you can navigate to the full set of Polyspace analysis
options.

See:

• “Run Polyspace on C/C++ Code Generated from MATLAB Code” on page 7-40
• “Configure Advanced Polyspace Options in MATLAB Coder App” on page 7-47

10 Configure Polyspace Analysis

10-4

Configure Target and Compiler
Options

11

Specify Target Environment and Compiler Behavior
Before verification, specify your source code language (C or C++), target processor, and
the compiler that you use for building your code. In certain cases, to emulate your
compiler behavior, you might have to specify additional options.

Using your specification, the verification determines the sizes of fundamental types,
considers certain macros as defined, and interprets compiler-specific extensions of the
Standard. If the options do not correspond to your run-time environment, you can
encounter:

• Compilation errors
• Verification results that might not apply to your target

If you use a build command such as gmake to build your code and the build command
meets certain restrictions, you can extract the options from the build command.
Otherwise, specify the options explicitly.

11 Configure Target and Compiler Options

11-2

Extract Options from Build Command
If you use build automation scripts to build your source code, you can set up a Polyspace
project from your scripts. The options associated with your compiler are specified in that
project.

For information on how to trace your build command from the:

• Polyspace user interface, see “Add Source Files for Analysis in Polyspace User
Interface” on page 3-2.

• DOS or UNIX command line, see polyspace-configure.
• MATLAB command line, see polyspaceConfigure.

For Polyspace project creation, your build automation script (makefile) must meet certain
requirements. See “Requirements for Project Creation from Build Systems” on page 11-
8.

 Specify Target Environment and Compiler Behavior

11-3

Specify Options Explicitly
If you cannot trace your build command and therefore manually create a project, you
have to specify the options explicitly.

• In the Polyspace user interface, select a project configuration. On the Configuration
pane, select Target & Compiler. Specify the options.

• At the DOS or UNIX command line, specify flags with the polyspace-code-prover-
nodesktop command.

• At the MATLAB command line, specify arguments with the polyspaceCodeProver
function.

Specify the options in this order.

• Required options:

• Source code language (-lang): If all files have the same extension .c
or .cpp, the verification uses the extension to determine the source code language.
Otherwise, explicitly specify the option.

• Compiler (-compiler): Select the compiler that you use for building your
source code. If you cannot find your compiler, use an option that closely matches
your compiler.

• Target processor type (-target): Specify the target processor on which
you intend to execute your code. For some processors, you can change the default
specifications. For instance, for the processor hc08, you can change the size of
types double and long double from 32 to 64 bits.

If you cannot find your target processor, you can create your own target and
specify the sizes of fundamental types, default signedness of char, and endianness
of the target machine. See Generic target options.

• Language-specific options:

• C++11 extensions (-cpp11-extension): Select this option if you use C++11
extensions. See also “Supported C++ 2011 Language Extensions” on page 11-15.

• Respect C90 standard (-no-language-extensions): Select this option if
you prefer that the verification use the C90 Standard (ISO/IEC 9899:1990).
Otherwise, the verification uses the ANSI® C99 Standard (ISO®/IEC 9899:1999)
for compilation and checking of certain coding rules.

• Compiler-specific options:

11 Configure Target and Compiler Options

11-4

Whether these options are available or not depends on your specification for
Compiler (-compiler). For instance, if you select a visual compiler, the option
Pack alignment value (-pack-alignment-value) is available. Using the
option, you emulate the compiler option /Zp that you use in Visual Studio.

For all compiler-specific options, see “Target and Compiler”.
• Advanced options:

Using these options, you can modify the verification results. For instance, if you use
the option Division round down (-div-round-down), the verification considers
that quotients from division or modulus of negative numbers are rounded down. Use
these options only if you use similar options when compiling your code.

For all advanced options, see “Target and Compiler”.
• Compiler header files:

If you specify the diab, tasking or greenhills compiler, you must specify the path
to your compiler header files. See “Provide Standard Library Headers for Polyspace
Analysis” on page 11-6.

If you still see compilation errors after running analysis, you might have to specify other
options:

• Define macros: Sometimes, a compilation error occurs because the analysis considers
a macro as undefined. Explicitly define these macros. See “Macros”.

• Specify include files: Sometimes, a compilation error occurs because your compiler
defines standard library functions differently from Polyspace and you do not provide
your compiler include files. Explicitly specify the path to your compiler include files.
See “Errors from Conflicts with Polyspace Header Files” on page 23-78.

See Also

More About
• “Language Extensions Supported by Default” on page 11-11
• “Supported Keil or IAR Language Extensions” on page 11-13
• “Supported C++ 2011 Language Extensions” on page 11-15

 See Also

11-5

Provide Standard Library Headers for Polyspace
Analysis

Before Polyspace analyzes the code for bugs and run-time errors, it compiles your code.
Even if the code compiles with your compiler, you can see compilation errors with
Polyspace. If the error comes from a standard library function, it usually indicates that
Polyspace is not using your compiler headers. To work around the errors, provide the path
to your compiler headers.

This topic shows how to locate the standard library headers from your compiler. The code
examples cause a compilation error that shows the location of the headers.

• To locate the folder containing your C compiler system headers, compile this C code by
using your compilation toolchain:

float fopen(float f);
#include <stdio.h>

The code does not compile because the fopen declaration conflicts with the
declaration inside stdio.h. The compilation error shows the location of your compiler
implementation of stdio.h. Your C standard library headers are all likely to be in that
folder.

• To locate the folder containing your C++ compiler system headers, compile this C++
code by using your compilation toolchain:

namespace std {
 float cin;
}
#include <iostream>

The code does not compile because the cin declaration conflicts with the declaration
inside iostream.h. The compilation error shows the location of your compiler
implementation of iostream.h. Your C++ standard library headers are all likely to be
in that folder.

After you locate the path to your compiler's header files, specify the path for the
Polyspace analysis. For C++ code, specify the paths to both your C and C++ headers.

• In the user interface, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
on page 3-2.

11 Configure Target and Compiler Options

11-6

• At the command line, use the flag -I with the polyspace-code-prover-nodesktop
command.

For more information, see -I.

See Also

More About
• “Errors from Conflicts with Polyspace Header Files” on page 23-78

 See Also

11-7

Requirements for Project Creation from Build Systems
For automatic project creation from build systems, your build commands or makefiles
must meet certain requirements.

Compiler Requirements
• Your compiler must be called locally.

If you use a compiler cache such as ccache or a distributed build system such as
distmake, the software cannot trace your build. You must deactivate them.

• Your compiler must perform a clean build.

If your compiler performs only an incremental build, use appropriate options to build
all your source files. For example, if you use gmake, append the -B or -W
makefileName option to force a clean build. For the list of options allowed with the
GNU® make, see make options.

• Your compiler configuration must be available to Polyspace. The compilers currently
supported include the following:

• Clang
• Wind River® Diab
• GNU C
• IAR Embedded Workbench
• Green Hills®
• NXP CodeWarrior®
• Altium® Tasking
• Texas Instruments™
• Tiny C
• Microsoft® Visual C++®

If your compiler configuration is not available to Polyspace:

• Write a compiler configuration file for your compiler in a specific format. For more
information, see “Compiler Not Supported for Project Creation from Build
Systems” on page 23-26.

11 Configure Target and Compiler Options

11-8

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html

• Contact MathWorks Technical Support. For more information, see “Contact
Technical Support” on page 23-21.

• With the TASKING compiler, if you use an alternative sfr file with extension .asfr,
Polyspace might not be able to locate your file. If you encounter an error, explicitly
#include your .asfr file in the preprocessed code using the option Include (-
include).

Typically, you use the statement #include __SFRFILE__(__CPU__) along with the
compiler option --alternative-sfr-file to specify an alternative sfr file. The path
to the file is typically Tasking_C166_INSTALL_DIR\include\sfr
\regCPUNAME.asfr. For instance, if your TASKING compiler is installed in C:
\Program Files\Tasking\C166-VX_v4.0r1\ and you use the CPU-related flag -
Cxc2287m_104f or --cpu=xc2287m_104f, the path is C:\Program Files
\Tasking\C166-VX_v4.0r1\include\sfr\regxc2287m.asfr.

Build Command Requirements
• Your build command must run to completion without any user interaction.
• In Linux, only UNIX shell (sh) commands must be used. If your build uses advanced

commands such as commands supported only by bash, tcsh or zsh, Polyspace cannot
trace your build.

In Windows, only DOS commands must be used. If your build uses advanced
commands such as commands supported only by PowerShell or Cygwin™, Polyspace
cannot trace your build. To see if Polyspace supports your build command, run the
command from cmd.exe in Windows. For more information, see “Check if Polyspace
Supports Build Scripts” on page 23-37.

• If you use statically linked libraries, Polyspace cannot trace your build. In Linux, you
can install the full Linux Standard Base (LSB) package to allow dynamic linking. For
example, on Debian® systems, install LSB with the command apt-get install
lsb.

• Your build command must not use aliases.

The alias command is used in Linux to create an alternate name for commands. If
your build command uses those alternate names, Polyspace cannot recognize them.

• Your build process must not use the LD_PRELOAD mechanism.
• Your build command must be executable completely on the current machine and must

not require privileges of another user.

 Requirements for Project Creation from Build Systems

11-9

https://www.mathworks.com/support/?s_tid=gn_supp

If your build uses sudo to change user privileges or ssh to remotely log in to another
machine, Polyspace cannot trace your build.

• If your build command uses redirection with the > or | character, the redirection
occurs after Polyspace traces the command. Therefore, Polyspace does not handle the
redirection.

For example, if your command occurs as

command1 | command2

And you enter

polyspace-configure command1 | command2

When tracing the build, Polyspace traces the first command only.
• If the System Integrity Protection (SIP) feature is active on the operating system

macOS El Capitan (10.11) or a later macOS version, Polyspace cannot trace your build
command. Before tracing your build command, disable the SIP feature. You can
reenable this feature after tracing the build command.

• If your computer hibernates during the build process, Polyspace might not be able to
trace your build.

Note Your environment variables are preserved when Polyspace traces your build
command.

See Also
polyspaceConfigure

Related Examples
• “Add Source Files for Analysis in Polyspace User Interface” on page 3-2

More About
• “Slow Build Process When Polyspace Traces the Build” on page 23-36

11 Configure Target and Compiler Options

11-10

Language Extensions Supported by Default
Polyspace analysis can interpret a subset of common C/C++ language constructs and
extended keywords by default. The default analysis follows these standards:

• C language: C99 Standard (ISO/IEC 9899:1999)

If you select Respect C90 standard (-no-language-extensions), the analysis
follows the C90 Standard.

• C++ language: C++03 Standard (ISO/IEC 14882:2003)

If you select C++11 extensions (-cpp11-extension), the analysis allows C++11
extensions.

In addition, the default analysis can also interpret language extensions that are supported
by many compilers. For other compiler-specific constructs, explicitly specify your
compiler.

The analysis can interpret the following constructs, irrespective of your choice of
compiler.

• Designated initializers (labeling initialized elements)
• Compound literals (structs or arrays as values)
• Boolean type (_Bool)
• Statement expressions (statements and declarations inside expressions)
• typeof constructs
• Case ranges
• Empty structures
• Cast to union
• Local labels (__label__)
• Hexadecimal floating-point constants
• Extended keywords, operators, and identifiers (_Pragma, __func__, __const__,

__asm__)

The list is not complete.

In some cases, the analysis supports the construct semantically and fully emulates its run-
time behavior. In other cases, the analysis only supports the construct syntactically, but

 Language Extensions Supported by Default

11-11

does not emulate its run-time behavior fully. For instance, the analysis recognizes the
construct asm as introduction of assembly code, but does not interpret the assembly code
encapsulated in the construct. As a result, values modified by the assembly code are
considered to have all possible values allowed by their data type.

See Also

Related Examples
• “Specify Target Environment and Compiler Behavior” on page 11-2

More About
• “Supported Keil or IAR Language Extensions” on page 11-13
• “Supported C++ 2011 Language Extensions” on page 11-15

11 Configure Target and Compiler Options

11-12

Supported Keil or IAR Language Extensions
Polyspace analysis can interpret a subset of common C/C++ language constructs and
extended keywords by default. For compiler-specific keywords, you must specify your
choice of compiler. If you specify keil or iar for Compiler (-compiler), the
Polyspace verification allows language extensions specific to the Keil or IAR compilers.

Special Function Register Data Type
Embedded control applications frequently read and write port data, set timer registers,
and read input captures. To deal with these requirements without using assembly
language, some microprocessor compilers define special data types such as sfr and
sbit. Typical declarations are:

sfr A0 = 0x80;
sfr A1 = 0x81;
sfr ADCUP = 0xDE;
sbit EI = 0x80;

The declarations reside in header files such as regxx.h for the basic 80Cxxx micro
processor. The declarations customize the compiler to the target processor.

You access a register or a port by using the sfr and sbit data as follows. However, these
data types are not part of the C99 Standard.

int status,P0;

void main (void) {
 ADCUP = 0x08; /* Write data to register */
 A1 = 0xFF; /* Write data to Port */
 status = P0; /* Read data from Port */
 EI = 1; /* Set a bit (enable all interrupts) */
}

To analyze this type of code, use these options:

• Compiler (-compiler): Specify keil or iar.
• Sfr type support (-sfr-types): Specify the data type and size in bits.

The analysis then supports the Keil or IAR language extensions even if some structures,
keywords, and syntax are not part of the C99 standard.

 Supported Keil or IAR Language Extensions

11-13

Keywords Removed During Preprocessing
Once you specify the Keil or IAR compiler, the analysis recognizes compiler-specific
keywords in your code. If a keyword is not relevant for the analysis, it is removed from
the source code during preprocessing.

If you disable the keyword and use it as an identifier instead, you can encounter a
compilation error when you compile your code with Polyspace. See “Errors Related to Keil
or IAR Compiler” on page 23-61.

These keywords are removed during preprocessing:

• Keil: bdata, far, idata, huge, sdata
• IAR: saddr, reentrant, reentrant_idata, non_banked, plm, bdata, idata,

pdata, code, xdata, xhuge, interrupt, __interrupt, __intrinsic

The data keyword is not removed.

11 Configure Target and Compiler Options

11-14

Supported C++ 2011 Language Extensions
This table lists which C++ 2011 standards Polyspace can analyze. If your code contains
non-supported constructions, Polyspace reports a compilation error.

Standard Description Supported
C++2011-N2118 Rvalue references Yes
C++2011-N2439 Rvalue references for *this Yes
C++2011-N1610 Initialization of class objects by rvalues Yes
C++2011-N2756 Nonstatic data member initializers Yes
C++2011-N2242 Variadic templates Yes
C++2011-N2555 Extending variadic template template parameters Yes
C++2011-N2672 Initializer lists Yes
C++2011-N1720 Static assertions Yes
C++2011-N1984 auto-typed variables Yes
C++2011-N1737 Multi-declarator auto Yes
C++2011-N2546 Removal of auto as a storage-class specifier Yes
C++2011-N2541 New function declarator syntax Yes
C++2011-N2927 New wording for C++0x lambdas Yes
C++2011-N2343 Declared type of an expression Yes
C++2011-N3276 decltype and call expressions Yes
C++2011-N1757 Right angle brackets Yes
C++2011-DR226 Default template arguments for function templates Yes
C++2011-DR339 Solving the SFINAE problem for expressions Yes
C++2011-N2258 Template aliases Yes
C++2011-N1987 Extern templates Yes
C++2011-N2431 Null pointer constant Yes
C++2011-N2347 Strongly typed enums Yes
C++2011-N2764 Forward declarations for enums Yes
C++2011-N2761 Generalized attributes Yes

 Supported C++ 2011 Language Extensions

11-15

Standard Description Supported
C++2011-N2235 Generalized constant expressions Yes
C++2011-N2341 Alignment support Yes
C++2011-N1986 Delegating constructors Yes
C++2011-N2540 Inheriting constructors Yes
C++2011-N2437 Explicit conversion operators Yes
C++2011-N2249 New character types Yes
C++2011-N2442 Unicode string literals Yes
C++2011-N2442 Raw string literals Yes
C++2011-N2170 Universal character name literals No
C++2011-N2765 User-defined literals Yes
C++2011-N2342 Standard Layout Types No
C++2011-N2346 Defaulted and deleted functions Yes
C++2011-N1791 Extended friend declarations No
C++2011-N2253 Extending sizeof Yes
C++2011-N2535 Inline namespaces Yes
C++2011-N2544 Unrestricted unions Yes
C++2011-N2657 Local and unnamed types as template arguments Yes
C++2011-N2930 Range-based for Yes
C++2011-N2928 Explicit virtual overrides Yes
C++2011-N3050 Allowing move constructors to throw [noexcept] Yes
C++2011-N3053 Defining move special member functions Yes
C++2011-N2239 Concurrency: Sequence points No
C++2011-N2427 Concurrency: Atomic operations No
C++2011-N2748 Concurrency: Strong Compare and Exchange No
C++2011-N2752 Concurrency: Bidirectional Fences No
C++2011-N2429 Concurrency: Memory model No

C++2011-N2664
Concurrency: Data-dependency ordering: atomics and memory
model No

11 Configure Target and Compiler Options

11-16

Standard Description Supported
C++2011-N2179 Concurrency: Propagating exceptions No
C++2011-N2440 Concurrency: Abandoning a process and at_quick_exit Yes
C++2011-N2547 Concurrency: Allow atomics use in signal handlers No
C++2011-N2659 Concurrency: Thread-local storage No

C++2011-N2660
Concurrency: Dynamic initialization and destruction with
concurrency No

C++2011-N2340 __func__ predefined identifier Yes
C++2011-N1653 C99 preprocessor Yes
C++2011-N1811 long long Yes
C++2011-N1988 Extended integral types No

See Also
C++11 extensions (-cpp11-extension)

 See Also

11-17

Remove or Replace Keywords Before Compilation
The Polyspace compiler strictly follows the ANSI C99 Standard (ISO/IEC 9899:1999). If
your compiler allows deviation from the Standard, the Polyspace compilation using
default options cannot emulate your compiler. For instance, your compiler can allow
certain non-ANSI keyword, which Polyspace does not recognize by default.

To emulate your compiler closely, you specify the Target & Compiler options. If you still
get compilation errors from unrecognized keywords, you can remove or replace them only
for the purposes of verification. The option Preprocessor definitions (-D) allows
you to make simple substitutions. For complex substitutions, for instance to remove a
group of space-separated keywords such as a function attribute, use the option Command/
script to apply to preprocessed files (-post-preprocessing-command).

Remove Unrecognized Keywords
You can remove unsupported keywords from your code for the purposes of analysis. For
instance, follow these steps to remove the far and 0x keyword from your code (0x
precedes an absolute address).

1 Save the following template as C:\Polyspace\myTpl.pl.

Content of myTpl.pl

#!/usr/bin/perl

##
Post Processing template script
#
##
Usage from GUI:
#
1) Linux: /usr/bin/perl PostProcessingTemplate.pl
2) Windows: matlabroot\sys\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl
#
##

$version = 0.1;

$INFILE = STDIN;
$OUTFILE = STDOUT;

11 Configure Target and Compiler Options

11-18

while (<$INFILE>)
{

 # Remove far keyword
 s/far//;

 # Remove "@ 0xFE1" address constructs
 s/\@\s0x[A-F0-9]*//g;

 # Remove "@0xFE1" address constructs
 # s/\@0x[A-F0-9]*//g;

 # Remove "@ ((unsigned)&LATD*8)+2" type constructs
 s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

 # Print the current processed line
 print $OUTFILE $_;
}

For reference, see a summary of Perl regular expressions.

Perl Regular Expressions
###
Metacharacter What it matches
###
Single Characters
. Any character except newline
[a-z0-9] Any single character in the set
[^a-z0-9] Any character not in set
\d A digit same as
\D A non digit same as [^0-9]
\w An Alphanumeric (word) character
\W Non Alphanumeric (non-word) character
#
Whitespace Characters
\s Whitespace character
\S Non-whitespace character
\n newline
\r return
\t tab
\f formfeed
\b backspace
#

 Remove or Replace Keywords Before Compilation

11-19

Anchored Characters
\B word boundary when no inside []
\B non-word boundary
^ Matches to beginning of line
$ Matches to end of line
#
Repeated Characters
x? 0 or 1 occurrence of x
x* 0 or more x's
x+ 1 or more x's
x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively
to|be|great One of "to", "be" or "great"
#
Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses
\2 or $2 First second of parentheses
\3 or $3 First third of parentheses
##
Back referencing
#
e.g. swap first two words around on a line
red cat -> cat red
s/(\w+) (\w+)/$2 $1/;
#
##

2 On the Configuration pane, select Environment Settings.
3

To the right of Command/script to apply to preprocessed files, click .
4 Use the Open File dialog box to navigate to C:\Polyspace.
5 In the File name field, enter myTpl.pl.
6 Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to apply to

preprocessed files field.

Remove Unrecognized Function Attributes
You can remove unsupported function attributes from your code for the purposes of
analysis.

If you run verification on this code specifying a generic compiler, you can see compilation
errors from the noreturn attribute. The code compiles using a GNU compiler.

11 Configure Target and Compiler Options

11-20

void fatal () __attribute__ ((noreturn));

void fatal (/* ... */)
{
 /* ... */ /* Print error message. */ /* ... */
 exit (1);
}

If the software does not recognize an attribute and the attribute does not affect the code
analysis, you can remove it from your code for the purposes of verification. For instance,
you can use this Perl script to remove the noreturn attribute.

while ($line = <STDIN>)
{

__attribute__ ((noreturn))

 # Remove far keyword
 $line =~ s/__attribute__\ \(\(noreturn\)\)//g;

 # Print the current processed line to STDOUT
 print $line;
}

Specify the script using the option Command/script to apply to preprocessed
files (-post-preprocessing-command).

See Also
Polyspace Analysis Options
Command/script to apply to preprocessed files (-post-preprocessing-
command) | Compiler (-compiler) | Preprocessor definitions (-D)

Related Examples
• “Troubleshooting in Polyspace Code Prover”

 See Also

11-21

Gather Compilation Options Efficiently
Polyspace verification can sometimes stop in the compilation or linking phase due to the
following reasons:

• The Polyspace compiler strictly follows the ANSI C99 Standard (ISO/IEC 9899:1999).
If your compiler allows deviation from the Standard, the Polyspace compilation using
default options cannot emulate your compiler.

• Your compiler declares standard library functions with argument or return types
different from the standard types. Unless you also provide the function definition, for
efficient verification, Polyspace uses its own definitions of standard library functions,
which have the usual prototype. The mismatch in types causes a linking error.

You can easily work around the compilation and standard library function errors. To work
around the errors, you typically specify certain analysis options. In some cases, you might
have to add a few lines to your code. For instance:

• To emulate your compiler behavior more closely, you specify the Target & Compiler
options. If you still face compilation errors, you might have to remove or replace
certain unrecognized keywords using the option Preprocessor definitions (-
D). However, the option allows only simple substitution of a string with another string.
For more complex replacements, you might have to add #define statements to your
code.

• To avoid errors from stubbing standard library functions, you might have to #define
certain Polyspace-specific macros so that Polyspace does not use its own definition of
standard library functions.

For more information, see “Troubleshoot Compilation and Linking Errors” on page 23-
7.

Instead of adding these modifications to your original code, create a single
polyspace.h file that contains all modifications. Use the option Include (-include)
to force inclusion of the polyspace.h file in all source files under verification.

Benefits of this approach include:

• The error detection is much faster since it will be detected during compilation rather
than in the link or subsequent phases.

• There will be no need to modify original source files.

11 Configure Target and Compiler Options

11-22

• The file is automatically included as the very first file in the original .c files.
• The file is reusable for other projects developed under the same environment.

Example 11.1. Example

This is an example of a file that can be used with the option Include (-include).

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdlib.h>
#include "another_file.h"

// Workarounds for compilation errors
#define far
#define at(x)

// Workarounds for errors due to redefining standard library functions

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the
 //automatic stubbing of std functions
#define __polyspace_no_sscanf
#define __polyspace_no_fgetc
void sscanf(int, char, char, char, char, char);
void fgetc(void);

 Gather Compilation Options Efficiently

11-23

Configure Inputs and Stubbing
Options

12

Specify External Constraints
This example shows how to specify constraints (also known data range specifications or
DRS) on variables in your code. Polyspace uses the code that you provide to make
assumptions about items such as variable ranges and allowed buffer size for pointers.
Sometimes the assumptions are broader than what you expect because:

• You have not provided the complete code. For example, you did not provide some of
the function definitions.

• Some of the information about variables is available only at run time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions, Polyspace can consider more execution paths than
those paths that occur at run time. If an operation fails along one of the execution paths,
Polyspace places an orange check on the operation. If that execution path does not occur
at run time, the orange check indicates a false positive.

To reduce the number of such false positives, you can specify additional constraints on
global variables, function inputs, and return values of stubbed functions. After you specify
your constraints, you can save them as an XML file to use them for subsequent analyses.
If your source code changes, you can update the previous constraints. You do not have to
create a new constraint template.

Note In Bug Finder, you can only constrain global variables. You cannot constrain
function inputs or return values of stubbed functions.

Create Constraint Template
1 On the Configuration pane, select Inputs & Stubbing.
2 To the right of Constraint setup, click the Edit button.

12 Configure Inputs and Stubbing Options

12-2

3 In the Constraint Specification dialog box, create a blank constraint template. The
template contains a list of all variables on which you can provide constraints.

• If you have run analysis once and not changed your code since that analysis,
instead of generating a new constraint template, use the folder icon to navigate to
the previous results folder. Open the template file drs_template.xml from that
folder. Save the file in another location, in case you delete the previous results
folder.

•
Otherwise, to create a new template, click . The software compiles
your project and creates a template. The new template is stored in a file
Module_number_Project_name_drs_template.xml in your project folder.

4 Specify your constraints and save the template as an XML file. For more information,
see “External Constraints for Polyspace Analysis” on page 12-6.

5 Click OK.

You see the full path to the template XML file in the Constraint setup field. If you
run an analysis, Polyspace uses this template for extracting variable constraints.

Create Constraint Template After Analysis
When you create a template based on analysis results, you know which variables you
must constrain to avoid false positives.

 Specify External Constraints

12-3

1 Open your results. Browse orange checks.
2

If the software can trace an orange check to a root cause, a icon becomes
available on the Result Details pane. Click this icon.

You see the full list of variables (function inputs or return values of stubbed
functions) that can cause orange checks. In your project configuration, constrain the
ranges of these variables. Follow the same steps as the previous section.

To use the template file for a subsequent analysis, in the project configuration, select
Inputs & Stubbing. In the Constraint setup field, enter the full path to the file.

Update Existing Template
If you remove some variables or functions from your code, constraints on them are not
applicable any more. Instead of regenerating a constraint template and respecifying the
constraints, you can update an existing template and remove the variables that are not
present in your code.

1 On the Configuration pane, select Inputs & Stubbing.
2 Open the existing template in one of the following ways:

• In the Constraint setup field, enter the path to the template XML file. Click Edit.
•

Click Edit. In the Constraint Specification dialog box, click the icon to
navigate to your template file.

3 Click Update.

a Variables that are no longer present in your source code appear under the Non
Applicable node. To remove an entry under the Non Applicable node or the
node itself, right-click and select Remove This Node.

b Specify your new constraints for any of the other variables.

Specify Constraints in Code
Specifying constraints outside your code allows for more precise analysis. However, you
must use the code within the specified constraints because the constraints are outside
your code. Otherwise, the results might not apply. For example, if you use function inputs
outside your specified range, a run-time error can occur on an operation even though
checks on the operation are green.

12 Configure Inputs and Stubbing Options

12-4

To specify constraints inside your code, you can use:

• Appropriate error handling tests in your code.

Polyspace checks to determine if the errors can actually occur. If they do not occur, the
test blocks appear as Unreachable code.

• The assert macro. For example, to constrain a variable var in the range [0,10], you
can use assert(var >= 0 && var <=10);.

Polyspace checks your assert statements to see if the condition can be false.
Following the assert statement, Polyspace considers that the assert condition is
true. Using assert statements, you can constrain your variables for the remaining
code in the same scope. For examples, see User assertion.

See Also
Constraint setup (-data-range-specifications)

Related Examples
• “External Constraints for Polyspace Analysis” on page 12-6
• “Constrain Global Variable Range” on page 12-11
• “Constrain Function Inputs” on page 12-13
• “Constrain Stubbed Functions” on page 12-15
• “XML File Format for Constraints” on page 12-17

 See Also

12-5

http://www.cplusplus.com/reference/cassert/assert/

External Constraints for Polyspace Analysis
The Polyspace Constraint Specification interface allows you to specify constraints for:

• Global Variables.
• User-defined Functions.

You cannot constrain user-defined functions in Bug Finder.
• Stubbed Functions.

You cannot constrain stubbed functions in Bug Finder.

For more information, see “Specify External Constraints” on page 12-2.

The following table lists the constraints that can be specified through this interface.

Column Settings
Name Displays the list of variables and functions in your Project for which

you can specify data ranges.

This Column displays three expandable menu items:

• Globals – Displays global variables in the project.
• User defined functions – Displays user-defined functions in the

project. Expand a function name to see its inputs.
• Stubbed functions – Displays a list of stub functions in the

project. Expand a function name to see the inputs and return
values.

File Displays the name of the source file containing the variable or
function.

Attributes Displays information about the variable or function.

For example, static variables display static.
Data Type Displays the variable type.

12 Configure Inputs and Stubbing Options

12-6

Column Settings
Main Generator
Called

Applicable only for user-defined functions.

Specifies whether the main generator calls the function:

• MAIN GENERATOR – Main generator may call this function,
depending on the value of the -functions-called-in-loop (C)
or -main-generator-calls (C++) parameter.

• NO – Main generator will not call this function.
• YES – Main generator will call this function.

Init Mode Specifies how the software assigns a range to the variable:

• MAIN GENERATOR – Variable range is assigned depending on the
settings of the main generator options -variables-written-
before-loop and -no-def-init-glob. (For C++, the options
are -main-generator-writes-variables, and -no-def-
init-glob.)

• IGNORE – Variable is not assigned to any range, even if a range is
specified.

• INIT – Variable is assigned to the specified range only at
initialization, and keeps the range until first write.

• PERMANENT – Variable is permanently assigned to the specified
range. If the variable is assigned outside this range during the
program, no warning is provided. Use the globalassert mode if
you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

For C verifications, global pointers support MAIN GENERATOR,
IGNORE, or INIT mode.

• MAIN GENERATOR – Pointer follows the options of the main
generator.

• IGNORE – Pointer is not initialized
• INIT – Specify if the pointer is NULL, and how the pointed object

is allocated (Initialize Pointer and Init Allocated options).

 External Constraints for Polyspace Analysis

12-7

Column Settings
Init Range Specifies the minimum and maximum values for the variable.

You can use the keywords min and max to denote the minimum and
maximum values of the variable type. For example, for the type long,
min and max correspond to -2^31 and 2^31-1 respectively.

You can also use hexadecimal values. For example: 0x12..0x100

For enum variables, you cannot specify ranges directly using the
enumerator constants. Instead use the values represented by the
constants.

For enum variables, you can also use the keywords enum_min and
enum_max to denote the minimum and maximum values that the
variable can take. For example, for an enum variable of the type
defined below, enum_min is 0 and enum_max is 5:

enum week{ sunday, monday=0, tuesday,
 wednesday, thursday, friday, saturday};

Initialize Pointer Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies whether the pointer should be NULL:

• May-be NULL – The pointer could potentially be a NULL pointer
(or not).

• Not Null – The pointer is never initialized as a null pointer.
• Null – The pointer is initialized as NULL.

Note Not applicable for C++ projects.

12 Configure Inputs and Stubbing Options

12-8

Column Settings
Init Allocated Applicable only to pointers. Enabled only when you specify Init

Mode:INIT.

Specifies how the pointed object is allocated:

• MAIN GENERATOR – The pointed object is allocated by the main
generator.

• None – Pointed object is not written.
• SINGLE – Write the pointed object or the first element of an array.

(This setting is useful for stubbed function parameters.)
• MULTI – All objects (or array elements) are initialized.

Note Not applicable for C++ projects.
Allocated
Objects

Applicable only to pointers.

Specifies how many objects are pointed to by the pointer (the pointed
object is considered as an array).

Note: The Init Allocated parameter specifies how many allocated
objects are actually initialized.

Note Not applicable for C++ projects.
Global Assert Specifies whether to perform an assert check on the variable at global

initialization, and after each assignment.
Global Assert
Range

Specifies the minimum and maximum values for the range you want
to check.

Comment Remarks that you enter, for example, justification for your DRS
values.

 External Constraints for Polyspace Analysis

12-9

See Also

More About
• “Specify External Constraints” on page 12-2

12 Configure Inputs and Stubbing Options

12-10

Constrain Global Variable Range
You can impose constraints (also known as data range specifications or DRS) on the range
of a global variable and check whether write operations on the variable violate the
constraint. For the general workflow, see “Specify External Constraints” on page 12-2.

To constrain a global variable range and also check for violation of the constraint:

1
In your project configuration, select Inputs & Stubbing. Click the button
next to the Constraint setup field.

2
In the Constraint Specification window, click .

Under the Global Variables node, you see a list of global variables.
3 For the global variable that you want to constrain:

• From the drop-down list in the Global Assert column, select YES.
• In the Global Assert Range column, enter the range in the format min..max.

min is the minimum value and max the maximum value for the global variable.
4

To save your specifications, click the button.

In Save a Constraint File window, save your entries as an xml file.
5 Run verification and open the results.

For every write operation on the global variable, you see a green, orange, or red
Correctness condition check. If the check is:

• Green, the variable is within the range that you specified.
• Orange, the variable can be outside the range that you specified.
• Red, the variable is outside the range that you specified.

When two or more tasks write to the same global variable, the Correctness
condition check can appear orange on all write operations to the variable even when
only one write operation takes the variable outside the Global Assert range.

 Constrain Global Variable Range

12-11

See Also
Polyspace Analysis Options
Constraint setup (-data-range-specifications)

Polyspace Results
Correctness condition

Related Examples
• “Constrain Function Inputs” on page 12-13
• “Constrain Stubbed Functions” on page 12-15

More About
• “External Constraints for Polyspace Analysis” on page 12-6

12 Configure Inputs and Stubbing Options

12-12

Constrain Function Inputs
You can specify constraints (also known as data range specifications or DRS) on function
inputs. Polyspace checks your function definition for run-time errors in relation to the
constrained inputs. For the general workflow, see “Specify External Constraints” on page
12-2.

For instance, for a function defined as follows, you can specify that the argument val has
values in the range [1..10]. You can also specify that the argument ptr points to a 3-
element array where each element is initialized:

int func(int val, int* ptr) {
 .
 .
}

To specify constraints on function inputs:

1
In your project configuration, select Inputs & Stubbing. Click the button
for Constraint setup.

2
In the Constraint Specification window, click .

Under the User Defined Functions node, you see a list of functions that Polyspace
does not stub. For information on stubbed functions, see “Constrain Stubbed
Functions” on page 12-15.

3 Expand the node for each function.

You see each function input on a separate row. The inputs have the syntax
function_name.arg1, function_name.arg2, etc.

4 Specify your constraints on one or more of the function inputs. For more information,
see “External Constraints for Polyspace Analysis” on page 12-6.

For example, in the preceding code:

• To constrain val to the range [1..10], select INIT for Init Mode and enter
1..10 for Init Range.

• To specify that ptr points to a 3-element array where each element is initialized,
select MULTI for Init Allocated and enter 3 for # Allocated Objects.

 Constrain Function Inputs

12-13

5 Run verification and open the results. On the Source pane, place your cursor on the
function inputs.

The tooltips display the constraints. For example, in the preceding code, the tooltip
displays that val has values in 1..10.

See Also
Polyspace Analysis Options
Constraint setup (-data-range-specifications)

Related Examples
• “Constrain Global Variable Range” on page 12-11
• “Constrain Stubbed Functions” on page 12-15

More About
• “External Constraints for Polyspace Analysis” on page 12-6

12 Configure Inputs and Stubbing Options

12-14

Constrain Stubbed Functions
Polyspace provides a function stub if you do not define a function or override a function
definition using an analysis option.

Polyspace makes certain assumptions about the arguments and return values of stubbed
functions. See “Stubbed Functions”. To work around the Polyspace assumptions, you can
specify constraints (also known as data range specifications or DRS) on arguments and
return values of stubbed functions.

For example, Polyspace assumes that variables returned from undefined functions take
full range of values allowed by their type. You can specify that the variable returned by a
certain undefined function lies in a specific range.

To specify a constraint, do one of the following:

• Before verification, create a constraint template. Specify this template for verification.

If you want to specify constraints for all undefined functions, use this approach. For
more information, see “Create Constraint Template” on page 12-2.

• Create a constrain template from your verification results. Specify this template for
the next verification.

If you want to constrain only those undefined functions that cause noncritical orange
checks, use this approach. For more information, see “Create Constraint Template
After Analysis” on page 12-3.

See Also
Polyspace Analysis Options
Constraint setup (-data-range-specifications)

Related Examples
• “Constrain Global Variable Range” on page 12-11
• “Constrain Function Inputs” on page 12-13

 Constrain Stubbed Functions

12-15

More About
• “External Constraints for Polyspace Analysis” on page 12-6

12 Configure Inputs and Stubbing Options

12-16

XML File Format for Constraints
If you run a verification, the software automatically generates a constraint file drs-
template.xml in your results folder. Edit this XML file to specify your constraints.

You can also see the information in this topic and the underlying XML schema in
matlabroot\polyspace\drs. Here, matlabroot is the MATLAB installation folder, for
instance, C:\Program Files\MATLAB\R2017a.

Note Instead of editing the constraint XML file directly, use the Polyspace user interface
to specify your constraints and save the constraints as an XML file. For more information,
see “Specify External Constraints” on page 12-2.

Syntax Description — XML Elements
The DRS file contains the following XML elements:

• <global> element — Declares the global scope, and is the root element of the XML
file.

• <file> element — Declares a file scope. Must be enclosed in the <global> element.
May enclose any variable or function declaration. Static variables must be enclosed in
a file element to avoid conflicts.

• <scalar> element— Declares an integer or a floating point variable. May be enclosed
in any recognized element, but cannot enclose any element. Sets init/permanent/global
asserts on variables.

• <pointer> element — Declares a pointer variable. May enclose any other variable
declarations (including itself), to define the pointed objects. Specifies what value is
written into pointer (NULL or not), how many objects are allocated and how the
pointed objects are initialized.

• <array> element — Declares an array variable. May enclose any other variable
definition (including itself), to define the members of the array.

• <struct> element — Declares a structure variable or object (instance of class). May
enclose any other variable definition (including itself), to define the fields of the
structure.

• <function> element — Declares a function or class method scope. May enclose any
variable definition, to define the arguments and the return value of the function.

 XML File Format for Constraints

12-17

Arguments should be named arg1, arg2, …argn and the return value should be
called return.

The following notes apply to specific fields in each XML element:

• (*) — Fields used only by the GUI. These fields are not mandatory for verification to
accept the ranges. The field line contains the line number where the variable is
declared in the source code, complete_type contains a string with the complete
variable type, and base_type is used by the GUI to compute the min and max values.
The field comment is used to add information about any node.

• (**) — The field name is mandatory for scope elements <file> and <function>
(except for function pointers). For other elements, the name must be specified when
declaring a root symbol or a struct field.

• (***) — If more than one attribute applies to the variable, the attributes must be
separated by a space. Only the static attribute is mandatory, to avoid conflicts between
static variables having the same name. An attribute can be defined multiple times
without impact.

• (****) — This element is used only by the GUI, to determine which init modes are
allowed for the current element (according to its type). The value works as a mask,
where the following values are added to specify which modes are allowed:

• 1: The mode “NO” is allowed.
• 2 : The mode “INIT” is allowed.
• 4: The mode “PERMANENT” is allowed.
• 8: The mode “MAIN_GENERATOR” is allowed.

For example, the value “10” means that modes “INIT” and “MAIN_GENERATOR” are
allowed. To see how this value is computed, refer to “Valid Modes and Default Values”
on page 12-22.

• (*****) — A sub-element of a pointer (i.e. a pointed object) will be taken into account
only if init_pointed is equal to SINGLE, MULTI, SINGLE_CERTAIN_WRITE or
MULTI_CERTAIN_WRITE.

• (******) — SINGLE_CERTAIN_WRITE or MULTI_CERTAIN_WRITE are available for
parameters and return values of stubbed functions only if they are pointers. If the
parameter or return value is a structure and the structure has a pointer field, they are
also available for the pointer field.

12 Configure Inputs and Stubbing Options

12-18

<file> Element

Field Syntax
name filepath_or_filename
comment string

<scalar> Element

Field Syntax
name (**) name
line (*) line
base_type (*) intx

uintx
floatx

Attributes (***) volatile
extern
static
const

complete_type (*) type
init_mode MAIN_GENERATOR

IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)
init_range range

disabled
unsupported

global_ assert YES
NO
disabled
unsupported

 XML File Format for Constraints

12-19

Field Syntax
assert_range range

disabled
unsupported

comment(*) string

<pointer> Element

Field Syntax
Name (**) name
line (*) line
Attributes (***) volatile

extern
static
const

complete_type (*) type
init_mode MAIN_GENERATOR

IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)
initialize_ pointer May be:

NULL
Not NULL
NULL

number_ allocated single value
disabled
unsupported

12 Configure Inputs and Stubbing Options

12-20

Field Syntax
init_pointed (******) MAIN_GENERATOR

NONE

SINGLE

MULTI

SINGLE_CERTAIN_WRITE

MULTI_CERTAIN_WRITE

disabled
comment string

<array> and <struct> Elements

Field Syntax
Name (**) name
line (*) line
complete_type (*) type
attributes (***) volatile

extern
static
const

comment string

<function> Element

Field Syntax
Name (**) name
line (*) line

 XML File Format for Constraints

12-21

Field Syntax
main_generator_called MAIN_GENERATOR

YES
NO
disabled

attributes (***) static
extern
unused

comment string

Valid Modes and Default Values
Scope Type Init modes Gassert

mode
Initialize
pointer

Init
allocated

Default

Global
variables

Base
type

Unqualifie
d/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT
PERMANENT

YES
NO

 Main
generator
dependant

Volatile
scalar

PERMANENT disabled PERMANEN
T min..max

Extern
scalar

INIT
PERMANENT

YES
NO

 INIT
min..max

Struct Struct field Refer to field type
Array Array

element
Refer to element type

Global
variables

Pointer Unqualifie
d/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT

 May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

Main
generator
dependant

Volatile
pointer

un-
supported

 un-
supported

un-
supported

12 Configure Inputs and Stubbing Options

12-22

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Extern
pointer

IGNORE
INIT

 May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Pointed
volatile
scalar

un-
supported

un-
supported

Pointed
extern
scalar

INIT un-
supported

 INIT
min..max

Pointed
other
scalars

MAIN_
GENERATOR
INIT

un-
supported

 MAIN_
GENERATO
R
dependant

Pointed
pointer

MAIN_
GENERATOR
INIT/

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

MAIN_
GENERATO
R
dependant

Pointed
function

un-
supported

un-
supported

Function
parameter
s

Userdef
functio
n

Scalar
parameter
s

MAIN_
GENERATOR
INIT

un-
supported

 INIT
min..max

Pointer
parameter
s

MAIN_
GENERATOR
INIT

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Other
parameter
s

Refer to parameter type

Stubbe
d
functio
n

Scalar
parameter

disabled un-
supported

 XML File Format for Constraints

12-23

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Pointer
parameter
s

disabled disabled NONE

SINGLE

MULTI

SINGLE_
CERTAIN_
WRITE

MULTI_
CERTAIN_
WRITE

MULTI

Pointed
parameter
s

PERMANENT un-
supported

 PERMANEN
T
min..max

Pointed
const
parameter
s

disabled un-
supported

Function
return

Userdef
functio
n

Return disabled un-
supported

disabled disabled

Stubbe
d
functio
n

Scalar
return

PERMANENT un-
supported

 PERMANEN
T
min..max

12 Configure Inputs and Stubbing Options

12-24

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Pointer
return

PERMANENT un-
supported

May be
NULL
Not NULL
NULL

NONE

SINGLE

MULTI

SINGLE_
CERTAIN_
WRITE

MULTI_
CERTAIN_
WRITE

PERMANEN
T
May be
NULL max
MULTI

 XML File Format for Constraints

12-25

Configure Multitasking Analysis

13

Analyze Multitasking Programs in Polyspace
With Polyspace, you can analyze programs where multiple threads (tasks) run
concurrently.

In addition to regular run-time checks, the analysis looks for issues specific to concurrent
execution:

• Data races, deadlocks, consecutive or missing locks and unlocks (Bug Finder)
• Unprotected shared variables (Code Prover)

13 Configure Multitasking Analysis

13-2

Configure Analysis

If your code uses multitasking primitives from certain families, for instance,
pthread_create for thread creation:

• In Bug Finder, the analysis detects them and extracts your multitasking model from
the code.

• In Code Prover, you must enable this automatic detection explicitly.

See “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 13-
6.

Alternatively, define your multitasking model through the analysis options. In the
Polyspace user interface, the options are on the Multitasking node in the Configuration
pane. For more information, see “Configuring Polyspace Multitasking Analysis Manually”
on page 13-14.

 Analyze Multitasking Programs in Polyspace

13-3

Review Analysis Results
Bug Finder

The Bug Finder analysis shows concurrency defects such as data races and deadlocks.
See “Concurrency Defects” (Polyspace Bug Finder).

Code Prover

13 Configure Multitasking Analysis

13-4

The Code Prover analysis exhaustively checks if shared global variables are protected
from concurrent access. See “Global Variables”.

Review the results using the message on the Result Details pane. See a visual

representation of conflicting operations using the (graph) icon.

See Also

More About
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 13-

6
• “Configuring Polyspace Multitasking Analysis Manually” on page 13-14
• “Protections for Shared Variables in Multitasking Code” on page 13-19

 See Also

13-5

Auto-Detection of Thread Creation and Critical Section
in Polyspace

With Polyspace, you can analyze programs where multiple threads run concurrently.
Polyspace can analyze your multitasking code for data races, deadlocks and other
concurrency defects, if the analysis is aware of the concurrency model in your code. In
some situations, Polyspace can detect thread creation and critical sections in your code
automatically. Bug Finder detects them by default. In Code Prover, you enable automatic
detection using the option Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection).

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in
Polyspace” on page 13-2.

If your thread creation function is not detected automatically:

• You can also map the function to a thread-creation function that Polyspace can detect
automatically. Use the option -function-behavior-specifications.

• Otherwise, you must manually model your multitasking threads by using configuration
options. See “Configuring Polyspace Multitasking Analysis Manually” on page 13-14.

Multitasking Routines that Polyspace Can Detect
Polyspace can detect thread creation and critical sections if you use primitives from these
groups. Polyspace recognizes calls to these routines as the creation of a new thread or as
the beginning or end of a critical section.

POSIX

Thread creation: pthread_create

Critical section begins: pthread_mutex_lock

Critical section ends: pthread_mutex_unlock

VxWorks

Thread creation: taskSpawn

13 Configure Multitasking Analysis

13-6

Critical section begins: semTake

Critical section ends: semGive

To activate automatic detection of concurrency primitives for VxWorks®, use the
VxWorks template. For more information on templates, see “Create Project Using
Configuration Template” on page 3-19.

Concurrency detection is possible only if the multitasking functions are created from an
entry point named main. If the entry point has a different name, such as
vxworks_entry_point, do one of the following:

• Provide a main function.
• Preprocessor definitions (-D): In preprocessor definitions, set

vxworks_entry_point=main.

Windows

Thread creation: CreateThread

Critical section begins: EnterCriticalSection

Critical section ends: LeaveCriticalSection

μC/OS II

Thread creation: OSTaskCreate

Critical section begins: OSMutexPend

Critical section ends: OSMutexPost

C++11

Thread creation: std::thread::thread

Critical section begins: std::mutex::lock

 Auto-Detection of Thread Creation and Critical Section in Polyspace

13-7

Critical section ends: std::mutex::unlock

For autodetection of C++11 threads, explicitly specify paths to your compiler header files
or use polyspace-configure.

For instance, if you use std::thread for thread creation, explicitly specify the path to
the folder containing thread.h.

Example of Automatic Thread Detection
The following multitasking code models five philosophers sharing five forks. The example
uses POSIX® thread creation routines and illustrates a classic example of a deadlock. Run
Bug Finder on this code to see the deadlock.

#include "pthread.h"
#include <stdio.h>
#include <unistd.h>

pthread_mutex_t forks[5];

void* philo1(void* args) {
 while(1) {
 printf("Philosopher 1 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[0]);
 printf("Philosopher 1 takes left fork\n");
 pthread_mutex_lock(&forks[1]);
 printf("Philosopher 1 takes right fork\n");
 printf("Philosopher 1 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[1]);
 printf("Philosopher 1 puts down right fork\n");
 pthread_mutex_unlock(&forks[0]);
 printf("Philosopher 1 puts down left fork\n");
 }
 return NULL;
}

void* philo2(void* args) {
 while(1) {
 printf("Philosopher 2 is thinking\n");

13 Configure Multitasking Analysis

13-8

 sleep(1);
 pthread_mutex_lock(&forks[1]);
 printf("Philosopher 2 takes left fork\n");
 pthread_mutex_lock(&forks[2]);
 printf("Philosopher 2 takes right fork\n");
 printf("Philosopher 2 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[2]);
 printf("Philosopher 2 puts down right fork\n");
 pthread_mutex_unlock(&forks[1]);
 printf("Philosopher 2 puts down left fork\n");
 }
 return NULL;
}

void* philo3(void* args) {
 while(1) {
 printf("Philosopher 3 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[2]);
 printf("Philosopher 3 takes left fork\n");
 pthread_mutex_lock(&forks[3]);
 printf("Philosopher 3 takes right fork\n");
 printf("Philosopher 3 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[3]);
 printf("Philosopher 3 puts down right fork\n");
 pthread_mutex_unlock(&forks[2]);
 printf("Philosopher 3 puts down left fork\n");
 }
 return NULL;
}

void* philo4(void* args) {
 while(1) {
 printf("Philosopher 4 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[3]);
 printf("Philosopher 4 takes left fork\n");
 pthread_mutex_lock(&forks[4]);
 printf("Philosopher 4 takes right fork\n");
 printf("Philosopher 4 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[4]);

 Auto-Detection of Thread Creation and Critical Section in Polyspace

13-9

 printf("Philosopher 4 puts down right fork\n");
 pthread_mutex_unlock(&forks[3]);
 printf("Philosopher 4 puts down left fork\n");
 }
 return NULL;
}

void* philo5(void* args) {
 while(1) {
 printf("Philosopher 5 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[4]);
 printf("Philosopher 5 takes left fork\n");
 pthread_mutex_lock(&forks[0]);
 printf("Philosopher 5 takes right fork\n");
 printf("Philosopher 5 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[0]);
 printf("Philosopher 5 puts down right fork\n");
 pthread_mutex_unlock(&forks[4]);
 printf("Philosopher 5 puts down left fork\n");
 }
 return NULL;
}

int main(void)
{
 pthread_t ph[5];
 pthread_create(&ph[0],NULL,philo1,NULL);
 pthread_create(&ph[1],NULL,philo2,NULL);
 pthread_create(&ph[2],NULL,philo3,NULL);
 pthread_create(&ph[3],NULL,philo4,NULL);
 pthread_create(&ph[4],NULL,philo5,NULL);

 pthread_join(ph[0],NULL);
 pthread_join(ph[1],NULL);
 pthread_join(ph[2],NULL);
 pthread_join(ph[3],NULL);
 pthread_join(ph[4],NULL);
 return 1;
}

Each philosopher needs two forks to eat, a right and a left fork. The functions philo1,
philo2, philo3, philo4, and philo5 represent the philosophers. Each function

13 Configure Multitasking Analysis

13-10

requires two pthread_mutex_t resources, representing the two forks required to eat.
All five functions run at the same time in five concurrent threads.

However, a deadlock occurs in this example. When each philosopher picks up their first
fork (each thread locks one pthread_mutex_t resource), all the forks are being used.
So, the philosophers (threads) wait for their second fork (second pthread_mutex_t
resource) to become available. However, all the forks (resources) are being held by the
waiting philosophers (threads), causing a deadlock.

Naming Convention for Automatically Detected Threads
If you use a function such as pthread_create() to create new threads (tasks), each
thread is associated with an unique identifier. For instance, in this example, two threads
are created with identifiers id1 and id2.

pthread_t* id1,id2;

void main()
{
 pthread_create(id1,NULL,start_routine,NULL);
 pthread_create(id2,NULL,start_routine,NULL);
}

If a data race occurs between the threads, the analysis can detect it. When displaying the
results, the threads are indicated as task_id, where id is the identifier associated with
the thread. In the preceding example, the threads are identified as task_id1 and
task_id2.

If a thread identifiers is:

• Local to a function, the thread name shows the function.

For instance, the thread created below appears as task_f:id

void f (void) {
 pthread_t* id;
 pthread_create(id,NULL,start_routine,NULL);
}

• A field of a structure, the thread name shows the structure.

For instance, the thread created below appears as task_a#id

 Auto-Detection of Thread Creation and Critical Section in Polyspace

13-11

struct {pthread_t* id; int x;} a;
pthread_create(a.id,NULL,start_routine,NULL);

• An array member, the thread name shows the array.

For instance, the thread created below appears as task_tab[1].

pthread_t* tab[10];
pthread_create(tab[1],NULL,start_routine,NULL);

Limitations of Automatic Thread Detection
The multitasking model extracted by Polyspace does not include some features. Polyspace
cannot model:

• Thread priorities and attributes — Ignored by Polyspace.
• Recursive semaphores.
• Unbounded thread identifiers, such as extern pthread_t ids[] — Warning.
• Calls to concurrency primitive through high-order calls — Warning.
• Aliases on thread identifiers — Polyspace over-approximates when the alias is used.
• Termination of threads — Polyspace ignores pthread_join, and replaces

pthread_exit by a standard exit.
• (Bug Finder only) Creation of multiple threads through multiple calls to the same

function with different pointer arguments.

For instance, in this example, Polyspace considers that only one thread is created.

pthread_t id1,id2;
void start(pthread_t* id)
{
 pthread_create(id,NULL,start_routine,NULL);
}
void main()
{
 start(&id1);
 start(&id2);
}

13 Configure Multitasking Analysis

13-12

See Also
Enable automatic concurrency detection for Code Prover (-enable-
concurrency-detection)

More About
• “Analyze Multitasking Programs in Polyspace” on page 13-2
• “Configuring Polyspace Multitasking Analysis Manually” on page 13-14

 See Also

13-13

Configuring Polyspace Multitasking Analysis Manually
With Polyspace, you can analyze programs where multiple threads run concurrently. In
some situations, Polyspace can detect thread creation and critical sections in your code
automatically. See “Auto-Detection of Thread Creation and Critical Section in Polyspace”
on page 13-6.

If your code has functions that are intended for concurrent execution, but that cannot be
detected automatically, you must specify them before analysis. If these functions operate
on a common variable, you must also specify protection mechanisms for those operations.

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in
Polyspace” on page 13-2.

Specify Options for Multitasking Analysis
Use these options to specify cyclic tasks, interrupts and protections for shared variables.
In the Polyspace user interface, the options are on the Multitasking node in the
Configuration pane.

• Tasks (-entry-points): Specify noncyclic entry point functions.

Do not specify main. Polyspace implicitly considers main as an entry point function.
• Cyclic tasks (-cyclic-tasks): Specify functions that are scheduled at periodic

intervals.
• Interrupts (-interrupts): Specify functions that can run asynchronously.
• Disabling all interrupts (-routine-disable-interrupts -routine-

enable-interrupts): Specify functions that disable and reenable interrupts (Bug
Finder only).

• Critical section details (-critical-section-begin -critical-
section-end): Specify functions that begin and end critical sections.

• Temporally exclusive tasks (-temporal-exclusions-file): Specify
groups of functions that are temporally exclusive.

• -preemptable-interrupts: Specify functions that have lower priority than
interrupts, but higher priority than tasks (preemptable or non-preemptable).

Only the Bug Finder analysis considers priorities.

13 Configure Multitasking Analysis

13-14

• -non-preemptable-tasks: Specify functions that have higher priority than tasks,
but lower priority than interrupts (preemptable or non-preemptable).

Only the Bug Finder analysis considers priorities.

Adapt Code for Code Prover Multitasking Analysis
The multitasking analysis in Code Prover is more exhaustive about finding potentially
unprotected shared variables and therefore follows a strict model.

Tasks and interrupts must be void-void functions.

Functions that you specify as tasks and interrupts must have the prototype:

void func(void);

Suppose you want to specify a function func that takes int arguments:

void func(int);

Define a wrapper void-void function that calls func with a volatile value. Specify this
wrapper function as a task or interrupt.

void func_wrapper() {
 volatile int arg;
 func(arg);
}

The main function must end.

Code Prover assumes that the main function ends before all tasks and interrupts begin. If
the main function contains an infinite loop or run-time error, the tasks and interrupts are
not analyzed.

Suppose you want to specify the main function as a cyclic task.

void performTask1Cycle(void);
void performTask2Cycle(void);

void main() {

 Configuring Polyspace Multitasking Analysis Manually

13-15

 while(1) {
 performTask1Cycle();
 }
}

void task2() {
 while(1) {
 performTask2Cycle();
 }
}

Replace the definition of main with:

#ifdef POLYSPACE
void main() {
}
void task1() {
 while(1) {
 performTask1Cycle();
 }
}

#else
void main() {
 while(1) {
 performTask1Cycle();
 }
}
#endif

The replacement defines an empty main and places the content of main into another
function task1 if a macro POLYSPACE is defined. Define the macro POLYSPACE using the
option Preprocessor definitions (-D).

This assumption does not apply to automatically detected threads. For instance, a main
function can create threads using pthread_create.

All tasks and interrupts can interrupt each other.

The Bug Finder analysis considers priorities of tasks. A function that you specify as a task
cannot interrupt a function that you specify as an interrupt because an interrupt has
higher priority.

13 Configure Multitasking Analysis

13-16

The Code Prover analysis considers that all tasks and interrupts can interrupt each other.

All tasks and interrupts can run any number of times in any sequence.

The Code Prover analysis considers that all tasks and interrupts can run any number of
times in any sequence.

Suppose in this example, you specify reset and inc as cyclic tasks. The analysis shows
an overflow on the operation var+=2.

void reset(void) {
 var=0;
}

void inc(void) {
 var+=2;
}

Suppose you want to model a scheduling of tasks such that reset executes after inc has
executed five times. Write a wrapper function that implements this sequence. Specify this
new function as a cyclic task instead of reset and inc.

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 inc();
 inc();
 inc();
 inc();
 inc();
 reset();
 }
 }

Suppose you want to model a scheduling of tasks such that reset executes after inc has
executed zero to five times. Write a wrapper function that implements this sequence.
Specify this new function as a cyclic task instead of reset and inc.

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 if(randomValue)

 Configuring Polyspace Multitasking Analysis Manually

13-17

 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 reset();
 }
 }

See Also

More About
• “Analyze Multitasking Programs in Polyspace” on page 13-2
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 13-6

13 Configure Multitasking Analysis

13-18

Protections for Shared Variables in Multitasking Code
If your code is intended for multitasking, tasks in your code can access a common shared
variable. To prevent data races, you can protect read and write operations on the
variable. This topic shows the various protection mechanisms that Polyspace can
recognize.

Detect Unprotected Access

You can detect an unprotected access using either Bug Finder or Code Prover. Code
Prover is more exhaustive and proves if a shared variable is protected from concurrent
access.

• Bug Finder detects an unprotected access using the result Data race. See Data
race.

• Code Prover detects an unprotected access using the result Shared unprotected
global variable. See Shared unprotected global variable.

Suppose you analyze this code, specifying signal_handler_1 and signal_handler_2
as cyclic tasks. Use the analysis option Cyclic tasks (-cyclic-tasks).

#include <limits.h>
int shared_var;

 Protections for Shared Variables in Multitasking Code

13-19

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void signal_handler_1(void) {
 reset();
 inc();
 inc();
}

void signal_handler_2(void) {
 shared_var = INT_MAX;
}

 void main() {
}

Bug Finder shows a data race on shared_var. Code Prover shows that shared_var is a
potentially unprotected shared variable. Code Prover also shows that the operation
shared_var += 2 can overflow. The overflow occurs if the call to inc in
signal_handler_1 immediately follows the operation shared_var = INT_MAX in
signal_handler_2.

Protect Using Critical Sections
One possible solution is to protect operations on shared variables using critical sections.

In the preceding example, modify your code so that operations on shared_var are in the
same critical section. Use the functions take_semaphore and give_semaphore to
begin and end the critical sections. To specify these functions that begin and end critical
sections, use the analysis options Critical section details (-critical-
section-begin -critical-section-end).

#include <limits.h>
int shared_var;

void inc() {

13 Configure Multitasking Analysis

13-20

 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

/* Declare lock and unlock functions */
void take_semaphore(void);
void give_semaphore(void);

void signal_handler_1() {
 /* Begin critical section */
 take_semaphore();
 reset();
 inc();
 inc();
 /* End critical section */
 give_semaphore();

}

void signal_handler_2() {
 /* Begin critical section */
 take_semaphore();
 shared_var = INT_MAX;
 /* End critical section */
 give_semaphore();

}

void main() {
}

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is
protected. You also do not see the overflow because the call to reset() in
signal_handler_1 always precedes calls to inc().

Protect Using Temporally Exclusive Tasks
Another possible solution is to specify a group of tasks as temporally exclusive.
Temporally exclusive tasks cannot interrupt each other.

 Protections for Shared Variables in Multitasking Code

13-21

In the preceding example, specify that signal_handler_1 and signal_handler_2 are
temporally exclusive. Use the option Temporally exclusive tasks (-temporal-
exclusions-file).

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is
protected. You also do not see the overflow because the call to reset() in
signal_handler_1 always precedes calls to inc().

Protect Using Priorities
Another possible solution is to specify that one task has higher priority over another.

In the preceding example, specify that signal_handler_1 is an interrupt. Retain
signal_handler_2 as a cyclic task. Use the options Cyclic tasks (-cyclic-
tasks) and Interrupts (-interrupts).

Bug Finder does not show the data race defect anymore. The reason is this:

• The operation shared_var = INT_MAX in signal_handler_2 is atomic. Therefore,
the operations in signal_handler_1 cannot interrupt it.

• The operations in signal_handler_1 cannot be inerrupted by the operation in
signal_handler_2 because signal_handler_1 has higher priority.

Code Prover does not consider priorities of tasks. Therefore, Code Prover still shows
shared_var as a potentially unprotected global variable.

See Also

More About
• “Analyze Multitasking Programs in Polyspace” on page 13-2

13 Configure Multitasking Analysis

13-22

Configure Coding Rules Checking
and Code Metrics Computation

14

Check for Coding Rule Violations
With Polyspace, you can check your C/C++ code for violations of coding rules such as
MISRA C:2012 rules. Adhering to coding rules can reduce the number of defects and
improve the quality of your code.

Polyspace can detect the violations of these rules:

• MISRA C: 2004
• MISRA C: 2012
• MISRA C++
• JSF++

Using Bug Finder, you can also check for security standards such as CWE, CERT C or ISO
17961. See “Check C/C++ Code for Security Standards” (Polyspace Bug Finder).

Configure Coding Rules Checking

14 Configure Coding Rules Checking and Code Metrics Computation

14-2

Specify the coding rules through Polyspace analysis options. When you run Bug Finder or
Code Prover, the analysis looks for coding rule violations in addition to other checks. You
can also disable the other checks and look for coding rule violations only.

In the Polyspace user interface, the options are on the Configuration pane under the
Coding Rules & Code Metrics node.

Use one of these options for C code:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc)
• Check MISRA C:2012 (-misra3)

Use one of these options for C++ code:

• Check MISRA C++ rules (-misra-cpp)
• Check JSF++ rules (-jsf-coding-rules)

You can specify a predefined subsets of rules, for instance, mandatory for MISRA C:
2012. Alternatively, you can specify your own subset in one of these ways:

• Click the Edit button. Select the rules to enable.

When you save, the rules are saved in a text file that you can reuse for multiple
analyses.

• Specify a text file that lists one rule per line using the syntax:

Rule_number on|off #Comments

For example:

10.5 off # rule 10.5: essential type model
17.2 on # rule 17.2: functions

You can only enter the rules that you want to turn off. When you run an analysis,
Polyspace automatically turns on the other rules and populates the file.

To check for coding rules only:

• In Bug Finder, disable checking of defects. Use the option Find defects (-
checkers).

 Check for Coding Rule Violations

14-3

• In Code Prover, check for source compliance only. Use the option Verification
level (-to).

These rules are checked in the later stages of a Code Prover analysis: MISRA C:2004
rules 9.1, 13.7 and 21.1, and MISRA C:2012 rules 2.2, 9.1, 14.3, and 18.1. If you stop
Code Prover at source compliance checking, the analysis might not find all violations
of these rules.

Review Coding Rule Violations

14 Configure Coding Rules Checking and Code Metrics Computation

14-4

After analysis, you see the coding rule violations on the Results List pane. Select a
violation to see further details on the Result Details pane and the source code on the
Source pane.

 Check for Coding Rule Violations

14-5

Violations of MISRA or JSF rules are indicated by the icon.

For further steps, see:

• “Interpret Polyspace Bug Finder Results” (Polyspace Bug Finder) or “Interpret
Polyspace Code Prover Results” on page 17-2

• “Address Polyspace Results Through Bug Fixes or Comments” on page 19-2
• “Filter and Group Results” on page 20-2

14 Configure Coding Rules Checking and Code Metrics Computation

14-6

Avoid Violations of MISRA C 2012 Rules 8.x
MISRA C:2012 rules 8.1-8.14 enforce good coding practices surrounding declarations and
definitions. If you follow these practices, you are less likely to have conflicting
declarations or to unintentionally modify variables.

If you do not follow these practices during coding, your code might require major changes
later to be MISRA C-compliant. You might have too many MISRA C violations. Sometimes,
in fixing a violation, you might violate another rule. Instead, keep these rules in mind
when coding. Use the MISRA C:2012 checker to spot any issues that you might have
missed.

• Explicitly specify all data types in declarations.

Avoid implicit data types like this declaration of k:

extern void foo (char c, const k);

Instead use:

extern void foo (char c, const int k);

That way, you do not violate MISRA C:2012 Rule 8.1.
• When declaring functions, provide names and data types for all parameters.

Avoid declarations without parameter names like these declarations:

extern int func(int);
extern int func2();

Instead use:

extern int func(int arg);
extern int func2(void);

That way, you do not violate MISRA C:2012 Rule 8.2.
• If you want to use an object or function in multiple files, declare the object or

function once in only one header file.

To use an object in multiple source files, declare it as extern in a header file. Include
the header file in all the source files where you need the object. In one of those source
files, define the object. For instance:

 Avoid Violations of MISRA C 2012 Rules 8.x

14-7

/* header.h */
extern int var;

/* file1.c */
#include "header.h"
/* Some usage of var */

/* file2.c */
#include "header.h"
int var=1;

To use a function in multiple source files, declare it in a header file. Include the header
file in all the source files where you need the function. In one of those source files,
define the function.

That way, you do not violate MISRA C:2012 Rule 8.3, MISRA C:2012 Rule 8.4 ,
MISRA C:2012 Rule 8.5, or MISRA C:2012 Rule 8.6.

• If you want to use an object or function in one file only, declare and define the
object or function with the static specifier.

Make sure that you use the static specifier in all declarations and the definition. For
instance, this function func is meant to be used only in the current file:

static int func(void);
static int func(void){
}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule
8.8.

• If you want to use an object in one function only, declare the object in the
function body.

Avoid declaring the object outside the function.

For instance, if you use var in func only, do declare it outside the body of func:

int var;
void func(void) {
 var=1;
}

Instead use:

14 Configure Coding Rules Checking and Code Metrics Computation

14-8

void func(void) {
 int var;
 var=1;
}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule
8.9.

• If you want to inline a function, declare and define the function with the
static specifier.

Every time you add inline to a function definition, add static too:

static inline double func(int val);
static inline double func(int val) {
}

That way, you do not violate MISRA C:2012 Rule 8.10
• When declaring arrays, explicitly specify their size.

Avoid implicit size specifications like this:

extern int32_t array[];

Instead use:

#define MAXSIZE 10
extern int32_t array[MAXSIZE];

That way, you do not violate MISRA C:2012 Rule 8.11.
• When declaring enumerations, try to avoid mixing implicit and explicit
specifications.

Avoid mixing implicit and explicit specifications. You can specify the first enumeration
constant explicitly, but after that, use either implicit or explicit specifications. For
instance, avoid this type of mix:

enum color {red = 2, blue, green = 3, yellow};

Instead use:

enum color {red = 2, blue, green, yellow};

That way, you do not violate MISRA C:2012 Rule 8.12.

 Avoid Violations of MISRA C 2012 Rules 8.x

14-9

• When declaring pointers, point to a const-qualified type unless you want to
use the pointer to modify an object.

Point to a const-qualified type by default unless you intend to use the pointer for
modifying the pointed object. For instance, in this example, ptr is not used to modify
the pointed object:

char last_char(const char * const ptr){
}

That way, you do not violate MISRA C:2012 Rule 8.13.

14 Configure Coding Rules Checking and Code Metrics Computation

14-10

Create Custom Coding Rules
This example shows how to create a custom coding rules file. You can use this file to
check names or text patterns in your source code against custom rules that you specify.
For each rule, you specify a pattern in the form of a regular expression. The software
compares the pattern against identifiers in the source code and determines whether the
custom rule is violated.

The tutorial uses the following code stored in a file printInitialValue.c:

#include <stdio.h>

typedef struct {
 int a;
 int b;
} collection;

void main()
{
 collection myCollection= {0,0};
 printf("Initial values in the collection are %d and %d.",
 myCollection.a,myCollection.b);
}

1 Create a Polyspace project. Add printInitialValue.c to the project.
2 On the Configuration pane, select Coding Rules & Code Metrics. Select the

Check custom rules box.
3

Click .

The New File window opens, displaying a table of rule groups.
4 Specify the rules to check for.

a First, clear the Custom rules check box to turn off checking of custom rules.
b Expand the 4 Structs node. For the option 4.3 All struct fields must follow

the specified pattern:

Column Title Action
Status Select .

 Create Custom Coding Rules

14-11

Column Title Action
Convention Enter All struct fields must

begin with s_ and have
capital letters or digits

Pattern Enter s_[A-Z0-9_]+
Comment Leave blank. This column is for

comments that appear in the
coding rules file alone.

5 Save the file and run the analysis. On the Results List pane, you see two violations
of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.
b On the Result Details pane, you see the error message you had entered, All

struct fields must begin with s_ and have capital letters
6 Right-click on the Source pane and select Open Editor. The file

printInitialValue.c opens in the Code Editor pane or an external text editor
depending on your Preferences.

7 In the file, replace all instances of a with s_A and b with s_B. Rerun the analysis.

The custom rule violations no longer appear on the Results List pane.

See Also
Polyspace Analysis Options
Check custom rules (-custom-rules)

More About
• “Format of Custom Coding Rules File” on page 14-13

14 Configure Coding Rules Checking and Code Metrics Computation

14-12

Format of Custom Coding Rules File
In a custom coding rules file, each rule appears in the following format:
N.n off|on
convention=violation_message
pattern=regular_expression

• N.n — Custom rule number, for example, 1.2.
• off — Rule is not considered.
• on — The software checks for violation of the rule. After analysis, it displays the

coding rule violation on the Results List pane.
• violation_message — Software displays this text in an XML file within the

Results/Polyspace-Doc folder.
• regular_expression — Software compares this text pattern against a source code
identifier that is specific to the rule. See “Custom Coding Rules”.

The keywords convention= and pattern= are optional. If present, they apply to the
rule whose number immediately precedes these keywords. If convention= is not
given for a rule, then a standard message is used. If pattern= is not given for a rule,
then the default regular expression is used, that is, .*.

Use the symbol # to start a comment. Comments are not allowed on lines with the
keywords convention= and pattern=.

The following example contains three custom rules: 1.1, 8.1, and 9.1.
Custom rules configuration file
1.1 off # Disable custom rule number 1.1
8.1 on # Violation of custom rule 8.1 produces a warning
convention=Global constants must begin by G_ and must be in capital letters.
pattern=G_[A-Z0-9_]*
9.1 on # Non-adherence to custom rule 9.1 produces a warning
convention=Global variables should begin by g_.
pattern=g_.*

See Also

Related Examples
• “Create Custom Coding Rules” on page 14-11

 Format of Custom Coding Rules File

14-13

Compute Code Complexity Metrics
This example shows how to review the code complexity metrics that Polyspace computes.
For information on the individual metrics, see “Code Metrics”.

Polyspace does not compute code complexity metrics by default. To compute them during
analysis, do the following:

• User interface: On the Configuration pane, select Coding Rules & Code Metrics.
Select Calculate Code Metrics.

• Command line: With the polyspace-bug-finder-nodesktop or
polyspaceBugFinder command, use the option -code-metrics .

After analysis, the software displays code complexity metrics on the Results List pane.
You can:

• Specify limits for the metric values through Tools > Preferences.

If you impose limits on metrics, the Results List pane displays only those metric
values that violate the limits. Use predefined limits or assign your own limits. If you
assign your own limits, you can share the limits file to enforce coding standards in
your organization.

• Justify the value of a metric.

If a metric value exceeds specified limits and appears red, you can add a comment
with the rationale.

You can also suppress code metrics from the Results List display. Select Show >
Defects & Rules.

Impose Limits on Metrics
1 Select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To use a predefined limit, select Include Quality Objectives Scopes.

The Scope Name list shows the additional option HIS. The option HIS displays
the HIS code metrics on page 14-18 only. Select the option to see the limit
values.

14 Configure Coding Rules Checking and Code Metrics Computation

14-14

• To define your own limits, select New. Save your limits file.

On the left pane, select Code Metric. On the right, select a metric and specify a
limit value for the metric. Other than Comment Density, limit values are upper
limits.

To select all metrics in a category such as Function Metrics, select the box next
to the category name. For more information on the metrics categories, see “Code
Metrics”. If only a fraction of metrics in a category are selected, the check box
next to the category name displays a symbol.

 Compute Code Complexity Metrics

14-15

3 Select Apply or OK.

14 Configure Coding Rules Checking and Code Metrics Computation

14-16

The drop-down list in the left of the Results List pane toolbar displays additional
options.

• If you use predefined limits, the option HIS appears. This option displays code
metrics only.

• If you define your own limits, the option corresponding to your limits file name
appears.

4 Select the option corresponding to the limits that you want. Only metric values that
violate your limits appear on the Results List pane.

Note To enforce coding standards across your organization, share your limits file that
you saved in XML format.

People in your organization can use the Open button on the Review Scope tab and
navigate to the location of the XML file.

Comment and Justify Limit Violations
Once you use the Show menu to display only metrics that violate limits, you can review
each violation.

1 On the Results List pane, from the list, select Family.

The code metrics appear together under one node.
2 Expand the node. Select each violation.

• On the Results List pane, in the Information column, you can see the metric
value.

• On the Result Details pane, you can see the metric value and a brief description
of the metric.

For more detailed descriptions and examples, select the icon.
3 On the Results List pane, add a comment and justification describing why the

violation occurs. For more information, see “Address Polyspace Results Through Bug
Fixes or Comments” on page 19-2.

 Compute Code Complexity Metrics

14-17

HIS Code Complexity Metrics
The following list shows the Hersteller Initiative Software (HIS) standard metrics that
Polyspace evaluates. These metrics and the recommended limits for their values are part
of a standard defined by a major group of Original Equipment Manufacturers or OEMs.
For more information on how to focus your review to this subset of code metrics, see
“Compute Code Complexity Metrics” on page 14-14.

Project
Polyspace evaluates the following HIS metrics at the project level.

Metric Recommended Upper Limit
Number of Direct Recursions 0
Number of Recursions 0

File
Polyspace evaluates the HIS metric, comment density, at the file level. The recommended
lower limit is 20.

Function
Polyspace evaluates the following HIS metrics at the function level.

Metric Recommended Upper Limit
Cyclomatic Complexity 10
Language Scope 4
Number of Call Levels 4
Number of Calling Functions 5
Number of Called Functions 7
Number of Function Parameters 5
Number of Goto Statements 0
Number of Instructions 50

14 Configure Coding Rules Checking and Code Metrics Computation

14-18

Metric Recommended Upper Limit
Number of Paths 80
Number of Return Statements 1

 HIS Code Complexity Metrics

14-19

Coding Rule Sets and Concepts

• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers” on page 15-2
• “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 15-3
• “Software Quality Objective Subsets (C:2004)” on page 15-47
• “Software Quality Objective Subsets (AC AGC)” on page 15-53
• “Polyspace MISRA C:2012 Checkers” on page 15-57
• “Software Quality Objective Subsets (C:2012)” on page 15-59
• “Coding Rule Subsets Checked Early in Analysis” on page 15-64
• “Unsupported MISRA C:2012 Guidelines” on page 15-84
• “Polyspace MISRA C++ Checkers” on page 15-85
• “MISRA C++ Coding Rules” on page 15-86
• “Software Quality Objective Subsets (C++)” on page 15-116
• “Polyspace JSF C++ Checkers” on page 15-123
• “JSF C++ Coding Rules” on page 15-124

15

Polyspace MISRA C 2004 and MISRA AC AGC Checkers
The Polyspace MISRA C:2004 checker helps you comply with the MISRA C 2004 coding
standard.2

When MISRA C rules are violated, the MISRA C checker enables Polyspace software to
provide messages with information about the rule violations. Most messages are reported
during the compile phase of an analysis.

The MISRA C checker can check nearly all of the 142 MISRA C:2004 rules.

The MISRA AC AGC checker checks rules from the OBL (obligatory) and REC
(recommended) categories specified by MISRA AC AGC Guidelines for the Application of
MISRA-C:2004 in the Context of Automatic Code Generation.

There are subsets of MISRA coding rules that can have a direct or indirect impact on the
selectivity (reliability percentage) of your results. When you set up rule checking, you can
select these subsets directly. These subsets are defined in:

• “Software Quality Objective Subsets (C:2004)” on page 15-47
• “Software Quality Objective Subsets (AC AGC)” on page 15-53

Note The Polyspace MISRA checker is based on MISRA C:2004, which also incorporates
MISRA C Technical Corrigendum.

See Also

More About
• “Check for Coding Rule Violations” on page 14-2
• “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 15-3

2. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

15 Coding Rule Sets and Concepts

15-2

MISRA C:2004 and MISRA AC AGC Coding Rules
In this section...
“Supported MISRA C:2004 and MISRA AC AGC Rules” on page 15-3
“Troubleshooting” on page 15-4
“List of Supported Coding Rules” on page 15-4
“Unsupported MISRA C:2004 and MISRA AC AGC Rules” on page 15-44

Supported MISRA C:2004 and MISRA AC AGC Rules
The following tables list MISRA C:2004 coding rules that the Polyspace coding rules
checker supports. Details regarding how the software checks individual rules and any
limitations on the scope of checking are described in the “Polyspace Specification”
column.

Note The Polyspace coding rules checker:

• Supports MISRA-C:2004 Technical Corrigendum 1 for rules 4.1, 5.1, 5.3, 6.1, 6.3, 7.1,
9.2, 10.5, 12.6, 13.5, and 15.0.

• Checks rules specified by MISRA AC AGC Guidelines for the Application of MISRA-C:
2004 in the Context of Automatic Code Generation.

The software reports most violations during the compile phase of an analysis. However,
the software detects violations of rules 9.1 (Non-initialized variable), 12.11 (one
of the overflow checks) using -scalar-overflows-checks signed-and-unsigned),
13.7 (dead code), 14.1 (dead code), 16.2 and 21.1 during code analysis, and reports these
violations as run-time errors.

Note Some violations of rules 13.7 and 14.1 are reported during the compile phase of
analysis.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-3

Troubleshooting
If you expect a rule violation but do not see it, check out “Coding Rule Violations Not
Displayed” on page 23-95.

List of Supported Coding Rules
• “Environment” on page 15-5
• “Language Extensions” on page 15-7
• “Documentation” on page 15-8
• “Character Sets” on page 15-8
• “Identifiers” on page 15-9
• “Types” on page 15-10
• “Constants” on page 15-12
• “Declarations and Definitions” on page 15-12
• “Initialization” on page 15-15
• “Arithmetic Type Conversion” on page 15-16
• “Pointer Type Conversion” on page 15-21
• “Expressions” on page 15-22
• “Control Statement Expressions” on page 15-26
• “Control Flow” on page 15-29
• “Switch Statements” on page 15-32
• “Functions” on page 15-33
• “Pointers and Arrays” on page 15-34
• “Structures and Unions” on page 15-35
• “Preprocessing Directives” on page 15-36
• “Standard Libraries” on page 15-40
• “Runtime Failures” on page 15-44

15 Coding Rule Sets and Concepts

15-4

Environment

N. MISRA Definition Messages in report file Polyspace Specification
1.1 All code shall conform to ISO

9899:1990 “Programming
languages - C”, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC
9899/COR2:1996.

The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI C does not allow
‘#include_next'

• ANSI C does not allow
macros with variable
arguments list

• ANSI C does not allow
‘#assert’

• ANSI C does not allow
'#unassert'

• ANSI C does not allow
testing assertions

• ANSI C does not allow
'#ident'

• ANSI C does not allow
'#sccs'

• text following '#else'
violates ANSI standard.

• text following '#endif'
violates ANSI standard.

• text following '#else' or
'#endif' violates ANSI
standard.

All the supported extensions
lead to a violation of this
MISRA rule. Standard
compilation error messages
do not lead to a violation of
this MISRA rule and remain
unchanged.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-5

N. MISRA Definition Messages in report file Polyspace Specification
1.1
(cont.)

 The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI C90 forbids 'long
long int' type.

• ANSI C90 forbids 'long
double' type.

• ANSI C90 forbids long
long integer constants.

• Keyword 'inline' should
not be used.

• Array of zero size should
not be used.

• Integer constant does not
fit within unsigned long
int.

• Integer constant does not
fit within long int.

• Too many nesting levels
of #includes: N1. The
limit is N0.

• Too many macro
definitions: N1. The limit
is N0.

• Too many nesting levels
for control flow: N1. The
limit is N0.

15 Coding Rule Sets and Concepts

15-6

N. MISRA Definition Messages in report file Polyspace Specification
• Too many enumeration

constants: N1. The limit is
N0.

Language Extensions

N. MISRA Definition Messages in report file Polyspace Specification
2.1 Assembly language shall be

encapsulated and isolated.
Assembly language shall be
encapsulated and isolated.

No warnings if code is
encapsulated in the
following:

• asm functions or asm
pragma

• Macros
2.2 Source code shall only use /*

*/ style comments
C++ comments shall not be
used.

C++ comments are handled
as comments but lead to a
violation of this MISRA rule

Note: This rule cannot be
annotated in the source
code.

2.3 The character sequence /*
shall not be used within a
comment

The character sequence /*
shall not appear within a
comment.

This rule violation is also
raised when the character
sequence /* inside a C++
comment.

Note: This rule cannot be
annotated in the source
code.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-7

Documentation

Rule MISRA Definition Messages in report file Polyspace Specification
3.4 All uses of the #pragma

directive shall be documented
and explained.

All uses of the #pragma
directive shall be documented
and explained.

To check this rule, you must
list the pragmas that are
allowed in source files by
using the option Allowed
pragmas (-allowed-
pragmas). If Polyspace finds
a pragma not in the allowed
pragma list, a violation is
raised.

Character Sets

N. MISRA Definition Messages in report file Polyspace Specification
4.1 Only those escape sequences

which are defined in the ISO
C standard shall be used.

\<character> is not an ISO C
escape sequence Only those
escape sequences which are
defined in the ISO C
standard shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a
violation of the MISRA rule

15 Coding Rule Sets and Concepts

15-8

Identifiers

N. MISRA Definition Messages in report file Polyspace Specification
5.1 Identifiers (internal and

external) shall not rely on the
significance of more than 31
characters

Identifier 'XX' should not rely
on the significance of more
than 31 characters.

All identifiers (global, static
and local) are checked.

For easier review, the rule
checker shows all identifiers
that have the same first 31
characters as one rule
violation. You can see all
instances of conflicting
identifier names in the event
history of that rule violation.

5.2 Identifiers in an inner scope
shall not use the same name
as an identifier in an outer
scope, and therefore hide that
identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter
XX is hiding another
identifier.

Assumes that rule 8.1 is not
violated.

5.3 A typedef name shall be a
unique identifier

{typedef name}'%s' should
not be reused. (already used
as {typedef name} at %s:%d)

Warning when a typedef
name is reused as another
identifier name.

5.4 A tag name shall be a unique
identifier

{tag name}'%s' should not
be reused. (already used as
{tag name} at %s:%d)

Warning when a tag name is
reused as another identifier
name

5.5 No object or function
identifier with a static storage
duration should be reused.

{static identifier/parameter
name}’%s’ should not be
reused. (already used as
{static identifier/parameter
name} with static storage
duration at %s:%d)

Warning when a static name
is reused as another
identifier name

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-9

N. MISRA Definition Messages in report file Polyspace Specification
5.6 No identifier in one name

space should have the same
spelling as an identifier in
another name space, with the
exception of structure and
union member names.

{member name}'%s' should
not be reused. (already used
as {member name} at %s:
%d)

Warning when an idf in a
namespace is reused in
another namespace

5.7 No identifier name should be
reused.

{identifier}'%s' should not
be reused. (already used as
{identifier} at %s:%d)

No violation reported when:

• Different functions have
parameters with the same
name

• Different functions have
local variables with the
same name

• A function has a local
variable that has the
same name as a
parameter of another
function

Types

N. MISRA Definition Messages in report file Polyspace Specification
6.1 The plain char type shall be

used only for the storage and
use of character values

Only permissible operators
on plain chars are '=', '=='
or '!=' operators, explicit
casts to integral types and '?'
(for the 2nd and 3rd
operands)

Warning when a plain char is
used with an operator other
than =, ==, !=, explicit casts
to integral types, or as the
second or third operands of
the ? operator.

15 Coding Rule Sets and Concepts

15-10

N. MISRA Definition Messages in report file Polyspace Specification
6.2 Signed and unsigned char

type shall be used only for the
storage and use of numeric
values.

• Value of type plain char is
implicitly converted to
signed char.

• Value of type plain char is
implicitly converted to
unsigned char.

• Value of type signed char
is implicitly converted to
plain char.

• Value of type unsigned
char is implicitly
converted to plain char.

Warning if value of type plain
char is implicitly converted
to value of type signed char
or unsigned char.

6.3 typedefs that indicate size and
signedness should be used in
place of the basic types

typedefs that indicate size
and signedness should be
used in place of the basic
types.

No warning is given in
typedef definition.

6.4 Bit fields shall only be defined
to be of type unsigned int or
signed int.

Bit fields shall only be
defined to be of type
unsigned int or signed int.

6.5 Bit fields of type signed int
shall be at least 2 bits long.

Bit fields of type signed int
shall be at least 2 bits long.

No warning on anonymous
signed int bitfields of width
0 - Extended to all signed
bitfields of size <= 1 (if Rule
6.4 is violated).

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-11

Constants

N. MISRA Definition Messages in report file Polyspace Specification
7.1 Octal constants (other than

zero) and octal escape
sequences shall not be used.

• Octal constants other than
zero and octal escape
sequences shall not be
used.

• Octal constants (other
than zero) should not be
used.

• Octal escape sequences
should not be used.

Declarations and Definitions

N. MISRA Definition Messages in report file Polyspace Specification
8.1 Functions shall have

prototype declarations and
the prototype shall be visible
at both the function definition
and call.

• Function XX has no
complete prototype visible
at call.

• Function XX has no
prototype visible at
definition.

Prototype visible at call must
be complete.

8.2 Whenever an object or
function is declared or
defined, its type shall be
explicitly stated

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated.

8.3 For each function parameter
the type given in the
declaration and definition
shall be identical, and the
return types shall also be
identical.

Definition of function 'XX'
incompatible with its
declaration.

Assumes that rule 8.1 is not
violated. The rule is restricted
to compatible types. Can be
turned to Off

15 Coding Rule Sets and Concepts

15-12

N. MISRA Definition Messages in report file Polyspace Specification
8.4 If objects or functions are

declared more than once
their types shall be
compatible.

• If objects or functions are
declared more than once
their types shall be
compatible.

• Global declaration of 'XX'
function has incompatible
type with its definition.

• Global declaration of 'XX'
variable has incompatible
type with its definition.

Violations of this rule might
be generated during the link
phase.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.5 There shall be no definitions
of objects or functions in a
header file

• Object 'XX' should not be
defined in a header file.

• Function 'XX' should not
be defined in a header file.

• Fragment of function
should not be defined in a
header file.

Tentative definitions are
considered as definitions. For
objects with file scope,
tentative definitions are
declarations that:

• Do not have initializers.
• Do not have storage class
specifiers, or have the
static specifier

8.6 Functions shall always be
declared at file scope.

Function 'XX' should be
declared at file scope.

This rule maps to ISO/IEC TS
17961 ID addrescape.

8.7 Objects shall be defined at
block scope if they are only
accessed from within a single
function

Object 'XX' should be
declared at block scope.

Restricted to static objects.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-13

N. MISRA Definition Messages in report file Polyspace Specification
8.8 An external object or function

shall be declared in one file
and only one file

Function/Object 'XX' has
external declarations in
multiple files.

Restricted to explicit extern
declarations (tentative
definitions are ignored).

Polyspace considers that
variables or functions
declared extern in a non-
header file violate this rule.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.9 Definition: An identifier with
external linkage shall have
exactly one external
definition.

• Procedure/Global variable
XX multiply defined.

• Forbidden multiple
tentative definitions for
object XX

• Global variable has
multiple tentative
definitions

• Undefined global variable
XX

The checker flags multiple
definitions only if the
definitions occur in different
files.

No warnings appear on
predefined symbols.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.10 All declarations and
definitions of objects or
functions at file scope shall
have internal linkage unless
external linkage is required

Function/Variable XX should
have internal linkage.

Assumes that 8.1 is not
violated. No warning if 0
uses.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.11 The static storage class
specifier shall be used in
definitions and declarations
of objects and functions that
have internal linkage

static storage class specifier
should be used on internal
linkage symbol XX.

15 Coding Rule Sets and Concepts

15-14

N. MISRA Definition Messages in report file Polyspace Specification
8.12 When an array is declared

with external linkage, its size
shall be stated explicitly or
defined implicitly by
initialization

Size of array 'XX' should be
explicitly stated.

Initialization

N. MISRA Definition Messages in report file Polyspace Specification
9.1 All automatic variables shall

have been assigned a value
before being used.

 Checked during code
analysis.

Violations displayed as Non-
initialized variable results.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

9.2 Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

9.3 In an enumerator list, the =
construct shall not be used to
explicitly initialize members
other than the first, unless all
items are explicitly initialized.

In an enumerator list, the =
construct shall not be used to
explicitly initialize members
other than the first, unless
all items are explicitly
initialized.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-15

Arithmetic Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification
10.1 The value of an expression of

integer type shall not be
implicitly converted to a
different underlying type if:

• it is not a conversion to a
wider integer type of the
same signedness, or

• the expression is complex,
or

• the expression is not
constant and is a function
argument, or

• the expression is not
constant and is a return
expression

• Implicit conversion of the
expression of underlying
type XX to the type XX
that is not a wider integer
type of the same
signedness.

• Implicit conversion of one
of the binary operands
whose underlying types
are XX and XX

• Implicit conversion of the
binary right hand
operand of underlying
type XX to XX that is not
an integer type.

• Implicit conversion of the
binary left hand operand
of underlying type XX to
XX that is not an integer
type.

• Implicit conversion of the
binary right hand
operand of underlying
type XX to XX that is not a
wider integer type of the
same signedness or
Implicit conversion of the
binary ? left hand
operand of underlying
type XX to XX, but it is a
complex expression.

• Implicit conversion of
complex integer
expression of underlying
type XX to XX.

ANSI C base types order
(signed char, short, int, long)
defines that T2 is wider than
T1 if T2 is on the right hand
of T1 or T2 = T1. The same
interpretation is applied on
the unsigned version of base
types.

An expression of bool or
enum types has int as
underlying type.

Plain char may have signed
or unsigned underlying type
(depending on Polyspace
target configuration or
option setting).

The underlying type of a
simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield width
is not token into account and
it assumes that only signed |
unsigned int are used for
bitfield (Rule 6.4).

This rule violation is not
produced on operations
involving pointers.

No violation reported when:

• The implicit conversion is
a type widening, without

15 Coding Rule Sets and Concepts

15-16

N. MISRA Definition Messages in report file Polyspace Specification
• Implicit conversion of

non-constant integer
expression of underlying
type XX in function return
whose expected type is
XX.

• Implicit conversion of
non-constant integer
expression of underlying
type XX as argument of
function whose
corresponding parameter
type is XX.

change of signedness of
integer

• The expression is an
argument expression or a
return expression

No violation reported when
the following are true:

• Implicit conversion
applies to a constant
expression and is a type
widening, with a possible
change of signedness of
integer.

• The conversion does not
change the
representation of the
constant value or the
result of the operation.

• The expression is an
argument expression or a
return expression or an
operand expression of a
non-bitwise operator.

Conversions of constants are
not reported for these cases
to avoid flagging too many
violations. If the constant can
be represented in both the
original and converted type,
the conversion is less of an
issue.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-17

N. MISRA Definition Messages in report file Polyspace Specification
10.2 The value of an expression of

floating type shall not be
implicitly converted to a
different type if

• it is not a conversion to a
wider floating type, or

• the expression is complex,
or

• the expression is a
function argument, or

• the expression is a return
expression

• Implicit conversion of the
expression from XX to XX
that is not a wider
floating type.

• Implicit conversion of the
binary ? right hand
operand from XX to XX,
but it is a complex
expression.

• Implicit conversion of the
binary ? right hand
operand from XX to XX
that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from
XX to XX, but it is a
complex expression.

• Implicit conversion of
complex floating
expression from XX to XX.

• Implicit conversion of
floating expression of XX
type in function return
whose expected type is
XX.

• Implicit conversion of
floating expression of XX
type as argument of
function whose
corresponding parameter
type is XX.

ANSI C base types order
(float, double) defines that
T2 is wider than T1 if T2 is
on the right hand of T1 or T2
= T1.

No violation reported when:

• The implicit conversion is
a type widening

• The expression is an
argument expression or a
return expression.

15 Coding Rule Sets and Concepts

15-18

N. MISRA Definition Messages in report file Polyspace Specification
10.3 The value of a complex

expression of integer type
may only be cast to a type
that is narrower and of the
same signedness as the
underlying type of the
expression

Complex expression of
underlying type XX may only
be cast to narrower integer
type of same signedness,
however the destination type
is XX.

• The rule checker raises a
defect only if the result of
a composite expression is
cast to a different or
wider essential type.

For instance, in this
example, a violation is
shown in the first
assignment to i but not
the second. In the first
assignment, a composite
expression i+1 is directly
cast from a signed to an
unsigned type. In the
second assignment, the
composite expression is
first cast to the same type
and then the result is cast
to a different type.

typedef int int32_T;
typedef unsigned char uint8_T;
...
...
int32_T i;
i = (uint8_T)(i+1);
/* Noncompliant */
i = (uint8_T)((int32_T)(i+1));
 /* Compliant */

• ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2 is
on the right hand of T1 or
T1 = T2. The same
methodology is applied on
the unsigned version of
base types.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-19

N. MISRA Definition Messages in report file Polyspace Specification
• An expression of bool or

enum types has int as
underlying type.

• Plain char may have
signed or unsigned
underlying type
(depending on target
configuration or option
setting).

• The underlying type of a
simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield
width is not token into
account and it assumes
that only signed,
unsigned int are used for
bitfield (Rule 6.4).

10.4 The value of a complex
expression of float type may
only be cast to narrower
floating type

Complex expression of XX
type may only be cast to
narrower floating type,
however the destination type
is XX.

ANSI C base types order
(float, double) defines that
T1 is narrower than T2 if T2
is on the right hand of T1 or
T2 = T1.

10.5 If the bitwise operator ~ and
<< are applied to an operand
of underlying type unsigned
char or unsigned short, the
result shall be immediately
cast to the underlying type of
the operand

Bitwise [<<|~] is applied to
the operand of underlying
type [unsigned char|
unsigned short], the result
shall be immediately cast to
the underlying type.

15 Coding Rule Sets and Concepts

15-20

N. MISRA Definition Messages in report file Polyspace Specification
10.6 The “U” suffix shall be applied

to all constants of unsigned
types

No explicit 'U suffix on
constants of an unsigned
type.

 Warning when the type
determined from the value
and the base (octal, decimal
or hexadecimal) is unsigned
and there is no suffix u or U.

For example, when the size
of the int and long int
data types is 32 bits, the
coding rule checker will
report a violation of rule 10.6
for the following line:

int a = 2147483648;

There is a difference
between decimal and
hexadecimal constants when
int and long int are not
the same size.

Pointer Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification
11.1 Conversion shall not be

performed between a pointer
to a function and any type
other than an integral type

Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type.

Casts and implicit
conversions involving a
function pointer.

Casts or implicit conversions
from NULL or (void*)0 do
not give any warning.

11.2 Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void

Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void.

There is also a warning on
qualifier loss

This rule maps to ISO/IEC
TS 17961 ID alignconv.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-21

N. MISRA Definition Messages in report file Polyspace Specification
11.3 A cast should not be

performed between a pointer
type and an integral type

A cast should not be
performed between a pointer
type and an integral type.

Exception on zero constant.
Extended to all conversions

This rule maps to ISO/IEC
TS 17961 ID alignconv.

11.4 A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

11.5 A cast shall not be performed
that removes any const or
volatile qualification from the
type addressed by a pointer

A cast shall not be performed
that removes any const or
volatile qualification from the
type addressed by a pointer

Extended to all conversions

Expressions

N. MISRA Definition Messages in report file Polyspace Specification
12.1 Limited dependence should

be placed on C's operator
precedence rules in
expressions

Limited dependence should
be placed on C's operator
precedence rules in
expressions

12.2 The value of an expression
shall be the same under any
order of evaluation that the
standard permits.

• The value of 'sym'
depends on the order of
evaluation.

• The value of volatile
'sym' depends on the
order of evaluation
because of multiple
accesses.

Rule 12.2 check assumes that
no assignment in expressions
that yield a Boolean values
(rule 13.1).

The expression is a simple
expression of symbols. i = i
++; is a violation, but tab[2]
= tab[2]++; is not a
violation.

12.3 The sizeof operator should
not be used on expressions
that contain side effects.

The sizeof operator should
not be used on expressions
that contain side effects.

No warning on volatile
accesses

15 Coding Rule Sets and Concepts

15-22

N. MISRA Definition Messages in report file Polyspace Specification
12.4 The right hand operand of a

logical && or || operator shall
not contain side effects.

The right hand operand of a
logical && or || operator shall
not contain side effects.

No warning on volatile
accesses

12.5 The operands of a logical &&
or || shall be primary-
expressions.

• operand of logical && is
not a primary expression

• operand of logical || is not
a primary expression

• The operands of a logical
&& or || shall be primary-
expressions.

During preprocessing,
violations of this rule are
detected on the expressions
in #if directives.

Allowed exception on
associatively (a && b && c),
(a || b || c).

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-23

N. MISRA Definition Messages in report file Polyspace Specification
12.6 Operands of logical operators

(&&, || and !) should be
effectively Boolean.
Expression that are
effectively Boolean should not
be used as operands to
operators other than (&&, ||
or !).

• Operand of '!' logical
operator should be
effectively Boolean.

• Left operand of '%s'
logical operator should be
effectively Boolean.

• Right operand of '%s'
logical operator should be
effectively Boolean.

• %s operand of '%s' is
effectively Boolean.
Boolean should not be
used as operands to
operators other than '&&',
'||', '!', '=', '==', '!=' and
'?:'.

The operand of a logical
operator should be a Boolean
data type. Although the C
standard does not explicitly
define the Boolean data type,
the standard implicitly
assumes the use of the
Boolean data type.

Some operators may return
Boolean-like expressions, for
example, (var == 0).

Consider the following code:

unsigned char flag;
if (!flag)

The rule checker reports a
violation of rule 12.6:

Operand of '!' logical
operator should be
effectively Boolean.

The operand flag is not a
Boolean but an unsigned
char.

To be compliant with rule
12.6, the code must be
rewritten either as

if (!(flag != 0))

or

if (flag == 0)

The use of the option -
boolean-types may
increase or decrease the

15 Coding Rule Sets and Concepts

15-24

N. MISRA Definition Messages in report file Polyspace Specification
number of warnings
generated.

12.7 Bitwise operators shall not be
applied to operands whose
underlying type is signed

• [~/Left Shift/Right shift/&]
operator applied on an
expression whose
underlying type is signed.

• Bitwise ~ on operand of
signed underlying type XX.

• Bitwise [<<|>>] on left
hand operand of signed
underlying type XX.

• Bitwise [& | ^] on two
operands of s

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to fit
into a 64 bits signed
number

12.8 The right hand operand of a
shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

• shift amount is negative
• shift amount is bigger

than 64
• Bitwise [<< >>] count out

of range [0 ..X] (width of
the underlying type XX of
the left hand operand - 1)..

The numbers that are
manipulated in preprocessing
directives are 64 bits wide so
that valid shift range is
between 0 and 63

Check is also extended onto
bitfields with the field width
or the width of the base type
when it is within a complex
expression

12.9 The unary minus operator
shall not be applied to an
expression whose underlying
type is unsigned.

• Unary - on operand of
unsigned underlying type
XX.

• Minus operator applied to
an expression whose
underlying type is
unsigned

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to fit
into a 64 bits signed
number

12.10 The comma operator shall not
be used.

The comma operator shall not
be used.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-25

N. MISRA Definition Messages in report file Polyspace Specification
12.11 Evaluation of constant

unsigned expression should
not lead to wraparound.

Evaluation of constant
unsigned integer expressions
should not lead to wrap-
around.

12.12 The underlying bit
representations of floating-
point values shall not be used.

The underlying bit
representations of floating-
point values shall not be used.

Warning when:

• A float pointer is cast as a
pointer to another data
type. Casting a float
pointer as a pointer to
void does not generate a
warning.

• A float is packed with
another data type. For
example:

union {
 float f;
 int i;
} …

12.13 The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

Warning when ++ or --
operators are not used alone.

Control Statement Expressions

N. MISRA Definition Messages in report file Polyspace Specification
13.1 Assignment operators shall

not be used in expressions
that yield Boolean values.

Assignment operators shall
not be used in expressions
that yield Boolean values.

15 Coding Rule Sets and Concepts

15-26

N. MISRA Definition Messages in report file Polyspace Specification
13.2 Tests of a value against zero

should be made explicit,
unless the operand is
effectively Boolean

Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

No warning is given on
integer constants. Example: if
(2)

The use of the option -
boolean-types may
increase or decrease the
number of warnings
generated.

13.3 Floating-point expressions
shall not be tested for
equality or inequality.

Floating-point expressions
shall not be tested for
equality or inequality.

Warning on directs tests only.

13.4 The controlling expression of
a for statement shall not
contain any objects of floating
type

The controlling expression of
a for statement shall not
contain any objects of floating
type

If for index is a variable
symbol, checked that it is not
a float.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-27

N. MISRA Definition Messages in report file Polyspace Specification
13.5 The three expressions of a for

statement shall be concerned
only with loop control

• 1st expression should be
an assignment.

• Bad type for loop counter
(XX).

• 2nd expression should be
a comparison.

• 2nd expression should be
a comparison with loop
counter (XX).

• 3rd expression should be
an assignment of loop
counter (XX).

• 3rd expression: assigned
variable should be the
loop counter (XX).

• The following kinds of for
loops are allowed:

(a) all three expressions
shall be present;

(b) the 2nd and 3rd
expressions shall be
present with prior
initialization of the loop
counter;

(c) all three expressions
shall be empty for a
deliberate infinite loop.

Checked if the for loop index
(V) is a variable symbol;
checked if V is the last
assigned variable in the first
expression (if present).
Checked if, in first
expression, if present, is
assignment of V; checked if in
2nd expression, if present,
must be a comparison of V;
Checked if in 3rd expression,
if present, must be an
assignment of V.

13.6 Numeric variables being used
within a for loop for iteration
counting should not be
modified in the body of the
loop.

Numeric variables being used
within a for loop for iteration
counting should not be
modified in the body of the
loop.

Detect only direct
assignments if the for loop
index is known and if it is a
variable symbol.

15 Coding Rule Sets and Concepts

15-28

N. MISRA Definition Messages in report file Polyspace Specification
13.7 Boolean operations whose

results are invariant shall not
be permitted

• Boolean operations whose
results are invariant shall
not be permitted.
Expression is always true.

• Boolean operations whose
results are invariant shall
not be permitted.
Expression is always false.

• Boolean operations whose
results are invariant shall
not be permitted.

During compilation, check
comparisons with at least one
constant operand.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

• Bug Finder flags some
violations of this rule
through the Dead code
and Useless if
checkers.

• Code Prover does not use
gray code to flag violations
of this rule.

Control Flow

N. MISRA Definition Messages in report file Polyspace Specification
14.1 There shall be no unreachable

code.
There shall be no
unreachable code.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

14.2 All non-null statements shall
either have at least one side
effect however executed, or
cause control flow to change

• All non-null statements
shall either:

• have at least one side
effect however executed,
or

• cause control flow to
change

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-29

N. MISRA Definition Messages in report file Polyspace Specification
14.3 All non-null statements shall

either

• have at least one side
effect however executed,
or

• cause control flow to
change

A null statement shall
appear on a line by itself

We assume that a ';' is a null
statement when it is the first
character on a line
(excluding comments). The
rule is violated when:

• there are some comments
before it on the same
line.

• there is a comment
immediately after it

• there is something else
than a comment after the
';' on the same line.

14.4 The goto statement shall not
be used.

The goto statement shall not
be used.

14.5 The continue statement shall
not be used.

The continue statement shall
not be used.

14.6 For any iteration statement
there shall be at most one
break statement used for loop
termination

For any iteration statement
there shall be at most one
break statement used for
loop termination

14.7 A function shall have a single
point of exit at the end of the
function

A function shall have a
single point of exit at the end
of the function

14.8 The statement forming the
body of a switch, while, do
while or for statement shall
be a compound statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for
statement shall be a
compound statement.

• The body of a switch
statement shall be a
compound statement

15 Coding Rule Sets and Concepts

15-30

N. MISRA Definition Messages in report file Polyspace Specification
14.9 An if (expression) construct

shall be followed by a
compound statement. The
else keyword shall be
followed by either a
compound statement, or
another if statement

• An if (expression)
construct shall be
followed by a compound
statement.

• The else keyword shall be
followed by either a
compound statement, or
another if statement

14.10 All if else if constructs should
contain a final else clause.

All if else if constructs
should contain a final else
clause.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-31

Switch Statements

N. MISRA Definition Messages in report file Polyspace Specification
15.0 Unreachable code is detected

between switch statement
and first case.

Note This is not a MISRA
C2004 rule.

switch statements syntax
normative restrictions.

Warning on declarations or
any statements before the
first switch case.

Warning on label or jump
statements in the body of
switch cases.

On the following example, the
rule is displayed in the log file
at line 3:

1 ...
2 switch(index) {
3 var = var + 1;
// RULE 15.0
// violated
4case 1: ...

The code between switch
statement and first case is
checked as dead code by
Polyspace. It follows ANSI
standard behavior.

15.1 A switch label shall only be
used when the most closely-
enclosing compound
statement is the body of a
switch statement

A switch label shall only be
used when the most closely-
enclosing compound
statement is the body of a
switch statement

15.2 An unconditional break
statement shall terminate
every non-empty switch
clause

An unconditional break
statement shall terminate
every non-empty switch
clause

Warning for each non-
compliant case clause.

15.3 The final clause of a switch
statement shall be the default
clause

The final clause of a switch
statement shall be the default
clause

15 Coding Rule Sets and Concepts

15-32

N. MISRA Definition Messages in report file Polyspace Specification
15.4 A switch expression should

not represent a value that is
effectively Boolean

A switch expression should
not represent a value that is
effectively Boolean

The use of the option -
boolean-types may
increase the number of
warnings generated.

15.5 Every switch statement shall
have at least one case clause

Every switch statement shall
have at least one case clause

Functions

N. MISRA Definition Messages in report file Polyspace Specification
16.1 Functions shall not be defined

with variable numbers of
arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly or
indirectly.

Function %s should not call
itself.

Done by Polyspace software
(Use the call graph in
Polyspace Code Prover).
Polyspace also partially
checks this rule during the
compilation phase.

16.3 Identifiers shall be given for
all of the parameters in a
function prototype
declaration.

Identifiers shall be given for
all of the parameters in a
function prototype
declaration.

Assumes Rule 8.6 is not
violated.

16.4 The identifiers used in the
declaration and definition of a
function shall be identical.

The identifiers used in the
declaration and definition of a
function shall be identical.

Assumes that rules 8.8, 8.1
and 16.3 are not violated.

All occurrences are detected.
16.5 Functions with no parameters

shall be declared with
parameter type void.

Functions with no parameters
shall be declared with
parameter type void.

Definitions are also checked.

16.6 The number of arguments
passed to a function shall
match the number of
parameters.

• Too many arguments to
XX.

• Insufficient number of
arguments to XX.

Assumes that rule 8.1 is not
violated.

This rule maps to ISO/IEC TS
17961 ID argcomp.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-33

N. MISRA Definition Messages in report file Polyspace Specification
16.7 A pointer parameter in a

function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Warning if a non-const
pointer parameter is either
not used to modify the
addressed object or is passed
to a call of a function that is
declared with a const
pointer parameter.

16.8 All exit paths from a function
with non-void return type
shall have an explicit return
statement with an expression.

Missing return value for non-
void function XX.

Warning when a non-void
function is not terminated
with an unconditional return
with an expression.

16.9 A function identifier shall only
be used with either a
preceding &, or with a
parenthesized parameter list,
which may be empty.

Function identifier XX should
be preceded by a & or
followed by a parameter list.

16.10 If a function returns error
information, then that error
information shall be tested.

If a function returns error
information, then that error
information shall be tested.

Warning if a non-void
function is called and the
returned value is ignored.

No warning if the result of
the call is cast to void.

No check performed for calls
of memcpy, memmove,
memset, strcpy, strncpy,
strcat, or strncat.

Pointers and Arrays

N. MISRA Definition Messages in report file Polyspace Specification
17.1 Pointer arithmetic shall only

be applied to pointers that
address an array or array
element.

Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

15 Coding Rule Sets and Concepts

15-34

N. MISRA Definition Messages in report file Polyspace Specification
17.2 Pointer subtraction shall only

be applied to pointers that
address elements of the same
array

Pointer subtraction shall only
be applied to pointers that
address elements of the same
array.

17.3 >, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

>, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

17.4 Array indexing shall be the
only allowed form of pointer
arithmetic.

Array indexing shall be the
only allowed form of pointer
arithmetic.

Warning on:

• Operations on pointers. (p
+I, I+p, and p-I, where p
is a pointer and I an
integer).

• Array indexing on
nonarray pointers.

17.5 A type should not contain
more than 2 levels of pointer
indirection

A type should not contain
more than 2 levels of pointer
indirection

17.6 The address of an object with
automatic storage shall not
be assigned to an object that
may persist after the object
has ceased to exist.

Pointer to a parameter is an
illegal return value. Pointer to
a local is an illegal return
value.

Warning when assigning
address to a global variable,
returning a local variable
address, or returning a
parameter address.

This rule maps to ISO/IEC TS
17961 ID accfree.

Structures and Unions

N. MISRA Definition Messages in report file Polyspace Specification
18.1 All structure or union types

shall be complete at the end
of a translation unit.

All structure or union types
shall be complete at the end
of a translation unit.

Warning for all incomplete
declarations of structs or
unions.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-35

N. MISRA Definition Messages in report file Polyspace Specification
18.2 An object shall not be

assigned to an overlapping
object.

• An object shall not be
assigned to an overlapping
object.

• Destination and source of
XX overlap, the behavior is
undefined.

18.4 Unions shall not be used Unions shall not be used.

Preprocessing Directives

N. MISRA Definition Messages in report file Polyspace Specification
19.1 #include statements in a file

shall only be preceded by
other preprocessors
directives or comments

#include statements in a file
shall only be preceded by
other preprocessors
directives or comments

A message is displayed when
a #include directive is
preceded by other things than
preprocessor directives,
comments, spaces or “new
lines”.

19.2 Nonstandard characters
should not occur in header
file names in #include
directives

• A message is displayed on
characters ', " or /*
between < and > in
#include <filename>

• A message is displayed on
characters ', or /* between
" and " in #include
"filename"

19.3 The #include directive shall
be followed by either a
<filename> or "filename"
sequence.

• '#include' expects
"FILENAME" or
<FILENAME>

• '#include_next' expects
"FILENAME" or
<FILENAME>

15 Coding Rule Sets and Concepts

15-36

N. MISRA Definition Messages in report file Polyspace Specification
19.4 C macros shall only expand to

a braced initializer, a
constant, a parenthesized
expression, a type qualifier, a
storage class specifier, or a
do-while-zero construct.

Macro '<name>' does not
expand to a compliant
construct.

We assume that a macro
definition does not violate this
rule when it expands to:

• a braced construct (not
necessarily an initializer)

• a parenthesized construct
(not necessarily an
expression)

• a number
• a character constant
• a string constant (can be

the result of the
concatenation of string
field arguments and literal
strings)

• the following keywords:
typedef, extern, static,
auto, register, const,
volatile, __asm__ and
__inline__

• a do-while-zero construct
19.5 Macros shall not be #defined

and #undefd within a block.
• Macros shall not be

#define’d within a block.
• Macros shall not be

#undef’d within a block.

19.6 #undef shall not be used. #undef shall not be used.
19.7 A function should be used in

preference to a function like-
macro.

A function should be used in
preference to a function like-
macro

Message on all function-like
macro definitions.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-37

N. MISRA Definition Messages in report file Polyspace Specification
19.8 A function-like macro shall

not be invoked without all of
its arguments

• arguments given to macro
'<name>'

• macro '<name>' used
without args.

• macro '<name>' used with
just one arg.

• macro '<name>' used with
too many (<number>)
args.

19.9 Arguments to a function-like
macro shall not contain
tokens that look like
preprocessing directives.

Macro argument shall not
look like a preprocessing
directive.

This rule is detected as
violated when the '#'
character appears in a macro
argument (outside a string or
character constant)

19.10 In the definition of a function-
like macro each instance of a
parameter shall be enclosed
in parentheses unless it is
used as the operand of # or
##.

Parameter instance shall be
enclosed in parentheses.

If x is a macro parameter, the
following instances of x as an
operand of the # and ##
operators do not generate a
warning: #x, ##x, and x##.
Otherwise, parentheses are
required around x.

The software does not
generate a warning if a
parameter is reused as an
argument of a function or
function-like macro. For
example, consider a
parameter x. The software
does not generate a warning
if x appears as (x) or (x,
or ,x) or ,x,.

15 Coding Rule Sets and Concepts

15-38

N. MISRA Definition Messages in report file Polyspace Specification
19.11 All macro identifiers in

preprocessor directives shall
be defined before use, except
in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

'<name>' is not defined.

19.12 There shall be at most one
occurrence of the # or ##
preprocessor operators in a
single macro definition.

More than one occurrence of
the # or ## preprocessor
operators.

19.13 The # and ## preprocessor
operators should not be used

Message on definitions of
macros using # or ##
operators

19.14 The defined preprocessor
operator shall only be used in
one of the two standard
forms.

'defined' without an identifier.

19.15 Precautions shall be taken in
order to prevent the contents
of a header file being
included twice.

Precautions shall be taken in
order to prevent multiple
inclusions.

When a header file is
formatted as,

#ifndef <control macro>
#define <control macro>
<contents> #endif

or,

#ifndef <control macro>
#error ...
#else
#define <control macro>
<contents> #endif

it is assumed that precautions
have been taken to prevent
multiple inclusions.
Otherwise, a violation of this
MISRA rule is detected.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-39

N. MISRA Definition Messages in report file Polyspace Specification
19.16 Preprocessing directives shall

be syntactically meaningful
even when excluded by the
preprocessor.

directive is not syntactically
meaningful.

19.17 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the
#if or #ifdef directive to
which they are related.

• '#elif' not within a
conditional.

• '#else' not within a
conditional.

• '#elif' not within a
conditional.

• '#endif' not within a
conditional.

• unbalanced '#endif'.
• unterminated '#if'

conditional.
• unterminated '#ifdef'

conditional.
• unterminated '#ifndef'

conditional.

Standard Libraries

N. MISRA Definition Messages in report file Polyspace Specification
20.1 Reserved identifiers, macros

and functions in the standard
library, shall not be defined,
redefined or undefined.

• The macro '<name> shall
not be redefined.

• The macro '<name> shall
not be undefined.

15 Coding Rule Sets and Concepts

15-40

N. MISRA Definition Messages in report file Polyspace Specification
20.2 The names of standard library

macros, objects and functions
shall not be reused.

Identifier XX should not be
used.

In case a macro whose name
corresponds to a standard
library macro, object or
function is defined, the rule
that is detected as violated is
20.1.

Tentative definitions are
considered as definitions. For
objects with file scope,
tentative definitions are
declarations that:

• Do not have initializers.
• Do not have storage class
specifiers, or have the
static specifier

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-41

N. MISRA Definition Messages in report file Polyspace Specification
20.3 The validity of values passed

to library functions shall be
checked.

Validity of values passed to
library functions shall be
checked

Warning for argument in
library function call if the
following are all true:

• Argument is a local
variable

• Local variable is not tested
between last assignment
and call to the library
function

• Library function is a
common mathematical
function

• Corresponding parameter
of the library function has
a restricted input domain.

The library function can be
one of the following : sqrt,
tan, pow, log, log10, fmod,
acos, asin, acosh, atanh,
or atan2.

20.4 Dynamic heap memory
allocation shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the dynamic heap
memory allocation functions
are actually macros and the
macro is expanded in the
code, this rule is detected as
violated. Assumes rule 20.2 is
not violated.

20.5 The error indicator errno
shall not be used

The error indicator errno
shall not be used

Assumes that rule 20.2 is not
violated

20.6 The macro offsetof, in library
<stddef.h>, shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

Assumes that rule 20.2 is not
violated

15 Coding Rule Sets and Concepts

15-42

N. MISRA Definition Messages in report file Polyspace Specification
20.7 The setjmp macro and the

longjmp function shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the longjmp function
is actually a macro and the
macro is expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.8 The signal handling facilities
of <signal.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case some of the signal
functions are actually macros
and are expanded in the code,
this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.9 The input/output library
<stdio.h> shall not be used in
production code.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the input/output
library functions are actually
macros and are expanded in
the code, this rule is detected
as violated. Assumes that rule
20.2 is not violated

20.10 The library functions atof,
atoi and atoll from library
<stdlib.h> shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the atof, atoi and atoll
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.11 The library functions abort,
exit, getenv and system from
library <stdlib.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the abort, exit, getenv
and system functions are
actually macros and are
expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.12 The time handling functions
of library <time.h> shall not
be used.

• The macro '<name> shall
not be used.

• Identifier XX should not be
used.

In case the time handling
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-43

Runtime Failures

N. MISRA Definition Messages in report file Polyspace Specification
21.1 Minimization of runtime

failures shall be ensured by
the use of at least one of:

• static verification tools/
techniques;

• dynamic verification tools/
techniques;

• explicit coding of checks
to handle runtime faults.

 Done by Polyspace. Bug
Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

Unsupported MISRA C:2004 and MISRA AC AGC Rules
The Polyspace coding rules checker does not check the following MISRA C:2004 coding
rules. These rules cannot be enforced because they are outside the scope of Polyspace
software. They may concern documentation, dynamic aspects, or functional aspects of
MISRA rules. The “Polyspace Specification” column describes the reason each rule is
not checked.

Environment

Rule Description Polyspace Specification
1.2 (Required) No reliance shall be placed on

undefined or unspecified behavior
Not statically checkable unless the data
dynamic properties is taken into
account

1.3 (Required) Multiple compilers and/or languages
shall only be used if there is a common
defined interface standard for object
code to which the language/compilers/
assemblers conform.

It is a process rule method.

15 Coding Rule Sets and Concepts

15-44

Rule Description Polyspace Specification
1.4 (Required) The compiler/linker/Identifiers (internal

and external) shall not rely on
significance of more than 31 characters.
Furthermore the compiler/linker shall
be checked to ensure that 31 character
significance and case sensitivity are
supported for external identifiers.

To observe this rule, check your
compiler documentation.

1.5 (Advisory) Floating point implementations should
comply with a defined floating point
standard.

To observe this rule, check your
compiler documentation.

Language Extensions

Rule Description Polyspace Specification
2.4 (Advisory) Sections of code should not be

“commented out”
One way a tool can check this rule is to
determine if the code compiles when
commented out sections are
uncommented. However, such checking
can be expensive and inaccurate.

Documentation

Rule Description Polyspace Specification
3.1 (Required) All usage of implementation-defined

behavior shall be documented.
To observe this rule, check your
compiler documentation. Error
detection is based on undefined
behavior, according to choices made for
implementation- defined constructions.

3.2 (Required) The character set and the
corresponding encoding shall be
documented.

To observe this rule, check your
compiler documentation.

3.3 (Advisory) The implementation of integer division
in the chosen compiler should be
determined, documented and taken into
account.

To observe this rule, check your
compiler documentation.

 MISRA C:2004 and MISRA AC AGC Coding Rules

15-45

Rule Description Polyspace Specification
3.5 (Required) The implementation-defined behavior

and packing of bitfields shall be
documented if being relied upon.

To observe this rule, check your
compiler documentation.

3.6 (Required) All libraries used in production code
shall be written to comply with the
provisions of this document, and shall
have been subject to appropriate
validation.

To observe this rule, check your
compiler documentation.

Structures and Unions

Rule Description Polyspace Specification
18.3 (Required) An area of memory shall not be reused

for unrelated purposes.
"purpose" is functional design issue.

15 Coding Rule Sets and Concepts

15-46

Software Quality Objective Subsets (C:2004)
In this section...
“Rules in SQO-Subset1” on page 15-47
“Rules in SQO-Subset2” on page 15-48

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an integral
type.

12.12 The underlying bit representations of floating-point values shall not be
used.

13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any

objects of floating type.
13.5 The three expressions of a for statement shall be concerned only with

loop control.
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.

 Software Quality Objective Subsets (C:2004)

15-47

Rule number Description
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
6.3 typedefs that indicate size and signedness should be used in place of

the basic types
8.7 Objects shall be defined at block scope if they are only accessed from

within a single function

15 Coding Rule Sets and Concepts

15-48

Rule number Description
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
9.2 Braces shall be used to indicate and match the structure in the

nonzero initialization of arrays and structures
9.3 In an enumerator list, the = construct shall not be used to explicitly

initialize members other than the first, unless all items are explicitly
initialized

10.3 The value of a complex expression of integer type may only be cast to
a type that is narrower and of the same signedness as the underlying
type of the expression

10.5 Bitwise operations shall not be performed on signed integer types
11.1 Conversion shall not be performed between a pointer to a function

and any type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.1 Limited dependence should be placed on C's operator precedence

rules in expressions
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits
12.5 The operands of a logical && or || shall be primary-expressions
12.6 Operands of logical operators (&&, || and !) should be effectively

Boolean. Expression that are effectively Boolean should not be used
as operands to operators other than (&&, || or !)

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned

12.10 The comma operator shall not be used

 Software Quality Objective Subsets (C:2004)

15-49

Rule number Description
12.12 The underlying bit representations of floating-point values shall not

be used.
13.1 Assignment operators shall not be used in expressions that yield

Boolean values
13.2 Tests of a value against zero should be made explicit, unless the

operand is effectively Boolean
13.3 Floating-point expressions shall not be tested for equality or

inequality.
13.4 The controlling expression of a for statement shall not contain any

objects of floating type.
13.5 The three expressions of a for statement shall be concerned only with

loop control.
13.6 Numeric variables being used within a “for” loop for iteration

counting should not be modified in the body of the loop
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement
14.10 All if else if constructs should contain a final else clause
15.3 The final clause of a switch statement shall be the default clause
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

16.8 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

16.9 A function identifier shall only be used with either a preceding &, or
with a parenthesized parameter list, which may be empty

15 Coding Rule Sets and Concepts

15-50

Rule number Description
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
19.4 C macros shall only expand to a braced initializer, a constant, a

parenthesized expression, a type qualifier, a storage class specifier, or
a do-while-zero construct

19.9 Arguments to a function-like macro shall not contain tokens that look
like preprocessing directives

19.10 In the definition of a function-like macro each instance of a parameter
shall be enclosed in parentheses unless it is used as the operand of #
or ##

19.11 All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives and
the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

 Software Quality Objective Subsets (C:2004)

15-51

See Also

More About
• “Check for Coding Rule Violations” on page 7-16

15 Coding Rule Sets and Concepts

15-52

Software Quality Objective Subsets (AC AGC)
In this section...
“Rules in SQO-Subset1” on page 15-53
“Rules in SQO-Subset2” on page 15-54

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

12.12 The underlying bit representations of floating-point values shall not
be used.

14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.

 Software Quality Objective Subsets (AC AGC)

15-53

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
6.3 typedefs that indicate size and signedness should be used in place of

the basic types
8.7 Objects shall be defined at block scope if they are only accessed from

within a single function
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be

stated explicitly or defined implicitly by initialization.
9.3 In an enumerator list, the = construct shall not be used to explicitly

initialize members other than the first, unless all items are explicitly
initialized

11.1 Conversion shall not be performed between a pointer to a function
and any type other than an integral type

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits

15 Coding Rule Sets and Concepts

15-54

Rule number Description
12.9 The unary minus operator shall not be applied to an expression whose

underlying type is unsigned
12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not

be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.8 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or

with a parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
19.9 Arguments to a function-like macro shall not contain tokens that look

like preprocessing directives
19.10 In the definition of a function-like macro each instance of a parameter

shall be enclosed in parentheses unless it is used as the operand of #
or ##

19.11 All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives and
the defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.

 Software Quality Objective Subsets (AC AGC)

15-55

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

See Also

More About
• “Check for Coding Rule Violations” on page 7-16

15 Coding Rule Sets and Concepts

15-56

Polyspace MISRA C:2012 Checkers
The Polyspace MISRA C:2012 checker helps you to comply with the MISRA C 2012 coding
standard.3

When MISRA C:2012 guidelines are violated, the Polyspace MISRA C:2012 checker
provides messages with information about the violated rule or directive. Most violations
are found during the compile phase of an analysis.

Polyspace Bug Finder can check all the MISRA C:2012 rules and most MISRA C:2012
directives. Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Directive 4.7, 4.13 and 4.14
• MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

Each guideline is categorized into one of these three categories: mandatory, required, or
advisory. When you set up rule checking, you can select subsets of these categories to
check. For automatically generated code, some rules change categories, including to one
additional category: readability. The Use generated code requirements (-
misra3-agc-mode) option activates the categorization for automatically generated
code.

There are additional subsets of MISRA C:2012 guidelines defined by Polyspace called
Software Quality Objectives (SQO) that can have a direct or indirect impact on the
precision of your results. When you set up checking, you can select these subsets. These
subsets are defined in “Software Quality Objective Subsets (C:2012)” on page 15-59.

See Also
Check MISRA C:2012 (-misra3) | Use generated code requirements (-
misra3-agc-mode)

3. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

 Polyspace MISRA C:2012 Checkers

15-57

See Also

More About
• “Check for Coding Rule Violations” on page 7-16
• “MISRA C:2012 Directives and Rules”

15 Coding Rule Sets and Concepts

15-58

Software Quality Objective Subsets (C:2012)
In this section...
“Guidelines in SQO-Subset1” on page 15-59
“Guidelines in SQO-Subset2” on page 15-60

These subsets of MISRA C:2012 guidelines can have a direct or indirect impact on the
precision of your Polyspace results. When you set up coding rules checking, you can
select these subsets.

Guidelines in SQO-Subset1
The following set of MISRA C:2012 coding guidelines typically reduces the number of
unproven results.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of

objects and functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be

explicitly specified
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type
11.2 Conversions shall not be performed between a pointer to an incomplete

type and any other type
11.4 A conversion should not be performed between a pointer to object and

an integer type
11.5 A conversion should not be performed from pointer to void into pointer

to object
11.6 A cast shall not be performed between pointer to void and an arithmetic

type
11.7 A cast shall not be performed between pointer to object and a non-

integer arithmetic type
14.1 A loop counter shall not have essentially floating type

 Software Quality Objective Subsets (C:2012)

15-59

Rule Description
14.2 A for loop shall be well-formed
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same

function
15.3 Any label referenced by a goto statement shall be declared in the same

block, or in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

Guidelines in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule Description
8.8 The static storage class specifier shall be used in all declarations of

objects and functions that have internal linkage
8.11 When an array with external linkage is declared, its size should be

explicitly specified

15 Coding Rule Sets and Concepts

15-60

Rule Description
8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type
11.2 Conversions shall not be performed between a pointer to an incomplete

type and any other type
11.4 A conversion should not be performed between a pointer to object and

an integer type
11.5 A conversion should not be performed from pointer to void into pointer

to object
11.6 A cast shall not be performed between pointer to void and an arithmetic

type
11.7 A cast shall not be performed between pointer to object and a non-

integer arithmetic type
11.8 A cast shall not remove any const or volatile qualification from the type

pointed to by a pointer
12.1 The precedence of operators within expressions should be made explicit
12.3 The comma operator should not be used
13.2 The value of an expression and its persistent side effects shall be the

same under all permitted evaluation orders
13.4 The result of an assignment operator should not be used
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
14.4 The controlling expression of an if statement and the controlling

expression of an iteration-statement shall have essentially Boolean type
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same

function
15.3 Any label referenced by a goto statement shall be declared in the same

block, or in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end

 Software Quality Objective Subsets (C:2012)

15-61

Rule Description
15.6 The body of an iteration- statement or a selection- statement shall be a

compound- statement
15.7 All if … else if constructs shall be terminated with an else statement
16.4 Every switch statement shall have a default label
16.5 A default label shall appear as either the first or the last switch label of a

switch statement
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
17.4 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
20.4 A macro shall not be defined with the same name as a keyword
20.6 Tokens that look like a preprocessing directive shall not occur within a

macro argument
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses
20.9 All identifiers used in the controlling expression of #if or #elif

preprocessing directives shall be #define'd before evaluation
20.11 A macro parameter immediately following a # operator shall not

immediately be followed by a ## operator
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

15 Coding Rule Sets and Concepts

15-62

See Also
Check MISRA C:2012 (-misra3) | Use generated code requirements (-
misra3-agc-mode)

More About
• “Check for Coding Rule Violations” on page 7-16

 See Also

15-63

Coding Rule Subsets Checked Early in Analysis
In the initial compilation phase of the analysis, Polyspace checks those coding rules that
do not require the run-time error detection part of the analysis. If you want only those
rules checked, you can perform a much quicker analysis.

The software provides two predefined subsets of rules that it checks earlier in the
analysis for Check MISRA C:2004 (-misra2), Check MISRA AC AGC (-misra-ac-
agc), and Check MISRA C:2012 (-misra3).

Argument Purpose
single-unit-
rules

Check rules that apply only to single translation units.

system-
decidable-rules

Check rules in the single-unit-rules subset and some rules
that apply to the collective set of program files. The additional rules
are the less complex rules that apply at the integration level. These
rules can be checked only at the integration level because the rules
involve more than one translation unit.

See also “Check for Coding Rule Violations” on page 14-2.

MISRA C: 2004 and MISRA AC AGC Rules
The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are indicated
by an asterisk.

Environment

Rule Description
1.1* All code shall conform to ISO 9899:1990 "Programming languages - C",

amended and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/COR2:1996.

15 Coding Rule Sets and Concepts

15-64

Language Extensions

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule Description
3.4 All uses of the #pragma directive shall be documented and explained.

Character Sets

Rule Description
4.1 Only those escape sequences which are defined in the ISO C standard shall be

used.
4.2 Trigraphs shall not be used.

Identifiers

Rule Description
5.1* Identifiers (internal and external) shall not rely on the significance of more

than 31 characters.
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
5.3* A typedef name shall be a unique identifier.
5.4* A tag name shall be a unique identifier.
5.5* No object or function identifier with a static storage duration should be reused.
5.6* No identifier in one name space should have the same spelling as an identifier

in another name space, with the exception of structure and union member
names.

5.7* No identifier name should be reused.

 Coding Rule Subsets Checked Early in Analysis

15-65

Types

Rule Description
6.1 The plain char type shall be used only for the storage and use of character

values.
6.2 Signed and unsigned char type shall be used only for the storage and use of

numeric values.
6.3 typedefs that indicate size and signedness should be used in place of the

basic types.
6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description
7.1 Octal constants (other than zero) and octal escape sequences shall not be

used.

15 Coding Rule Sets and Concepts

15-66

Declarations and Definitions

Rule Description
8.1 Functions shall have prototype declarations and the prototype shall be visible

at both the function definition and call.
8.2 Whenever an object or function is declared or defined, its type shall be

explicitly stated.
8.3 For each function parameter the type given in the declaration and definition

shall be identical, and the return types shall also be identical.
8.4* If objects or functions are declared more than once their types shall be

compatible.
8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function.
8.8* An external object or function shall be declared in one file and only one file.
8.9* An identifier with external linkage shall have exactly one external definition.
8.10* All declarations and definitions of objects or functions at file scope shall have

internal linkage unless external linkage is required.
8.11 The static storage class specifier shall be used in definitions and

declarations of objects and functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.

Initialization

Rule Description
9.2 Braces shall be used to indicate and match the structure in the nonzero

initialization of arrays and structures.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.

 Coding Rule Subsets Checked Early in Analysis

15-67

Arithmetic Type Conversion

Rule Description
10.1 The value of an expression of integer type shall not be implicitly converted to a

different underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to a
different type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type
that is narrower and of the same signedness as the underlying type of the
expression.

10.4 The value of a complex expression of float type may only be cast to narrower
floating type.

10.5 If the bitwise operator ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to
the underlying type of the operand

10.6 The "U" suffix shall be applied to all constants of unsigned types.

15 Coding Rule Sets and Concepts

15-68

Pointer Type Conversion

Rule Description
11.1 Conversion shall not be performed between a pointer to a function and any

type other than an integral type.
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a

different pointer to object type.
11.5 A cast shall not be performed that removes any const or volatile

qualification from the type addressed by a pointer

Expressions

Rule Description
12.1 Limited dependence should be placed on C's operator precedence rules in

expressions.
12.3 The sizeof operator should not be used on expressions that contain side

effects.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean.

Expression that are effectively Boolean should not be used as operands to
operators other than (&&, || or !).

12.7 Bitwise operators shall not be applied to operands whose underlying type is
signed.

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with

other operators in an expression

 Coding Rule Subsets Checked Early in Analysis

15-69

Control Statement Expressions

Rule Description
13.1 Assignment operators shall not be used in expressions that yield Boolean

values.
13.2 Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
13.6 Numeric variables being used within a for loop for iteration counting should

not be modified in the body of the loop.

Control Flow

Rule Description
14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used

for loop termination.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement.
14.9 An if (expression) construct shall be followed by a compound statement. The

else keyword shall be followed by either a compound statement, or another
if statement.

14.10 All if else if constructs should contain a final else clause.

15 Coding Rule Sets and Concepts

15-70

Switch Statements

Rule Description
15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch

clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description
16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration.
16.4* The identifiers used in the declaration and definition of a function shall be

identical.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of

parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty.

Pointers and Arrays

Rule Description
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

 Coding Rule Subsets Checked Early in Analysis

15-71

Structures and Unions

Rule Description
18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

15 Coding Rule Sets and Concepts

15-72

Preprocessing Directives

Rule Description
19.1 #include statements in a file shall only be preceded by other preprocessors

directives or comments.
19.2 Nonstandard characters should not occur in header file names in #include

directives.
19.3 The #include directive shall be followed by either a <filename> or "filename"

sequence.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized

expression, a type qualifier, a storage class specifier, or a do-while-zero
construct.

19.5 Macros shall not be #defined and #undefd within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
19.10 In the definition of a function-like macro, each instance of a parameter shall be

enclosed in parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use,

except in #ifdef and #ifndef preprocessor directives and the defined()
operator.

19.12 There shall be at most one occurrence of the # or ## preprocessor operators in
a single macro definition.

19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two

standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file

being included twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded

by the preprocessor.

 Coding Rule Subsets Checked Early in Analysis

15-73

Rule Description
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same

file as the #if or #ifdef directive to which they are related.

Standard Libraries

Rule Description
20.1 Reserved identifiers, macros and functions in the standard library, shall not be

defined, redefined or undefined.
20.2 The names of standard library macros, objects and functions shall not be

reused.
20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall

not be used.
20.11 The library functions abort, exit, getenv and system from library

<stdlib.h> shall not be used.
20.12 The time handling functions of library <time.h> shall not be used.

The rules that are checked at a system level and appear only in the system-decidable-
rules subset are indicated by an asterisk.

MISRA C: 2012 Rules
The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are indicated
by an asterisk.

15 Coding Rule Sets and Concepts

15-74

Standard C Environment

Rule Description
1.1 The program shall contain no violations of the standard C syntax and

constraints, and shall not exceed the implementation's translation limits.
1.2 Language extensions should not be used.

Unused Code

Rule Description
2.3* A project should not contain unused type declarations.
2.4* A project should not contain unused tag declarations.
2.5* A project should not contain unused macro declarations.
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

Comments

Rule Description
3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description
4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

 Coding Rule Subsets Checked Early in Analysis

15-75

Identifiers

Rule Description
5.1* External identifiers shall be distinct.
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in

an outer scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.
5.6* A typedef name shall be a unique identifier.
5.7* A tag name shall be a unique identifier.
5.8* Identifiers that define objects or functions with external linkage shall be

unique.
5.9* Identifiers that define objects or functions with internal linkage should be

unique.

Types

Rule Description
6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description
7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented

in an unsigned type.
7.3 The lowercase character "l" shall not be used in a literal suffix.
7.4 A string literal shall not be assigned to an object unless the object's type is

"pointer to const-qualified char".

15 Coding Rule Sets and Concepts

15-76

Declarations and Definitions

Rule Description
8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.3* All declarations of an object or function shall use the same names and type

qualifiers.
8.4 A compatible declaration shall be visible when an object or function with

external linkage is defined.
8.5* An external object or function shall be declared once in one and only one file.
8.6* An identifier with external linkage shall have exactly one external definition.
8.7* Functions and objects should not be defined with external linkage if they are

referenced in only one translation unit.
8.8 The static storage class specifier shall be used in all declarations of objects

and functions that have internal linkage.
8.9* An object should be defined at block scope if its identifier only appears in a

single function.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly

specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration

constant shall be unique.
8.14 The restrict type qualifier shall not be used.

Initialization

Rule Description
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.
9.5 Where designated initializers are used to initialize an array object the size of

the array shall be specified explicitly.

 Coding Rule Subsets Checked Early in Analysis

15-77

The Essential Type Model

Rule Description
10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in

addition and subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower

essential type or of a different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are

performed shall have the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential

type.
10.6 The value of a composite expression shall not be assigned to an object with

wider essential type.
10.7 If a composite expression is used as one operand of an operator in which the

usual arithmetic conversions are performed then the other operand shall not
have wider essential type.

10.8 The value of a composite expression shall not be cast to a different essential
type category or a wider essential type.

15 Coding Rule Sets and Concepts

15-78

Pointer Type Conversion

Rule Description
11.1 Conversions shall not be performed between a pointer to a function and any

other type.
11.2 Conversions shall not be performed between a pointer to an incomplete type

and any other type.
11.3 A cast shall not be performed between a pointer to object type and a pointer to

a different object type.
11.4 A conversion should not be performed between a pointer to object and an

integer type.
11.5 A conversion should not be performed from pointer to void into pointer to

object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed

to by a pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer

constant.

Expressions

Rule Description
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-

around.

 Coding Rule Subsets Checked Early in Analysis

15-79

Side Effects

Rule Description
13.3 A full expression containing an increment (++) or decrement (--) operator

should have no other potential side effects other than that caused by the
increment or decrement operator.

13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which

has potential side effects.

Control Statement Expressions

Rule Description
14.4 The controlling expression of an if statement and the controlling expression

of an iteration-statement shall have essentially Boolean type.

Control Flow

Rule Description
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block,

or in any block enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate

any iteration statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a

compound statement.
15.7 All if … else if constructs shall be terminated with an else statement.

15 Coding Rule Sets and Concepts

15-80

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a

switch statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

Functions

Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword

between the [].
17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

 Coding Rule Subsets Checked Early in Analysis

15-81

Overlapping Storage

Rule Description
19.2 The union keyword should not be used.

Preprocessing Directives

Rule Description
20.1 #include directives should only be preceded by preprocessor directives or

comments.
20.2 The ', ", or \ characters and the /* or // character sequences shall not occur

in a header file name.
20.3 The #include directive shall be followed by either a <filename> or \"filename

\" sequence.
20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro

argument.
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall

evaluate to 0 or 1.
20.9 All identifiers used in the controlling expression of #if or #elif

preprocessing directives shall be #define'd before evaluation.
20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately

be followed by a ## operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself

subject to further macro replacement, shall only be used as an operand to
these operators.

20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same

file as the #if, #ifdef or #ifndef directive to which they are related.

15 Coding Rule Sets and Concepts

15-82

Standard Libraries

Rule Description
21.1 #define and #undef shall not be used on a reserved identifier or reserved

macro name.
21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be

used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall

not be used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

The rules that are checked at a system level and appear only in the system-decidable-
rules subset are indicated by an asterisk.

 Coding Rule Subsets Checked Early in Analysis

15-83

Unsupported MISRA C:2012 Guidelines
The Polyspace coding rules checker does not check the following MISRA C:2012
directives. These directives are not checked either in Bug Finder or Code Prover. These
directives cannot be enforced because they are outside the scope of Polyspace software.
These guidelines concern documentation, dynamic aspects, or functional aspects of
MISRA rules.

Number Category AGC
Category

Definition

Directive
3.1

Required Required All code shall be traceable to documented requirements

Directive
4.2

Advisory Advisory All usage of assembly language should be documented

Directive
4.4

Advisory Advisory Sections of code should not be “commented out”

Directive
4.12

Required Required Dynamic memory allocation shall not be used

15 Coding Rule Sets and Concepts

15-84

Polyspace MISRA C++ Checkers
The Polyspace MISRA C++ checker helps you comply with the MISRA C++:2008 coding
standard.4

When MISRA C++ rules are violated, the Polyspace software provides messages with
information about why the code violates the rule. Most violations are found during the
compile phase of an analysis. The MISRA C++ checker can check 202 of the 230 MISRA
C++ coding rules.

There are subsets of MISRA C++ coding rules that can have a direct or indirect impact
on the selectivity (reliability percentage) of your results. When you set up rule checking,
you can select these subsets directly. These subsets are defined in “Software Quality
Objective Subsets (C++)” on page 15-116.

Note The Polyspace MISRA C++ checker is based on MISRA C++:2008 – “Guidelines for
the use of the C++ language in critical systems."

See Also

More About
• “Check for Coding Rule Violations” on page 14-2
• “MISRA C++ Coding Rules” on page 15-86

4. MISRA is a registered trademark of MIRA Ltd., held on behalf of the MISRA Consortium.

 Polyspace MISRA C++ Checkers

15-85

MISRA C++ Coding Rules

In this section...
“Supported MISRA C++ Coding Rules” on page 15-86
“Unsupported MISRA C++ Rules” on page 15-111

Supported MISRA C++ Coding Rules
• “Language Independent Issues” on page 15-87
• “General” on page 15-88
• “Lexical Conventions” on page 15-88
• “Basic Concepts” on page 15-90
• “Standard Conversions” on page 15-91
• “Expressions” on page 15-92
• “Statements” on page 15-96
• “Declarations” on page 15-99
• “Declarators” on page 15-101
• “Classes” on page 15-102
• “Derived Classes” on page 15-103
• “Member Access Control” on page 15-103
• “Special Member Functions” on page 15-104
• “Templates” on page 15-104
• “Exception Handling” on page 15-105
• “Preprocessing Directives” on page 15-108
• “Library Introduction” on page 15-109
• “Language Support Library” on page 15-110
• “Diagnostic Library” on page 15-110
• “Input/output Library” on page 15-111

15 Coding Rule Sets and Concepts

15-86

Language Independent Issues

N. Category MISRA Definition Polyspace Specification
0-1-1 Required A project shall not contain

unreachable code.
Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

0-1-2 Required A project shall not contain infeasible
paths.

0-1-3 Required A project shall not contain unused
variables.

The checker flags local or global
variables that are declared or
defined but not used anywhere in
the source files. This also applies to
members of structures and classes.

0-1-5 Required A project shall not contain unused
type declarations.

0-1-7 Required The value returned by a function
having a non- void return type that is
not an overloaded operator shall
always be used.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

0-1-9 Required There shall be no dead code. This rule can also be enforced
through detection of dead code
during analysis.

0-1-10 Required Every defined function shall be
called at least once.

Detects if static functions are not
called in their translation unit.
Other cases are detected by the
software.

0-1-11 Required There shall be no unused parameters
(named or unnamed) in nonvirtual
functions.

0-1-12 Required There shall be no unused parameters
(named or unnamed) in the set of
parameters for a virtual function and
all the functions that override it.

Polyspace checks for unused
parameters in the set of virtual
functions within single translation
units.

0-2-1 Required An object shall not be assigned to an
overlapping object.

 MISRA C++ Coding Rules

15-87

General

N. Category MISRA Definition Polyspace Specification
1-0-1 Required All code shall conform to ISO/IEC

14882:2003 "The C++ Standard
Incorporating Technical
Corrigendum 1".

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

Lexical Conventions

N. Category MISRA Definition Polyspace Specification
2-3-1 Required Trigraphs shall not be used.
2-5-1 Advisory Digraphs should not be used.
2-7-1 Required The character sequence /* shall not

be used within a C-style comment.
This rule cannot be annotated in the
source code.

2-10-1 Required Different identifiers shall be
typographically unambiguous.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-2 Required Identifiers declared in an inner
scope shall not hide an identifier
declared in an outer scope.

No detection for logical scopes:
fields or member functions hiding
outer scopes identifiers or hiding
ancestors members.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-3 Required A typedef name (including
qualification, if any) shall be a
unique identifier.

No detection across namespaces.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

15 Coding Rule Sets and Concepts

15-88

N. Category MISRA Definition Polyspace Specification
2-10-4 Required A class, union or enum name

(including qualification, if any) shall
be a unique identifier.

No detection across namespaces.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-5 Advisory The identifier name of a non-member
object or function with static storage
duration should not be reused.

For functions the detection is only
on the definition where there is a
declaration.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-6 Required If an identifier refers to a type, it
shall not also refer to an object or a
function in the same scope.

If the identifier is a function and the
function is both declared and
defined then the violation is
reported only once.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-13-1 Required Only those escape sequences that
are defined in ISO/IEC 14882:2003
shall be used.

2-13-2 Required Octal constants (other than zero)
and octal escape sequences (other
than "\0") shall not be used.

2-13-3 Required A "U" suffix shall be applied to all
octal or hexadecimal integer literals
of unsigned type.

2-13-4 Required Literal suffixes shall be upper case.
2-13-5 Required Narrow and wide string literals shall

not be concatenated.

 MISRA C++ Coding Rules

15-89

Basic Concepts

N. Category MISRA Definition Polyspace Specification
3-1-1 Required It shall be possible to include any

header file in multiple translation
units without violating the One
Definition Rule.

3-1-2 Required Functions shall not be declared at
block scope.

3-1-3 Required When an array is declared, its size
shall either be stated explicitly or
defined implicitly by initialization.

3-2-1 Required All declarations of an object or
function shall have compatible types.

3-2-2 Required The One Definition Rule shall not be
violated.

Report type, template, and inline
function defined in source file

3-2-3 Required A type, object or function that is
used in multiple translation units
shall be declared in one and only one
file.

3-2-4 Required An identifier with external linkage
shall have exactly one definition.

3-3-1 Required Objects or functions with external
linkage shall be declared in a header
file.

3-3-2 Required If a function has internal linkage
then all re-declarations shall include
the static storage class specifier.

3-4-1 Required An identifier declared to be an object
or type shall be defined in a block
that minimizes its visibility.

15 Coding Rule Sets and Concepts

15-90

N. Category MISRA Definition Polyspace Specification
3-9-1 Required The types used for an object, a

function return type, or a function
parameter shall be token-for-token
identical in all declarations and re-
declarations.

Comparison is done between
current declaration and last seen
declaration.

3-9-2 Advisory typedefs that indicate size and
signedness should be used in place
of the basic numerical types.

No detection in non-instantiated
templates.

3-9-3 Required The underlying bit representations of
floating-point values shall not be
used.

Standard Conversions

N. Category MISRA Definition Polyspace Specification
4-5-1 Required Expressions with type bool shall not

be used as operands to built-in
operators other than the assignment
operator =, the logical operators
&&, ||, !, the equality operators ==
and !=, the unary & operator, and
the conditional operator.

4-5-2 Required Expressions with type enum shall not
be used as operands to built- in
operators other than the subscript
operator [], the assignment operator
=, the equality operators == and !=,
the unary & operator, and the
relational operators <, <=, >, >=.

4-5-3 Required Expressions with type (plain) char
and wchar_t shall not be used as
operands to built-in operators other
than the assignment operator =, the
equality operators == and !=, and
the unary & operator. N

 MISRA C++ Coding Rules

15-91

N. Category MISRA Definition Polyspace Specification
4-10-1 Required NULL shall not be used as an integer

value.
The checker flags assignment of
NULL to an integer variable or
binary operations involving NULL
and an integer. Assignments can be
direct or indirect such as passing
NULL as integer argument to a
function.

4-10-2 Required Literal zero (0) shall not be used as
the null-pointer-constant.

The checker flags assignment of 0
to a pointer variable or binary
operations involving 0 and a
pointer. Assignments can be direct
or indirect such as passing 0 as
pointer argument to a function.

Expressions

N. Category MISRA Definition Polyspace Specification
5-0-1 Required The value of an expression shall be

the same under any order of
evaluation that the standard permits.

5-0-2 Advisory Limited dependence should be
placed on C++ operator precedence
rules in expressions.

5-0-3 Required A cvalue expression shall not be
implicitly converted to a different
underlying type.

Assumes that ptrdiff_t is signed
integer

5-0-4 Required An implicit integral conversion shall
not change the signedness of the
underlying type.

Assumes that ptrdiff_t is signed
integer

If the conversion is to a narrower
integer with a different sign then
MISRA C++ 5-0-4 takes precedence
over MISRA C++ 5-0-6.

5-0-5 Required There shall be no implicit floating-
integral conversions.

This rule takes precedence over
5-0-4 and 5-0-6 if they apply at the
same time.

15 Coding Rule Sets and Concepts

15-92

N. Category MISRA Definition Polyspace Specification
5-0-6 Required An implicit integral or floating-point

conversion shall not reduce the size
of the underlying type.

If the conversion is to a narrower
integer with a different sign then
MISRA C++ 5-0-4 takes precedence
over MISRA C++ 5-0-6.

5-0-7 Required There shall be no explicit floating-
integral conversions of a cvalue
expression.

5-0-8 Required An explicit integral or floating-point
conversion shall not increase the
size of the underlying type of a
cvalue expression.

5-0-9 Required An explicit integral conversion shall
not change the signedness of the
underlying type of a cvalue
expression.

5-0-10 Required If the bitwise operators ~ and <<
are applied to an operand with an
underlying type of unsigned char or
unsigned short, the result shall be
immediately cast to the underlying
type of the operand.

5-0-11 Required The plain char type shall only be
used for the storage and use of
character values.

For numeric data, use a type which
has explicit signedness.

5-0-12 Required Signed char and unsigned char type
shall only be used for the storage
and use of numeric values.

5-0-13 Required The condition of an if-statement and
the condition of an iteration-
statement shall have type bool.

5-0-14 Required The first operand of a conditional-
operator shall have type bool.

 MISRA C++ Coding Rules

15-93

N. Category MISRA Definition Polyspace Specification
5-0-15 Required Array indexing shall be the only form

of pointer arithmetic.
Warning on:

• Operations on pointers. (p+I, I
+p and p-I, where p is a pointer
and I an integer, p[i] accepted).

• Array indexing on nonarray
pointers.

5-0-17 Required Subtraction between pointers shall
only be applied to pointers that
address elements of the same array.

Use Bug Finder for this checker.
Code Prover can fail to detect some
violations.

5-0-18 Required >, >=, <, <= shall not be applied to
objects of pointer type, except where
they point to the same array.

Report when relational operator are
used on pointers types (casts
ignored).

5-0-19 Required The declaration of objects shall
contain no more than two levels of
pointer indirection.

5-0-20 Required Non-constant operands to a binary
bitwise operator shall have the same
underlying type.

5-0-21 Required Bitwise operators shall only be
applied to operands of unsigned
underlying type.

5-2-1 Required Each operand of a logical && or ||
shall be a postfix - expression.

During preprocessing, violations of
this rule are detected on the
expressions in #if directives.
Allowed exception on associativity
(a && b && c), (a || b || c).

5-2-2 Required A pointer to a virtual base class shall
only be cast to a pointer to a derived
class by means of dynamic_cast.

5-2-3 Advisory Casts from a base class to a derived
class should not be performed on
polymorphic types.

15 Coding Rule Sets and Concepts

15-94

N. Category MISRA Definition Polyspace Specification
5-2-4 Required C-style casts (other than void casts)

and functional notation casts (other
than explicit constructor calls) shall
not be used.

5-2-5 Required A cast shall not remove any const or
volatile qualification from the type of
a pointer or reference.

5-2-6 Required A cast shall not convert a pointer to
a function to any other pointer type,
including a pointer to function type.

No violation if pointer types of
operand and target are identical.

5-2-7 Required An object with pointer type shall not
be converted to an unrelated pointer
type, either directly or indirectly.

"Extended to all pointer conversions
including between pointer to struct
object and pointer to type of the
first member of the struct type.
Indirect conversions through non-
pointer type (e.g. int) are not
detected."

5-2-8 Required An object with integer type or
pointer to void type shall not be
converted to an object with pointer
type.

Exception on zero constants.
Objects with pointer type include
objects with pointer to function
type.

5-2-9 Advisory A cast should not convert a pointer
type to an integral type.

5-2-10 Advisory The increment (++) and decrement
(--) operators should not be mixed
with other operators in an
expression.

5-2-11 Required The comma operator, && operator
and the || operator shall not be
overloaded.

5-2-12 Required An identifier with array type passed
as a function argument shall not
decay to a pointer.

 MISRA C++ Coding Rules

15-95

N. Category MISRA Definition Polyspace Specification
5-3-1 Required Each operand of the ! operator, the

logical && or the logical || operators
shall have type bool.

5-3-2 Required The unary minus operator shall not
be applied to an expression whose
underlying type is unsigned.

5-3-3 Required The unary & operator shall not be
overloaded.

5-3-4 Required Evaluation of the operand to the
sizeof operator shall not contain side
effects.

No warning on volatile accesses
and function calls

5-8-1 Required The right hand operand of a shift
operator shall lie between zero and
one less than the width in bits of the
underlying type of the left hand
operand.

5-14-1 Required The right hand operand of a logical
&& or || operator shall not contain
side effects.

No warning on volatile accesses
and function calls.

5-18-1 Required The comma operator shall not be
used.

5-19-1 Required Evaluation of constant unsigned
integer expressions should not lead
to wrap-around.

Statements

N. Category MISRA Definition Polyspace Specification
6-2-1 Required Assignment operators shall not be

used in sub-expressions.

6-2-2 Required Floating-point expressions shall not
be directly or indirectly tested for
equality or inequality.

15 Coding Rule Sets and Concepts

15-96

N. Category MISRA Definition Polyspace Specification
6-2-3 Required Before preprocessing, a null

statement shall only occur on a line
by itself; it may be followed by a
comment, provided that the first
character following the null
statement is a white - space
character.

6-3-1 Required The statement forming the body of a
switch, while, do ... while or for
statement shall be a compound
statement.

6-4-1 Required An if (condition) construct shall be
followed by a compound statement.
The else keyword shall be followed
by either a compound statement, or
another if statement.

6-4-2 Required All if ... else if constructs shall be
terminated with an else clause.

Also detects cases where the last
if is in the block of the last else
(same behavior as JSF, stricter than
MISRA C).

Example: "if … else { if …{}}"
raises the rule

6-4-3 Required A switch statement shall be a well-
formed switch statement.

Return statements are considered
as jump statements.

6-4-4 Required A switch-label shall only be used
when the most closely-enclosing
compound statement is the body of a
switch statement.

6-4-5 Required An unconditional throw or break
statement shall terminate every non
- empty switch-clause.

6-4-6 Required The final clause of a switch
statement shall be the default-
clause.

 MISRA C++ Coding Rules

15-97

N. Category MISRA Definition Polyspace Specification
6-4-7 Required The condition of a switch statement

shall not have bool type.

6-4-8 Required Every switch statement shall have at
least one case-clause.

6-5-1 Required A for loop shall contain a single loop-
counter which shall not have floating
type.

6-5-2 Required If loop-counter is not modified by --
or ++, then, within condition, the
loop-counter shall only be used as an
operand to <=, <, > or >=.

6-5-3 Required The loop-counter shall not be
modified within condition or
statement.

Detect only direct assignments if
for_index is known (see 6-5-1).

6-5-4 Required The loop-counter shall be modified
by one of: --, ++, -=n, or +=n ;
where n remains constant for the
duration of the loop.

6-5-5 Required A loop-control-variable other than
the loop-counter shall not be
modified within condition or
expression.

6-5-6 Required A loop-control-variable other than
the loop-counter which is modified in
statement shall have type bool.

6-6-1 Required Any label referenced by a goto
statement shall be declared in the
same block, or in a block enclosing
the goto statement.

6-6-2 Required The goto statement shall jump to a
label declared later in the same
function body.

15 Coding Rule Sets and Concepts

15-98

N. Category MISRA Definition Polyspace Specification
6-6-3 Required The continue statement shall only be

used within a well-formed for loop.
Assumes 6.5.1 to 6.5.6: so it is
implemented only for supported
6_5_x rules.

6-6-4 Required For any iteration statement there
shall be no more than one break or
goto statement used for loop
termination.

6-6-5 Required A function shall have a single point
of exit at the end of the function.

At most one return not necessarily
as last statement for void functions.

Declarations

N. Category MISRA Definition Polyspace Specification
7-1-1 Required A variable which is not modified

shall be const qualified.
The checker flags function
parameters or local variables that
are not const-qualified but never
modified in the function body.
Function parameters of integer,
float, enum and boolean types are
not flagged.

If a variable is passed to another
function by reference or pointers,
the checker assumes that the
variable can be modified. These
variables are not flagged.

7-1-2 Required A pointer or reference parameter in
a function shall be declared as
pointer to const or reference to const
if the corresponding object is not
modified.

The checker flags pointers where
the underlying object is not const-
qualified but never modified in the
function body.

If a variable is passed to another
function by reference or pointers,
the checker assumes that the
variable can be modified. Pointers
that point to these variables are not
flagged.

 MISRA C++ Coding Rules

15-99

N. Category MISRA Definition Polyspace Specification
7-3-1 Required The global namespace shall only

contain main, namespace
declarations and extern "C"
declarations.

7-3-2 Required The identifier main shall not be used
for a function other than the global
function main.

7-3-3 Required There shall be no unnamed
namespaces in header files.

7-3-4 Required using-directives shall not be used.
7-3-5 Required Multiple declarations for an

identifier in the same namespace
shall not straddle a using-declaration
for that identifier.

7-3-6 Required using-directives and using-
declarations (excluding class scope
or function scope using-declarations)
shall not be used in header files.

7-4-2 Required Assembler instructions shall only be
introduced using the asm
declaration.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

7-4-3 Required Assembly language shall be
encapsulated and isolated.

7-5-1 Required A function shall not return a
reference or a pointer to an
automatic variable (including
parameters), defined within the
function.

7-5-2 Required The address of an object with
automatic storage shall not be
assigned to another object that may
persist after the first object has
ceased to exist.

15 Coding Rule Sets and Concepts

15-100

N. Category MISRA Definition Polyspace Specification
7-5-3 Required A function shall not return a

reference or a pointer to a
parameter that is passed by
reference or const reference.

7-5-4 Advisory Functions should not call
themselves, either directly or
indirectly.

Declarators

N. Category MISRA Definition Polyspace Specification
8-0-1 Required An init-declarator-list or a member-

declarator-list shall consist of a
single init-declarator or member-
declarator respectively.

8-3-1 Required Parameters in an overriding virtual
function shall either use the same
default arguments as the function
they override, or else shall not
specify any default arguments.

8-4-1 Required Functions shall not be defined using
the ellipsis notation.

8-4-2 Required The identifiers used for the
parameters in a re-declaration of a
function shall be identical to those in
the declaration.

8-4-3 Required All exit paths from a function with
non- void return type shall have an
explicit return statement with an
expression.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

8-4-4 Required A function identifier shall either be
used to call the function or it shall be
preceded by &.

 MISRA C++ Coding Rules

15-101

N. Category MISRA Definition Polyspace Specification
8-5-1 Required All variables shall have a defined

value before they are used.
Non-initialized variable in results
and error messages for obvious
cases

8-5-2 Required Braces shall be used to indicate and
match the structure in the non- zero
initialization of arrays and
structures.

8-5-3 Required In an enumerator list, the =
construct shall not be used to
explicitly initialize members other
than the first, unless all items are
explicitly initialized.

Classes

N. Category MISRA Definition Polyspace Specification
9-3-1 Required const member functions shall not

return non-const pointers or
references to class-data.

Class-data for a class is restricted
to all non-static member data.

9-3-2 Required Member functions shall not return
non-const handles to class-data.

Class-data for a class is restricted
to all non-static member data.

9-3-3 Required If a member function cannot be
made static then it shall be made
static, otherwise if it can be made
const then it shall be made const.

The checker flags member
functions that are not declared
static but do not access a data
member of the class.

The checker flags member
functions that are not declared
const but do not modify a data
member of the class.

9-5-1 Required Unions shall not be used.
9-6-2 Required Bit-fields shall be either bool type or

an explicitly unsigned or signed
integral type.

9-6-3 Required Bit-fields shall not have enum type.

15 Coding Rule Sets and Concepts

15-102

N. Category MISRA Definition Polyspace Specification
9-6-4 Required Named bit-fields with signed integer

type shall have a length of more than
one bit.

Derived Classes

N. Category MISRA Definition Polyspace Specification
10-1-1 Advisory Classes should not be derived from

virtual bases.

10-1-2 Required A base class shall only be declared
virtual if it is used in a diamond
hierarchy.

Assumes 10.1.1 not required

10-1-3 Required An accessible base class shall not be
both virtual and nonvirtual in the
same hierarchy.

10-2-1 Required All accessible entity names within a
multiple inheritance hierarchy
should be unique.

No detection between entities of
different kinds (member functions
against data members, …).

10-3-1 Required There shall be no more than one
definition of each virtual function on
each path through the inheritance
hierarchy.

Member functions that are virtual
by inheritance are also detected.

10-3-2 Required Each overriding virtual function shall
be declared with the virtual
keyword.

10-3-3 Required A virtual function shall only be
overridden by a pure virtual function
if it is itself declared as pure virtual.

Member Access Control

N. Category MISRA Definition Polyspace Specification
11-0-1 Required Member data in non- POD class

types shall be private.

 MISRA C++ Coding Rules

15-103

Special Member Functions

N. Category MISRA Definition Polyspace Specification
12-1-1 Required An object's dynamic type shall not be

used from the body of its constructor
or destructor.

12-1-2 Advisory All constructors of a class should
explicitly call a constructor for all of
its immediate base classes and all
virtual base classes.

12-1-3 Required All constructors that are callable
with a single argument of
fundamental type shall be declared
explicit.

12-8-1 Required A copy constructor shall only
initialize its base classes and the
non- static members of the class of
which it is a member.

12-8-2 Required The copy assignment operator shall
be declared protected or private in
an abstract class.

Templates

N. Category MISRA Definition Polyspace Specification
14-5-2 Required A copy constructor shall be declared

when there is a template constructor
with a single parameter that is a
generic parameter.

14-5-3 Required A copy assignment operator shall be
declared when there is a template
assignment operator with a
parameter that is a generic
parameter.

15 Coding Rule Sets and Concepts

15-104

N. Category MISRA Definition Polyspace Specification
14-6-1 Required In a class template with a dependent

base, any name that may be found in
that dependent base shall be
referred to using a qualified-id or
this->

14-6-2 Required The function chosen by overload
resolution shall resolve to a function
declared previously in the
translation unit.

14-7-3 Required All partial and explicit
specializations for a template shall
be declared in the same file as the
declaration of their primary
template.

14-8-1 Required Overloaded function templates shall
not be explicitly specialized.

All specializations of overloaded
templates are rejected even if
overloading occurs after the call.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

14-8-2 Advisory The viable function set for a function
call should either contain no function
specializations, or only contain
function specializations.

Exception Handling

N. Category MISRA Definition Polyspace Specification
15-0-2 Advisory An exception object should not have

pointer type.
NULL not detected (see 15-1-2).

15-0-3 Required Control shall not be transferred into
a try or catch block using a goto or a
switch statement.

15-1-2 Required NULL shall not be thrown explicitly.

 MISRA C++ Coding Rules

15-105

N. Category MISRA Definition Polyspace Specification
15-1-3 Required An empty throw (throw;) shall only

be used in the compound- statement
of a catch handler.

15-3-2 Advisory There should be at least one
exception handler to catch all
otherwise unhandled exceptions.

Detect that there is no try/catch in
the main and that the catch does
not handle all exceptions. Not
detected if no "main".

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

15-3-3 Required Handlers of a function-try-block
implementation of a class
constructor or destructor shall not
reference non-static members from
this class or its bases.

15-3-5 Required A class type exception shall always
be caught by reference.

15-3-6 Required Where multiple handlers are
provided in a single try-catch
statement or function-try-block for a
derived class and some or all of its
bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Required Where multiple handlers are
provided in a single try-catch
statement or function-try-block, any
ellipsis (catch-all) handler shall
occur last.

15-4-1 Required If a function is declared with an
exception-specification, then all
declarations of the same function (in
other translation units) shall be
declared with the same set of type-
ids.

15 Coding Rule Sets and Concepts

15-106

N. Category MISRA Definition Polyspace Specification
15-5-1 Required A class destructor shall not exit with

an exception.
Limit detection to throw and catch
that are internals to the destructor;
rethrows are partially processed; no
detections in nested handlers.

15-5-2 Required Where a function's declaration
includes an exception-specification,
the function shall only be capable of
throwing exceptions of the indicated
type(s).

Limit detection to throw that are
internals to the function; rethrows
are partially processed; no
detections in nested handlers.

15-5-3 Required The terminate() function shall not be
called implicitly.

The checker flags these situations
when the terminate() function
can be called implicitly:

• An exception escapes uncaught.
This also violates rule 15-3-2.
For instance:

• Before an exception is
caught, it escapes through
another function that throws
an uncaught exception. For
instance, a catch statement
or exception handler invokes
a copy constructor that
throws an uncaught
exception.

• A throw expression with no
operand rethrows an
uncaught exception.

• A class destructor throws an
exception. This also violates rule
15-5-1.

 MISRA C++ Coding Rules

15-107

Preprocessing Directives

N. Category MISRA Definition Polyspace Specification
16-0-1 Required #include directives in a file shall

only be preceded by other
preprocessor directives or
comments.

16-0-2 Required Macros shall only be #define 'd or
#undef 'd in the global namespace.

16-0-3 Required #undef shall not be used.
16-0-4 Required Function-like macros shall not be

defined.

16-0-5 Required Arguments to a function-like macro
shall not contain tokens that look
like preprocessing directives.

16-0-6 Required In the definition of a function-like
macro, each instance of a parameter
shall be enclosed in parentheses,
unless it is used as the operand of #
or ##.

16-0-7 Required Undefined macro identifiers shall not
be used in #if or #elif preprocessor
directives, except as operands to the
defined operator.

16-0-8 Required If the # token appears as the first
token on a line, then it shall be
immediately followed by a
preprocessing token.

16-1-1 Required The defined preprocessor operator
shall only be used in one of the two
standard forms.

16-1-2 Required All #else, #elif and #endif
preprocessor directives shall reside
in the same file as the #if or #ifdef
directive to which they are related.

15 Coding Rule Sets and Concepts

15-108

N. Category MISRA Definition Polyspace Specification
16-2-1 Required The preprocessor shall only be used

for file inclusion and include guards.
The rule is raised for #ifdef/#define
if the file is not an include file.

16-2-2 Required C++ macros shall only be used for:
include guards, type qualifiers, or
storage class specifiers.

16-2-3 Required Include guards shall be provided.
16-2-4 Required The ', ", /* or // characters shall not

occur in a header file name.

16-2-5 Advisory The \ character should not occur in a
header file name.

16-2-6 Required The #include directive shall be
followed by either a <filename> or
"filename" sequence.

16-3-1 Required There shall be at most one
occurrence of the # or ## operators
in a single macro definition.

16-3-2 Advisory The # and ## operators should not
be used.

16-6-1 Document All uses of the #pragma directive
shall be documented.

To check this rule, you must list the
pragmas that are allowed in source
files by using the option Allowed
pragmas (-allowed-pragmas).
If Polyspace finds a pragma not in
the allowed pragma list, a violation
is raised.

Library Introduction

N. Category MISRA Definition Polyspace Specification
17-0-1 Required Reserved identifiers, macros and

functions in the standard library
shall not be defined, redefined or
undefined.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

 MISRA C++ Coding Rules

15-109

N. Category MISRA Definition Polyspace Specification
17-0-2 Required The names of standard library

macros and objects shall not be
reused.

17-0-3 Required The names of standard library
functions shall not be overridden.

17-0-5 Required The setjmp macro and the longjmp
function shall not be used.

Language Support Library

N. Category MISRA Definition Polyspace Specification
18-0-1 Required The C library shall not be used.
18-0-2 Required The library functions atof, atoi and

atol from library <cstdlib> shall not
be used.

18-0-3 Required The library functions abort, exit,
getenv and system from library
<cstdlib> shall not be used.

The option -compiler iso must
be used to detect violations, for
example, exit.

18-0-4 Required The time handling functions of
library <ctime> shall not be used.

18-0-5 Required The unbounded functions of library
<cstring> shall not be used.

18-2-1 Required The macro offsetof shall not be used.
18-4-1 Required Dynamic heap memory allocation

shall not be used.

18-7-1 Required The signal handling facilities of
<csignal> shall not be used.

Diagnostic Library

N. Category MISRA Definition Polyspace Specification
19-3-1 Required The error indicator errno shall not

be used.

15 Coding Rule Sets and Concepts

15-110

Input/output Library

N. Category MISRA Definition Polyspace Specification
27-0-1 Required The stream input/output library

<cstdio> shall not be used.

Unsupported MISRA C++ Rules
• “Language Independent Issues” on page 15-111
• “General” on page 15-112
• “Lexical Conventions” on page 15-112
• “Expressions” on page 15-113
• “Declarations” on page 15-113
• “Classes” on page 15-114
• “Templates” on page 15-114
• “Exception Handling” on page 15-114
• “Library Introduction” on page 15-115

Language Independent Issues

N. Category MISRA Definition Polyspace Specification
0-1-4 Required A project shall not contain non-

volatile POD variables having only
one use.

0-1-6 Required A project shall not contain instances
of non-volatile variables being given
values that are never subsequently
used.

0-1-8 Required All functions with void return type
shall have external side effects.

 MISRA C++ Coding Rules

15-111

N. Category MISRA Definition Polyspace Specification
0-3-1 Required Minimization of run-time failures

shall be ensured by the use of at
least one of: (a) static analysis tools/
techniques; (b) dynamic analysis
tools/techniques; (c) explicit coding
of checks to handle run-time faults.

0-3-2 Required If a function generates error
information, then that error
information shall be tested.

0-4-1 Document Use of scaled-integer or fixed-point
arithmetic shall be documented.

To observe this rule, check your
compiler documentation.

0-4-2 Document Use of floating-point arithmetic shall
be documented.

To observe this rule, check your
compiler documentation.

0-4-3 Document Floating-point implementations shall
comply with a defined floating-point
standard.

To observe this rule, check your
compiler documentation.

General

N. Category MISRA Definition Polyspace Specification
1-0-2 Document Multiple compilers shall only be used

if they have a common, defined
interface.

To observe this rule, check your
compiler documentation.

1-0-3 Document The implementation of integer
division in the chosen compiler shall
be determined and documented.

To observe this rule, check your
compiler documentation.

Lexical Conventions

N. Category MISRA Definition Polyspace Specification
2-2-1 Document The character set and the

corresponding encoding shall be
documented.

To observe this rule, check your
compiler documentation.

15 Coding Rule Sets and Concepts

15-112

N. Category MISRA Definition Polyspace Specification
2-7-2 Required Sections of code shall not be

"commented out" using C-style
comments.

One way a tool can check this rule
is to determine if the code compiles
when commented out sections are
uncommented. However, such
checking can be expensive and
inaccurate.

2-7-3 Advisory Sections of code should not be
"commented out" using C++
comments.

One way a tool can check this rule
is to determine if the code compiles
when commented out sections are
uncommented. However, such
checking can be expensive and
inaccurate.

Expressions

N. Category MISRA Definition Polyspace Specification
5-0-16 Required A pointer operand and any pointer

resulting from pointer arithmetic
using that operand shall both
address elements of the same array.

5-17-1 Required The semantic equivalence between a
binary operator and its assignment
operator form shall be preserved.

Declarations

N. MISRA Definition Polyspace Specification
7-2-1 Required An expression with enum underlying

type shall only have values
corresponding to the enumerators of
the enumeration.

7-4-1 Document All usage of assembler shall be
documented.

To observe this rule, check your
compiler documentation.

 MISRA C++ Coding Rules

15-113

Classes

N. Category MISRA Definition Polyspace Specification
9-3-3 Required If a member function can be made

static then it shall be made static,
otherwise if it can be made const
then it shall be made const.

9-6-1 Document When the absolute positioning of bits
representing a bit-field is required,
then the behavior and packing of bit-
fields shall be documented.

To observe this rule, check your
compiler documentation.

Templates

N. MISRA Definition Polyspace Specification
14-5-1 Required A non-member generic function shall

only be declared in a namespace that
is not an associated namespace.

14-7-1 Required All class templates, function
templates, class template member
functions and class template static
members shall be instantiated at
least once.

14-7-2 Required For any given template
specialization, an explicit
instantiation of the template with the
template-arguments used in the
specialization shall not render the
program ill-formed.

Exception Handling

N. Category MISRA Definition Polyspace Specification
15-0-1 Document Exceptions shall only be used for

error handling.
To observe this rule, check your
compiler documentation.

15 Coding Rule Sets and Concepts

15-114

N. Category MISRA Definition Polyspace Specification
15-1-1 Required The assignment-expression of a

throw statement shall not itself
cause an exception to be thrown.

15-3-1 Required Exceptions shall be raised only after
start-up and before termination of
the program.

15-3-4 Required Each exception explicitly thrown in
the code shall have a handler of a
compatible type in all call paths that
could lead to that point.

Library Introduction

N. Category MISRA Definition Polyspace Specification
17-0-3 Required The names of standard library

functions shall not be overridden.

17-0-4 Required All library code shall conform to
MISRA C++.

To observe this rule, check your
compiler documentation.

 MISRA C++ Coding Rules

15-115

Software Quality Objective Subsets (C++)

In this section...
“SQO Subset 1 – Direct Impact on Selectivity” on page 15-116
“SQO Subset 2 – Indirect Impact on Selectivity” on page 15-118

SQO Subset 1 – Direct Impact on Selectivity
The following set of MISRA C++ coding rules will typically improve the selectivity of your
results.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an

outer scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined

implicitly by initialization.
3-3-2 The One Definition Rule shall not be violated.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.

15 Coding Rule Sets and Concepts

15-116

MISRA C++ Rule Description
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

 Software Quality Objective Subsets (C++)

15-117

MISRA C++ Rule Description
15-3-6 Where multiple handlers are provided in a single try-catch statement or

function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of
the same function (in other translation units) shall be declared with the same
set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function

shall only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity
Good design practices generally lead to less code complexity, which can improve the
selectivity of your results. The following set of coding rules may help to address design
issues that impact selectivity. The SQO-subset2 option checks the rules in SQO-subset1
and SQO-subset2.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in

an outer scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined

implicitly by initialization.
3-3-2 If a function has internal linkage then all re-declarations shall include the

static storage class specifier.
3-4-1 An identifier declared to be an object or type shall be defined in a block that

minimizes its visibility.
3-9-2 typedefs that indicate size and signedness should be used in place of the basic

numerical types.
3-9-3 The underlying bit representations of floating-point values shall not be used.

15 Coding Rule Sets and Concepts

15-118

MISRA C++ Rule Description
4-5-1 Expressions with type bool shall not be used as operands to built-in operators

other than the assignment operator =, the logical operators &&, ||, !, the
equality operators == and !=, the unary & operator, and the conditional
operator.

5-0-1 The value of an expression shall be the same under any order of evaluation
that the standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of

the underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the

underlying type of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an

underlying type of unsigned char or unsigned short, the result shall be
immediately cast to the underlying type of the operand.

5-0-13
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where

they point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived

class by means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a

pointer or reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type,

including a pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer

type, either directly or indirectly.

 Software Quality Objective Subsets (C++)

15-119

MISRA C++ Rule Description
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
5-2-11 The comma operator, && operator and the || operator shall not be overloaded.
5-3-2 The unary minus operator shall not be applied to an expression whose

underlying type is unsigned.
5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for

statement shall be a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.

15 Coding Rule Sets and Concepts

15-120

MISRA C++ Rule Description
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non- void return type shall have an explicit

return statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be

preceded by &.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero

initialization of arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
11-0-1 Member data in non- POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an

abstract class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.

 Software Quality Objective Subsets (C++)

15-121

MISRA C++ Rule Description
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or

function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the

function shall only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall

be enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor

directives, except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage

class specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single

macro definition.
18-4-1 Dynamic heap memory allocation shall not be used.

15 Coding Rule Sets and Concepts

15-122

Polyspace JSF C++ Checkers
The Polyspace JSF C++ checker helps you comply with the Joint Strike Fighter® Air
Vehicle C++ coding standards (JSF++). These coding standards were developed by
Lockheed Martin® for the Joint Strike Fighter program. They are designed to improve the
robustness of C++ code, and improve maintainability.

5

When JSF++ rules are violated, the Polyspace JSF C++ checker enables Polyspace
software to provide messages with information about the rule violations. Most messages
are reported during the compile phase of an analysis.

Note The Polyspace JSF C++ checker is based on JSF++:2005.

See Also

More About
• “Check for Coding Rule Violations” on page 14-2
• “JSF C++ Coding Rules” on page 15-124

5. JSF and Joint Strike Fighter are Lockheed Martin.

 Polyspace JSF C++ Checkers

15-123

JSF C++ Coding Rules

Supported JSF C++ Coding Rules
Code Size and Complexity

N. JSF++ Definition Polyspace Specification
1 Any one function (or method) will contain no

more than 200 logical source lines of code
(L-SLOCs).

Message in report file:

<function name> has <num> logical
source lines of code.

3 All functions shall have a cyclomatic
complexity number of 20 or less.

Message in report file:

<function name> has cyclomatic
complexity number equal to <num>.

Environment

N. JSF++ Definition Polyspace Specification
8 All code shall conform to ISO/IEC

14882:2002(E) standard C++.
Reports the compilation error message

9 Only those characters specified in the C++
basic source character set will be used.

11 Trigraphs will not be used.
12 The following digraphs will not be used: <%,

%>, <:, :>, %:, %:%:.
Message in report file:

The following digraph will not be used:
<digraph>.

Reports the digraph. If the rule level is set to
warning, the digraph will be allowed even if
it is not supported in -compiler iso.

13 Multi-byte characters and wide string literals
will not be used.

Report L'c', L"string", and use of
wchar_t.

14 Literal suffixes shall use uppercase rather
than lowercase letters.

15 Coding Rule Sets and Concepts

15-124

N. JSF++ Definition Polyspace Specification
15 Provision shall be made for run-time

checking (defensive programming).
Done with checks in the software.

Libraries

N. JSF++ Definition Polyspace Specification
17 The error indicator errno shall not be

used.
errno should not be used as a macro or a
global with external "C" linkage.

18 The macro offsetof, in library
<stddef.h>, shall not be used.

offsetof should not be used as a macro or
a global with external "C" linkage.

19 <locale.h> and the setlocale function
shall not be used.

setlocale and localeconv should not be
used as a macro or a global with external "C"
linkage.

20 The setjmp macro and the longjmp
function shall not be used.

setjmp and longjmp should not be used as
a macro or a global with external "C"
linkage.

21 The signal handling facilities of <signal.h>
shall not be used.

signal and raise should not be used as a
macro or a global with external "C" linkage.

22 The input/output library <stdio.h> shall
not be used.

all standard functions of <stdio.h> should
not be used as a macro or a global with
external "C" linkage.

23 The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.

atof, atoi and atol should not be used as
a macro or a global with external "C"
linkage.

24 The library functions abort, exit, getenv
and system from library <stdlib.h> shall
not be used.

abort, exit, getenv and system should
not be used as a macro or a global with
external "C" linkage.

25 The time handling functions of library
<time.h> shall not be used.

clock, difftime, mktime, asctime,
ctime, gmtime, localtime and strftime
should not be used as a macro or a global
with external "C" linkage.

 JSF C++ Coding Rules

15-125

Pre-Processing Directives

N. JSF++ Definition Polyspace Specification
26 Only the following preprocessor directives

shall be used: #ifndef, #define, #endif,
#include.

27 #ifndef, #define and #endif will be used
to prevent multiple inclusions of the same
header file. Other techniques to prevent the
multiple inclusions of header files will not
be used.

Detects the patterns #if !defined,
#pragma once, #ifdef, and missing
#define.

28 The #ifndef and #endif preprocessor
directives will only be used as defined in AV
Rule 27 to prevent multiple inclusions of the
same header file.

Detects any use that does not comply with
AV Rule 27. Assuming 35/27 is not violated,
reports only #ifndef.

29 The #define preprocessor directive shall
not be used to create inline macros. Inline
functions shall be used instead.

Rule is split into two parts: the definition of a
macro function (29.def) and the call of a
macrofunction (29.use).

Messages in report file:

• 29.1 : The #define preprocessor
directive shall not be used to create inline
macros.

• 29.2 : Inline functions shall be used
instead of inline macros.

30 The #define preprocessor directive shall
not be used to define constant values.
Instead, the const qualifier shall be applied
to variable declarations to specify constant
values.

Reports #define of simple constants.

31 The #define preprocessor directive will
only be used as part of the technique to
prevent multiple inclusions of the same
header file.

Detects use of #define that are not used to
guard for multiple inclusion, assuming that
rules 35 and 27 are not violated.

32 The #include preprocessor directive will
only be used to include header (*.h) files.

15 Coding Rule Sets and Concepts

15-126

Header Files

N. JSF++ Definition Polyspace Specification
33 The #include directive shall use the

<filename.h> notation to include header
files.

35 A header file will contain a mechanism that
prevents multiple inclusions of itself.

39 Header files (*.h) will not contain non-
const variable definitions or function
definitions.

Reports definitions of global variables /
function in header.

Style

N. JSF++ Definition Polyspace Specification
40 Every implementation file shall include the

header files that uniquely define the inline
functions, types, and templates used.

Reports when type, template, or inline
function is defined in source file.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

41 Source lines will be kept to a length of 120
characters or less.

42 Each expression-statement will be on a
separate line.

Reports when two consecutive expression
statements are on the same line.

43 Tabs should be avoided.
44 All indentations will be at least two spaces

and be consistent within the same source
file.

Reports when a statement indentation is not
at least two spaces more than the statement
containing it. Does not report bad
indentation between opening braces
following if/else, do/while, for, and while
statements. NB: in final release it will accept
any indentation

46 User-specified identifiers (internal and
external) will not rely on significance of
more than 64 characters.

 JSF C++ Coding Rules

15-127

N. JSF++ Definition Polyspace Specification
47 Identifiers will not begin with the

underscore character '_'.

48 Identifiers will not differ by:

• Only a mixture of case
• The presence/absence of the underscore

character
• The interchange of the letter 'O'; with the

number '0' or the letter 'D'
• The interchange of the letter 'I'; with the

number '1' or the letter 'l'
• The interchange of the letter 'S' with the

number '5'
• The interchange of the letter 'Z' with the

number 2
• The interchange of the letter 'n' with the

letter 'h'

Checked regardless of scope. Not checked
between macros and other identifiers.

Messages in report file:

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by the
presence/absence of the underscore
character.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by a
mixture of case.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by
letter O, with the number 0.

50 The first word of the name of a class,
structure, namespace, enumeration, or type
created with typedef will begin with an
uppercase letter. All others letters will be
lowercase.

Messages in report file:

• The first word of the name of a class will
begin with an uppercase letter.

• The first word of the namespace of a class
will begin with an uppercase letter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

15 Coding Rule Sets and Concepts

15-128

N. JSF++ Definition Polyspace Specification
51 All letters contained in function and

variables names will be composed entirely of
lowercase letters.

Messages in report file:

• All letters contained in variable names
will be composed entirely of lowercase
letters.

• All letters contained in function names
will be composed entirely of lowercase
letters.

52 Identifiers for constant and enumerator
values shall be lowercase.

Messages in report file:

• Identifier for enumerator value shall be
lowercase.

• Identifier for template constant
parameter shall be lowercase.

53 Header files will always have file name
extension of ".h".

.H is allowed if you set the option -dos.

53.1 The following character sequences shall not
appear in header file names: ', \, /*, //, or
".

54 Implementation files will always have a file
name extension of ".cpp".

Not case sensitive if you set the option -dos.

57 The public, protected, and private sections of
a class will be declared in that order.

58 When declaring and defining functions with
more than two parameters, the leading
parenthesis and the first argument will be
written on the same line as the function
name. Each additional argument will be
written on a separate line (with the closing
parenthesis directly after the last argument).

Detects that two parameters are not on the
same line, The first parameter should be on
the same line as function name. Does not
check for the closing parenthesis.

 JSF C++ Coding Rules

15-129

N. JSF++ Definition Polyspace Specification
59 The statements forming the body of an if,

else if, else, while, do ... while or for
statement shall always be enclosed in
braces, even if the braces form an empty
block.

Messages in report file:

• The statements forming the body of an if
statement shall always be enclosed in
braces.

• The statements forming the body of an
else statement shall always be enclosed
in braces.

• The statements forming the body of a
while statement shall always be enclosed
in braces.

• The statements forming the body of a
do ... while statement shall always be
enclosed in braces.

• The statements forming the body of a for
statement shall always be enclosed in
braces.

60 Braces ("{}") which enclose a block will be
placed in the same column, on separate lines
directly before and after the block.

Detects that statement-block braces should
be in the same columns.

61 Braces ("{}") which enclose a block will
have nothing else on the line except
comments.

62 The dereference operator ‘*’ and the
address-of operator ‘&’ will be directly
connected with the type-specifier.

Reports when there is a space between type
and "*" "&" for variables, parameters and
fields declaration.

15 Coding Rule Sets and Concepts

15-130

N. JSF++ Definition Polyspace Specification
63 Spaces will not be used around ‘.’ or ‘->’, nor

between unary operators and operands.
Reports when the following characters are
not directly connected to a white space:

• .
• ->
• !
• ~
• -
• ++
• —

Note that a violation will be reported for “.”
used in float/double definition.

Classes

N. JSF++ Definition Polyspace Specification
67 Public and protected data should only be

used in structs - not classes.

68 Unneeded implicitly generated member
functions shall be explicitly disallowed.

Reports when default constructor,
assignment operator, copy constructor or
destructor is not declared.

71.1 A class’s virtual functions shall not be
invoked from its destructor or any of its
constructors.

Reports when a constructor or destructor
directly calls a virtual function.

74 Initialization of nonstatic class members will
be performed through the member
initialization list rather than through
assignment in the body of a constructor.

All data should be initialized in the
initialization list except for array. Does not
report that an assignment exists in ctor
body.

Message in report file:

Initialization of nonstatic class members
"<field>" will be performed through the
member initialization list.

 JSF C++ Coding Rules

15-131

N. JSF++ Definition Polyspace Specification
75 Members of the initialization list shall be

listed in the order in which they are declared
in the class.

76 A copy constructor and an assignment
operator shall be declared for classes that
contain pointers to data items or nontrivial
destructors.

Messages in report file:

• no copy constructor and no copy
assign

• no copy constructor
• no copy assign

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

77.1 The definition of a member function shall
not contain default arguments that produce
a signature identical to that of the implicitly-
declared copy constructor for the
corresponding class/structure.

Does not report when an explicit copy
constructor exists.

78 All base classes with a virtual function shall
define a virtual destructor.

79 All resources acquired by a class shall be
released by the class’s destructor.

Reports when the number of “new” called in
a constructor is greater than the number of
“delete” called in its destructor.

Note A violation is raised even if “new” is
done in a “if/else”.

15 Coding Rule Sets and Concepts

15-132

N. JSF++ Definition Polyspace Specification
81 The assignment operator shall handle self-

assignment correctly
Reports when copy assignment body does
not begin with “if (this != arg)”

A violation is not raised if an empty else
statement follows the if, or the body
contains only a return statement.

A violation is raised when the if statement
is followed by a statement other than the
return statement.

82 An assignment operator shall return a
reference to *this.

The following operators should return *this
on method, and *first_arg on plain
function.

operator=operator+=operator-
=operator*=operator >>=operator
<<=operator /=operator %=operator
|=operator &=operator ^=prefix
operator++ prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in report file:

• An assignment operator shall return a
reference to *this.

• An assignment operator shall return a
reference to its first arg.

83 An assignment operator shall assign all data
members and bases that affect the class
invariant (a data element representing a
cache, for example, would not need to be
copied).

Reports when a copy assignment does not
assign all data members. In a derived class,
it also reports when a copy assignment does
not call inherited copy assignments.

 JSF C++ Coding Rules

15-133

N. JSF++ Definition Polyspace Specification
88 Multiple inheritance shall only be allowed in

the following restricted form: n interfaces
plus m private implementations, plus at most
one protected implementation.

Messages in report file:

• Multiple inheritance on public
implementation shall not be allowed:
<public_base_class> is not an
interface.

• Multiple inheritance on protected
implementation shall not be allowed :
<protected_base_class_1>.

• <protected_base_class_2> are not
interfaces.

88.1 A stateful virtual base shall be explicitly
declared in each derived class that accesses
it.

89 A base class shall not be both virtual and
nonvirtual in the same hierarchy.

94 An inherited nonvirtual function shall not be
redefined in a derived class.

Does not report for destructor.

Message in report file:

Inherited nonvirtual function %s shall not be
redefined in a derived class.

95 An inherited default parameter shall never
be redefined.

96 Arrays shall not be treated polymorphically. Reports pointer arithmetic and array like
access on expressions whose pointed type is
used as a base class.

97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay. Not
checked on private methods

97.1 Neither operand of an equality operator (==
or !=) shall be a pointer to a virtual member
function.

Reports == and != on pointer to member
function of polymorphic classes (cannot
determine statically if it is virtual or not),
except when one argument is the null
constant.

15 Coding Rule Sets and Concepts

15-134

Namespaces

N. JSF++ Definition Polyspace Specification
98 Every nonlocal name, except main(),

should be placed in some namespace.
Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

99 Namespaces will not be nested more than
two levels deep.

Templates

N. JSF++ Definition Polyspace Specification
104 A template specialization shall be declared

before its use.
Reports the actual compilation error
message.

Functions

N. JSF++ Definition Polyspace Specification
107 Functions shall always be declared at file

scope.

108 Functions with variable numbers of
arguments shall not be used.

109 A function definition should not be placed in
a class specification unless the function is
intended to be inlined.

Reports when "inline" is not in the definition
of a member function inside the class
definition.

110 Functions with more than 7 arguments will
not be used.

111 A function shall not return a pointer or
reference to a non-static local object.

Simple cases without alias effect detected.

113 Functions will have a single exit point. Reports first return, or once per function.
114 All exit points of value-returning functions

shall be through return statements.

 JSF C++ Coding Rules

15-135

N. JSF++ Definition Polyspace Specification
116 Small, concrete-type arguments (two or

three words in size) should be passed by
value if changes made to formal parameters
should not be reflected in the calling
function.

Report constant parameters references with
sizeof <= 2 * sizeof(int). Does not
report for copy-constructor.

119 Functions shall not call themselves, either
directly or indirectly (i.e. recursion shall not
be allowed).

Direct recursion is reported statically.
Indirect recursion reported through the
software.

Message in report file:

Function <F> shall not call directly itself.
121 Only functions with 1 or 2 statements

should be considered candidates for inline
functions.

Reports inline functions with more than 2
statements.

Comments

N. JSF++ Definition Polyspace Specification
126 Only valid C++ style comments (//) shall be

used.

133 Every source file will be documented with an
introductory comment that provides
information on the file name, its contents,
and any program-required information (e.g.
legal statements, copyright information, etc).

Reports when a file does not begin with two
comment lines.

Note: This rule cannot be annotated in the
source code.

Declarations and Definitions

N. JSF++ Definition Polyspace Specification
135 Identifiers in an inner scope shall not use

the same name as an identifier in an outer
scope, and therefore hide that identifier.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

15 Coding Rule Sets and Concepts

15-136

N. JSF++ Definition Polyspace Specification
136 Declarations should be at the smallest

feasible scope.
Reports when:

• A global variable is used in only one
function.

• A local variable is not used in a
statement (expr, return, init …) of
the same level of its declaration (in the
same block) or is not used in two sub-
statements of its declaration.

Note

• Non-used variables are reported.
• Initializations at definition are ignored

(not considered an access)

137 All declarations at file scope should be static
where possible.

138 Identifiers shall not simultaneously have
both internal and external linkage in the
same translation unit.

139 External objects will not be declared in more
than one file.

Reports all duplicate declarations inside a
translation unit. Reports when the
declaration localization is not the same in
all translation units.

140 The register storage class specifier shall not
be used.

141 A class, structure, or enumeration will not
be declared in the definition of its type.

Initialization

N. JSF++ Definition Polyspace Specification
142 All variables shall be initialized before use. Done with Non-initialized variable checks in

the software.

 JSF C++ Coding Rules

15-137

N. JSF++ Definition Polyspace Specification
144 Braces shall be used to indicate and match

the structure in the non-zero initialization of
arrays and structures.

This covers partial initialization.

145 In an enumerator list, the '=' construct shall
not be used to explicitly initialize members
other than the first, unless all items are
explicitly initialized.

Generates one report for an enumerator list.

Types

N. JSF++ Definition Polyspace Specification
147 The underlying bit representations of

floating point numbers shall not be used in
any way by the programmer.

Reports on casts with float pointers (except
with void*).

148 Enumeration types shall be used instead of
integer types (and constants) to select from a
limited series of choices.

Reports when non enumeration types are
used in switches.

Constants

N. JSF++ Definition Polyspace Specification
149 Octal constants (other than zero) shall not

be used.

150 Hexadecimal constants will be represented
using all uppercase letters.

151 Numeric values in code will not be used;
symbolic values will be used instead.

Reports direct numeric constants (except
integer/float value 1, 0) in expressions, non
-const initializations. and switch cases.
char constants are allowed. Does not report
on templates non-type parameter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

15 Coding Rule Sets and Concepts

15-138

N. JSF++ Definition Polyspace Specification
151.1 A string literal shall not be modified. Report when a char*, char[], or string

type is used not as const.

A violation is raised if a string literal (for
example, “ “) is cast as a non const.

Variables

N. JSF++ Definition Polyspace Specification
152 Multiple variable declarations shall not be

allowed on the same line.

Unions and Bit Fields

N. JSF++ Definition Polyspace Specification
153 Unions shall not be used.
154 Bit-fields shall have explicitly unsigned

integral or enumeration types only.

156 All the members of a structure (or class)
shall be named and shall only be accessed
via their names.

Reports unnamed bit-fields (unnamed fields
are not allowed).

Operators

N. JSF++ Definition Polyspace Specification
157 The right hand operand of a && or ||

operator shall not contain side effects.
Assumes rule 159 is not violated.

Messages in report file:

• The right hand operand of a && operator
shall not contain side effects.

• The right hand operand of a || operator
shall not contain side effects.

 JSF C++ Coding Rules

15-139

N. JSF++ Definition Polyspace Specification
158 The operands of a logical && or || shall be

parenthesized if the operands contain binary
operators.

Messages in report file:

• The operands of a logical && shall be
parenthesized if the operands contain
binary operators.

• The operands of a logical || shall be
parenthesized if the operands contain
binary operators.

Exception for: X || Y || Z , Z&&Y &&Z
159 Operators ||, &&, and unary & shall not be

overloaded.
Messages in report file:

• Unary operator & shall not be
overloaded.

• Operator || shall not be overloaded.
• Operator && shall not be overloaded.

160 An assignment expression shall be used only
as the expression in an expression
statement.

Only simple assignment, not +=, ++, etc.

162 Signed and unsigned values shall not be
mixed in arithmetic or comparison
operations.

163 Unsigned arithmetic shall not be used.
164 The right hand operand of a shift operator

shall lie between zero and one less than the
width in bits of the left-hand operand
(inclusive).

164.1 The left-hand operand of a right-shift
operator shall not have a negative value.

Detects constant case +. Found by the
software for dynamic cases.

165 The unary minus operator shall not be
applied to an unsigned expression.

166 The sizeof operator will not be used on
expressions that contain side effects.

168 The comma operator shall not be used.

15 Coding Rule Sets and Concepts

15-140

Pointers and References

N. JSF++ Definition Polyspace Specification
169 Pointers to pointers should be avoided when

possible.
Reports second-level pointers, except for
arguments of main.

170 More than 2 levels of pointer indirection
shall not be used.

Only reports on variables/parameters.

171 Relational operators shall not be applied to
pointer types except where both operands
are of the same type and point to:

• the same object,
• the same function,
• members of the same object, or
• elements of the same array (including one

past the end of the same array).

Reports when relational operator are used
on pointer types (casts ignored).

173 The address of an object with automatic
storage shall not be assigned to an object
which persists after the object has ceased to
exist.

174 The null pointer shall not be de-referenced. Done with checks in software.
175 A pointer shall not be compared to NULL or

be assigned NULL; use plain 0 instead.
Reports usage of NULL macro in pointer
contexts.

176 A typedef will be used to simplify program
syntax when declaring function pointers.

Reports non-typedef function pointers, or
pointers to member functions for types of
variables, fields, parameters. Returns type of
function, cast, and exception specification.

 JSF C++ Coding Rules

15-141

Type Conversions

N. JSF++ Definition Polyspace Specification
177 User-defined conversion functions should be

avoided.
Reports user defined conversion function,
non-explicit constructor with one parameter
or default value for others (even undefined
ones).

Does not report copy-constructor.

Additional message for constructor case:

This constructor should be flagged as
"explicit".

178 Down casting (casting from base to derived
class) shall only be allowed through one of
the following mechanism:

• Virtual functions that act like dynamic
casts (most likely useful in relatively
simple cases).

• Use of the visitor (or similar) pattern
(most likely useful in complicated cases).

Reports explicit down casting, dynamic_cast
included. (Visitor patter does not have a
special case.)

179 A pointer to a virtual base class shall not be
converted to a pointer to a derived class.

Reports this specific down cast. Allows
dynamic_cast.

15 Coding Rule Sets and Concepts

15-142

N. JSF++ Definition Polyspace Specification
180 Implicit conversions that may result in a loss

of information shall not be used.
Reports the following implicit casts :

integer => smaller integer
unsigned => smaller or eq signed
signed => smaller or eq un-signed
integer => float float => integer

Does not report for cast to bool reports for
implicit cast on constant done with the
options -scalar-overflows-checks
signed-and-unsigned or -ignore-
constant-overflows

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

181 Redundant explicit casts will not be used. Reports useless cast: cast T to T. Casts
to equivalent typedefs are also reported.

182 Type casting from any type to or from
pointers shall not be used.

Does not report when Rule 181 applies.

184 Floating point numbers shall not be
converted to integers unless such a
conversion is a specified algorithmic
requirement or is necessary for a hardware
interface.

Reports float->int conversions. Does not
report implicit ones.

185 C++ style casts (const_cast,
reinterpret_cast, and static_cast)
shall be used instead of the traditional C-
style casts.

 JSF C++ Coding Rules

15-143

Flow Control Standards

N. JSF++ Definition Polyspace Specification
186 There shall be no unreachable code. Done with gray checks in the software.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

187 All non-null statements shall potentially
have a side-effect.

188 Labels will not be used, except in switch
statements.

189 The goto statement shall not be used.
190 The continue statement shall not be used.
191 The break statement shall not be used

(except to terminate the cases of a switch
statement).

192 All if, else if constructs will contain
either a final else clause or a comment
indicating why a final else clause is not
necessary.

else if should contain an else clause.

193 Every non-empty case clause in a switch
statement shall be terminated with a break
statement.

194 All switch statements that do not intend to
test for every enumeration value shall
contain a final default clause.

Reports only for missing default.

195 A switch expression will not represent a
Boolean value.

196 Every switch statement will have at least
two cases and a potential default.

197 Floating point variables shall not be used as
loop counters.

Assumes 1 loop parameter.

15 Coding Rule Sets and Concepts

15-144

N. JSF++ Definition Polyspace Specification
198 The initialization expression in a for loop

will perform no actions other than to
initialize the value of a single for loop
parameter.

Reports if loop parameter cannot be
determined. Assumes Rule 200 is not
violated. The loop variable parameter is
assumed to be a variable.

199 The increment expression in a for loop will
perform no action other than to change a
single loop parameter to the next value for
the loop.

Assumes 1 loop parameter (Rule 198), with
non class type. Rule 200 must not be violated
for this rule to be reported.

200 Null initialize or increment expressions in
for loops will not be used; a while loop
will be used instead.

201 Numeric variables being used within a for
loop for iteration counting shall not be
modified in the body of the loop.

Assumes 1 loop parameter (AV rule 198), and
no alias writes.

Expressions

N. JSF++ Definition Polyspace Specification
202 Floating point variables shall not be tested

for exact equality or inequality.
Reports only direct equality/inequality.
Check done for all expressions.

203 Evaluation of expressions shall not lead to
overflow/underflow.

Done with overflow checks in the software.

204 A single operation with side-effects shall only
be used in the following contexts:

• by itself
• the right-hand side of an assignment
• a condition
• the only argument expression with a side-
effect in a function call

• condition of a loop
• switch condition
• single part of a chained operation

Reports when:

• A side effect is found in a return
statement

• A side effect exists on a single value, and
only one operand of the function call has
a side effect.

 JSF C++ Coding Rules

15-145

N. JSF++ Definition Polyspace Specification
204.1 The value of an expression shall be the same

under any order of evaluation that the
standard permits.

Reports when:

• Variable is written more than once in an
expression

• Variable is read and write in sub-
expressions

• Volatile variable is accessed more than
once

Note Read-write operations such as ++, are
only considered as a write.

205 The volatile keyword shall not be used
unless directly interfacing with hardware.

Reports if volatile keyword is used.

Memory Allocation

N. JSF++ Definition Polyspace Specification
206 Allocation/deallocation from/to the free store

(heap) shall not occur after initialization.
Reports calls to C library functions: malloc /
calloc / realloc / free and all new/
delete operators in functions or methods.

Fault Handling

N. JSF++ Definition Polyspace Specification
208 C++ exceptions shall not be used. Reports try, catch, throw spec, and

throw.

Portable Code

N. JSF++ Definition Polyspace Specification
209 The basic types of int, short, long, float

and double shall not be used, but specific-
length equivalents should be typedef'd
accordingly for each compiler, and these
type names used in the code.

Only allows use of basic types through direct
typedefs.

15 Coding Rule Sets and Concepts

15-146

N. JSF++ Definition Polyspace Specification
213 No dependence shall be placed on C++’s

operator precedence rules, below arithmetic
operators, in expressions.

Reports when a binary operation has one
operand that is not parenthesized and is an
operation with inferior precedence level.

Reports bitwise and shifts operators that are
used without parenthesis and binary
operation arguments.

215 Pointer arithmetic will not be used. Reports:p + Ip - Ip++p--p+=p-=

Allows p[i].

Unsupported JSF++ Rules
• “Code Size and Complexity” on page 15-148
• “Rules” on page 15-148
• “Environment” on page 15-148
• “Libraries” on page 15-149
• “Header Files” on page 15-149
• “Style” on page 15-149
• “Classes” on page 15-149
• “Namespaces” on page 15-151
• “Templates” on page 15-151
• “Functions” on page 15-152
• “Comments” on page 15-152
• “Initialization” on page 15-153
• “Types” on page 15-153
• “Unions and Bit Fields” on page 15-153
• “Operators” on page 15-153
• “Type Conversions” on page 15-153
• “Expressions” on page 15-154
• “Memory Allocation” on page 15-154
• “Portable Code” on page 15-154

 JSF C++ Coding Rules

15-147

• “Efficiency Considerations” on page 15-155
• “Miscellaneous” on page 15-155
• “Testing” on page 15-155

Code Size and Complexity

N. JSF++ Definition
2 There shall not be any self-modifying code.

Rules

N. JSF++ Definition
4 To break a “should” rule, the following approval must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

5 To break a “will” or a “shall” rule, the following approvals must be received by the
developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

• approval from the software product manager (obtained by the unit approval in the
developmental CM tool)

6 Each deviation from a “shall” rule shall be documented in the file that contains the
deviation. Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

7 Approval will not be required for a deviation from a “shall” or “will” rule that complies with
an exception specified by that rule.

Environment

N. JSF++ Definition
10 Values of character types will be restricted to a defined and documented subset of ISO

10646 1.

15 Coding Rule Sets and Concepts

15-148

Libraries

N. JSF++ Definition
16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with safety-

critical (i.e. SEAL 1) code.

Header Files

N. JSF++ Definition
34 Header files should contain logically related declarations only.
36 Compilation dependencies should be minimized when possible.
37 Header (include) files should include only those header files that are required for them to

successfully compile. Files that are only used by the associated .cpp file should be placed in
the .cpp file — not the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be
supplied by forward headers that contain only forward declarations.

Style

N. JSF++ Definition
45 All words in an identifier will be separated by the ‘_’ character.
49 All acronyms in an identifier will be composed of uppercase letters.
55 The name of a header file should reflect the logical entity for which it provides

declarations.
56 The name of an implementation file should reflect the logical entity for which it provides

definitions and have a “.cpp” extension (this name will normally be identical to the header
file that provides the corresponding declarations.)

At times, more than one .cpp file for a given logical entity will be required. In these cases, a
suffix should be appended to reflect a logical differentiation.

Classes

N. JSF++ Definition
64 A class interface should be complete and minimal.
65 A structure should be used to model an entity that does not require an invariant.

 JSF C++ Coding Rules

15-149

N. JSF++ Definition
66 A class should be used to model an entity that maintains an invariant.
69 A member function that does not affect the state of an object (its instance variables) will be

declared const. Member functions should be const by default. Only when there is a clear,
explicit reason should the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private
elements of the class, but is unable to be a member of the class for logical or efficiency
reasons.

70.1 An object shall not be improperly used before its lifetime begins or after its lifetime ends.
71 Calls to an externally visible operation of an object, other than its constructors, shall not be

allowed until the object has been fully initialized.
72 The invariant for a class should be:

• A part of the postcondition of every class constructor,
• A part of the precondition of the class destructor (if any),
• A part of the precondition and postcondition of every other publicly accessible

operation.
73 Unnecessary default constructors shall not be defined.
77 A copy constructor shall copy all data members and bases that affect the class invariant (a

data element representing a cache, for example, would not need to be copied).
80 The default copy and assignment operators will be used for classes when those operators

offer reasonable semantics.
84 Operator overloading will be used sparingly and in a conventional manner.
85 When two operators are opposites (such as == and !=), both will be defined and one will

be defined in terms of the other.
86 Concrete types should be used to represent simple independent concepts.
87 Hierarchies should be based on abstract classes.
90 Heavily used interfaces should be minimal, general and abstract.
91 Public inheritance will be used to implement “is-a” relationships.

15 Coding Rule Sets and Concepts

15-150

N. JSF++ Definition
92 A subtype (publicly derived classes) will conform to the following guidelines with respect to

all classes involved in the polymorphic assignment of different subclass instances to the
same variable or parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak as the preconditions of the
methods they override.

• Postconditions of derived methods must be at least as strong as the postconditions of
the methods they override.

In other words, subclass methods must expect less and deliver more than the base class
methods they override. This rule implies that subtypes will conform to the Liskov
Substitution Principle.

93 “has-a” or “is-implemented-in-terms-of” relationships will be modeled through membership
or non-public inheritance.

Namespaces

N. JSF++ Definition
100 Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approximately five) names,
• using directive for many names.

Templates

N. JSF++ Definition
101 Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements
placed on its arguments.

2 with respect to all functions instantiated by actual arguments.
102 Template tests shall be created to cover all actual template instantiations.
103 Constraint checks should be applied to template arguments.
105 A template definition’s dependence on its instantiation contexts should be minimized.
106 Specializations for pointer types should be made where appropriate.

 JSF C++ Coding Rules

15-151

Functions

N. JSF++ Definition
112 Function return values should not obscure resource ownership.
115 If a function returns error information, then that error information will be tested.
117 Arguments should be passed by reference if NULL values are not possible:

• 117.1 – An object should be passed as const T& if the function should not change the
value of the object.

• 117.2 – An object should be passed as T& if the function may change the value of the
object.

118 Arguments should be passed via pointers if NULL values are possible:

• 118.1 – An object should be passed as const T* if its value should not be modified.
• 118.2 – An object should be passed as T* if its value may be modified.

120 Overloaded operations or methods should form families that use the same semantics, share
the same name, have the same purpose, and that are differentiated by formal parameters.

122 Trivial accessor and mutator functions should be inlined.
123 The number of accessor and mutator functions should be minimized.
124 Trivial forwarding functions should be inlined.
125 Unnecessary temporary objects should be avoided.

Comments

N. JSF++ Definition
127 Code that is not used (commented out) shall be deleted.

Note: This rule cannot be annotated in the source code.
128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.) outside

of the file being documented will not be allowed.
129 Comments in header files should describe the externally visible behavior of the functions or

classes being documented.
130 The purpose of every line of executable code should be explained by a comment, although

one comment may describe more than one line of code.

15 Coding Rule Sets and Concepts

15-152

N. JSF++ Definition
131 One should avoid stating in comments what is better stated in code (i.e. do not simply

repeat what is in the code).
132 Each variable declaration, typedef, enumeration value, and structure member will be

commented.
134 Assumptions (limitations) made by functions should be documented in the function’s

preamble.

Initialization

N. JSF++ Definition
143 Variables will not be introduced until they can be initialized with meaningful values. (See

also AV Rule 136, AV Rule 142, and AV Rule 73 concerning declaration scope, initialization
before use, and default constructors respectively.)

Types

N. JSF++ Definition
146 Floating point implementations shall comply with a defined floating point standard.

The standard that will be used is the ANSI/IEEE® Std 754 [1].

Unions and Bit Fields

N. JSF++ Definition
155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.

Operators

N. JSF++ Definition
167 The implementation of integer division in the chosen compiler shall be determined,

documented and taken into account.

Type Conversions

N. JSF++ Definition
183 Every possible measure should be taken to avoid type casting.

 JSF C++ Coding Rules

15-153

Expressions

N. JSF++ Definition
204 A single operation with side-effects shall only be used in the following contexts:

1 by itself
2 the right-hand side of an assignment
3 a condition
4 the only argument expression with a side-effect in a function call
5 condition of a loop
6 switch condition
7 single part of a chained operation

Memory Allocation

N. JSF++ Definition
207 Unencapsulated global data will be avoided.

Portable Code

N. JSF++ Definition
210 Algorithms shall not make assumptions concerning how data is represented in memory

(e.g. big endian vs. little endian, base class subobject ordering in derived classes, nonstatic
data member ordering across access specifiers, etc.).

210.1 Algorithms shall not make assumptions concerning the order of allocation of nonstatic data
members separated by an access specifier.

211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles begin at
particular addresses.

212 Underflow or overflow functioning shall not be depended on in any special way.
214 Assuming that non-local static objects, in separate translation units, are initialized in a

special order shall not be done.

15 Coding Rule Sets and Concepts

15-154

Efficiency Considerations

N. JSF++ Definition
216 Programmers should not attempt to prematurely optimize code.

Miscellaneous

N. JSF++ Definition
217 Compile-time and link-time errors should be preferred over run-time errors.
218 Compiler warning levels will be set in compliance with project policies.

Testing

N. JSF++ Definition
219 All tests applied to a base class interface shall be applied to all derived class interfaces as

well. If the derived class poses stronger postconditions/invariants, then the new
postconditions /invariants shall be substituted in the derived class tests.

220 Structural coverage algorithms shall be applied against flattened classes.
221 Structural coverage of a class within an inheritance hierarchy containing virtual functions

shall include testing every possible resolution for each set of identical polymorphic
references.

 JSF C++ Coding Rules

15-155

Configure Verification of Modules or
Libraries

• “Provide Context for C Code Verification” on page 16-2
• “Provide Context for C++ Code Verification” on page 16-4
• “Verify C Application Without main Function” on page 16-6
• “Verify C++ Classes” on page 16-10

16

Provide Context for C Code Verification
This example shows how to provide context for your C code verification. If you use default
options and do not provide a main function, Polyspace Code Prover checks your code for
robustness against all verification conditions. For instance, the software:

• Considers that global variables and inputs of uncalled functions are full range.
• Generates a main that calls uncalled functions in arbitrary order.

In addition, if you do not define a function but declare and call it in your code, Polyspace
stubs the function. For a detailed list of assumptions, see “Code Prover Analysis
Assumptions”.

You can use analysis options on the Configuration pane to change the default behavior
and provide more context about your code. Performing contextual verification can result
in more proven code and therefore fewer orange checks.

Control Variable Range
Use the following options. The options appear under the Code Prover Verification node.

Option Purpose
Variables to initialize (-main-
generator-writes-variables)

Specify the global variables that Polyspace
must consider as initialized despite no
explicit initialization in the code.

Constraint setup (-data-range-
specifications)

Specify range for global variables.

Control Function Call Sequence
Use the following options. The options appear under the Code Prover Verification node.

Option Purpose
Initialization functions (-
functions-called-before-main)

Specify the functions that the generated
main must call first.

Functions to call (-main-
generator-calls)

Specify the functions that the generated
main must call later.

16 Configure Verification of Modules or Libraries

16-2

Control Stubbing Behavior
Use the following options. The options appear under the Inputs & Stubbing node.

Option Purpose
Functions to stub (-functions-to-
stub)

Specify the functions that Polyspace must
stub.

 Provide Context for C Code Verification

16-3

Provide Context for C++ Code Verification
This example shows how to provide context to your C++ code verification. If you use
default options and do not provide a main function, Polyspace Code Prover checks your
code for robustness against all verification conditions. For instance, the software:

• Considers that global variables and inputs of uncalled functions and methods are full
range.

• Generates a main that calls uncalled functions in arbitrary order.

In addition, if you do not define a function but declare and call it in your code, Polyspace
stubs the function. For a detailed list of assumptions, see “Code Prover Analysis
Assumptions”.

You can use analysis options on the Configuration pane to change the default behavior
and provide more context about your code. Performing contextual verification can result
in more proven code and therefore fewer orange checks.

Control Variable Range
Use the following options. The options appear under the Code Prover Verification node.

Option Purpose
Variables to initialize (-main-
generator-writes-variables)

Specify the global variables that Polyspace
must consider as initialized despite no
explicit initialization in the code.

Constraint setup (-data-range-
specifications)

Specify range for global variables.

Control Function Call Sequence
1 Use the following options to call class methods. The options appear under the Code

Prover Verification node.

Option Purpose
Class (-class-analyzer) Specify classes whose methods the

generated main must call.

16 Configure Verification of Modules or Libraries

16-4

Option Purpose
Functions to call within the
specified classes (-class-
analyzer-calls)

Specify methods that the generated
main must call.

Analyze class contents only (-
class-only)

Specify that the generated main must
call class methods only.

Skip member initialization
check (-no-constructors-init-
check)

Specify that the generated main must
not check whether each class
constructor initializes all class
members.

2 Use the following options to call functions that are not class methods. The options
appear under the Code Prover Verification node.

Option Purpose
Initialization functions (-
functions-called-before-main)

Specify the functions that the
generated main must call first.

Functions to call (-main-
generator-calls)

Specify the functions that the
generated main must call later.

 Provide Context for C++ Code Verification

16-5

Verify C Application Without main Function
Polyspace verification requires that your code must have a main function. You can do one
of the following:

• Provide a main function in your code.
• Specify that Polyspace must generate a main.

Generate main Function
Before verification, specify one of the following options:

Option Description
Verify whole application The verification stops if the software does

not detect a main.
Verify module or library (-main-
generator)

Before verification, Polyspace checks if your
code contains a main function.

If a main function exists, the software uses
that main. Otherwise, the software
generates a main using the options that
you specify:

• Variables to initialize (-main-
generator-writes-variables)

• Initialization functions (-
functions-called-before-main)

• Functions to call (-main-
generator-calls)

Manually Write main Function
During automatic main generation, the software makes certain assumptions about the
function call sequence or behavior of global variables. For instance, the default
automatically generated main models the following behavior:

• The functions that you specify using the option Functions to call (-main-
generator-calls) can be called in arbitrary order.

16 Configure Verification of Modules or Libraries

16-6

• In the beginning of each function body, global variables can have the full range of
values allowed by their type.

To provide a more accurate model of the call sequence, you can manually write a main
function for the purposes of verification. You can add this main function in a separate file
to your project. In some cases, providing an accurate call sequence can reduce the
number of orange checks. For example, in the following code, Polyspace assumes that f
and g can be called in any order. Therefore, it produces an orange overflow for the case
when f is called before g. If you know that f is called after g, you can write a main
function to model this sequence.

static char x;
static int y;

void f(void)
{
 y = 300;
}

void g(void)
{
 x = y;
}

Example 1: main Calls One Function Before Another

Suppose you want to verify two functions func1 and func2 that have the following
prototypes.

int func1(void *ptr, int x);
void func2(int x, int y);

You know that when both func1 and func2 are called, func1 is always called before
func2.

To manually define a main that models this behavior:

1 Write a main containing declarations of a volatile variable for each function
parameter type.

2 Write a loop with a volatile termination condition.

The verification assumes that a volatile variable can have any value allowed by its
type. Because the loop potentially terminates after any run, this condition models the
fact that you call func1 and func2 an arbitrary number of times.

 Verify C Application Without main Function

16-7

3 Inside this loop, write a switch block with a volatile condition. For each function,
write a case branch that calls the function using the volatile variable parameters
that you created.

Because each case branch is potentially not entered, this condition models the fact
that one of func1 and func2 might not be called.

For instance, you can write the following main:
void main()
{
 volatile int random=0;
 volatile void * volatile ptr;
 while(random)
 {
 switch (random)
 {
 case 1:
 random = func1(ptr, random); break;
 default:
 func2(random, random);
 }
 }
}

Example 2: main Calls One Function 10 Times Before Another

Suppose you want to verify two functions func1 and func2 with the following
prototypes:

void func1(int);
void func2(void);

You know that when both func1 and func2 are called, func1 is always called 10 times
before func2.

To manually define a main that models this behavior:

1 Write a main containing declarations of a volatile variable for each function
parameter type.

2 In your main function, call func1 in a loop 10 times before func2.

For instance, you can write the following main:

void main(void) {
 int i=0;
 volatile int random=0;

16 Configure Verification of Modules or Libraries

16-8

 while (++i <= 10)
 func1(random);

 func2();

}

 Verify C Application Without main Function

16-9

Verify C++ Classes
In this section...
“Verification of Classes” on page 16-10
“Methods and Class Specifics” on page 16-12

Verification of Classes
Object-oriented languages such as C++ are designed for reusability. When developing
code in such a language, you do not necessarily know every contexts in which the class is
deployed. A class or a class family is safe for reuse if it free of defects for all possible
contexts.

To make your classes safe against all possible contexts, perform a robustness verification
and remove as many run-time errors as possible.

Polyspace Code Prover performs a robustness verification by default. If you provide the
software the class definition together with the definition of the class methods, the
software simulates all uses of the class. If some of the method definitions are missing, the
software automatically stubs them.

1 The software verifies each constructor by creating an object using the constructor. If
a constructor does not exist, the software uses the default constructor.

2 The software verifies the public, static and protected class methods of those objects
assuming that:

• The methods can be called in arbitrary order.
• The method parameters can have any value in the range allowed by their data

type.

To perform this verification, by default, it generates a main function that calls the
methods that are not called elsewhere in the code. If you want all your methods to be
verified for all contexts, modify this behavior so that the generated main calls all
public and protected methods instead of just the uncalled ones. For more
information, see Functions to call within the specified classes (-
class-analyzer-calls).

3 The software calls the destructor of those objects (if they exist) and verifies them.

When verifying classes, Polyspace makes certain assumptions.

16 Configure Verification of Modules or Libraries

16-10

Code
Construct

Assumption

Global variable Unless explicitly initialized, in each method, global variables can have
any value allowed by their type.

For instance, in the following code, Polyspace assumes that globvar1
can have any value allowed by its type. Therefore, an orange Division
by zero appears on the division by globvar1. However, because
globvar2 is explicitly initialized, the Division by zero check on
division by globvar2 is green.

extern int fround(float fx);

// global variables
int globvar1;
int globvar2 = 100;

class Location
{
private:
 int x;

public:
 Location(int intx = 0) {
 x = intx;
 };

 void setx(int intx) {
 x = intx;
 };

 void fsetx(float fx) {
 int tx = fround(fx);
 if (tx / globvar1 != 0)
 {
 tx = tx / globvar2;
 setx(tx);
 }
 };
};

 Verify C++ Classes

16-11

Code
Construct

Assumption

Classes with
undefined
constructors

The members of the classes can be non-initialized.

In the following example, Polyspace assumes that m_loc.x can be non-
initialized. Therefore, an orange Non-initialized variable error
appears on x in the getMember method. Following the check, Polyspace
assumes that the variable can have any value allowed by its type.
Therefore, an orange Overflow appears on the addition operation in the
show method.

class OtherClass
{
protected:
 int x;
public:
 OtherClass (int intx);
 int getMember(void) {
 return x;
 };
};

class MyClass
{
 OtherClass m_loc;
public:
 MyClass(int intx) : m_loc(0) {};
 void show(void) {
 int wx, wl;
 wx = m_loc.getMember();
 wl = wx + 2;
 };
};

Methods and Class Specifics
• “Simple Class” on page 16-13
• “Template Classes” on page 16-14
• “Abstract Classes” on page 16-15
• “Static Classes” on page 16-16

16 Configure Verification of Modules or Libraries

16-12

• “Inherited Classes” on page 16-16
• “Simple Inheritance” on page 16-17
• “Multiple Inheritance” on page 16-19
• “Virtual Inheritance” on page 16-20
• “Class Integration” on page 16-20

Simple Class

Consider the following class:

Stack.h

#define MAXARRAY 100

class stack
{
 int array[MAXARRAY];
 long toparray;

public:
 int top (void);
 bool isempty (void);
 bool push (int newval);
 void pop (void);
 stack ();
};

stack.cpp

1 #include "stack.h"
2
3 stack::stack ()
4 {
5 toparray = -1;
6 for (int i = 0 ; i < MAXARRAY; i++)
7 array[i] = 0;
8 }
9
10 int stack::top (void)
11 {
12 int i = toparray;
13 return (array[i]);
14 }

 Verify C++ Classes

16-13

15
16 bool stack::isempty (void)
17 {
18 if (toparray >= 0)
19 return false;
20 else
21 return true;
22 }
23
24 bool stack::push (int newvalue)
25 {
26 if (toparray < MAXARRAY)
27 {
28 array[++toparray] = newvalue;
29 return true;
30 }
31
32 return false;
33 }
34
35 void stack::pop (void)
36 {
37 if (toparray >= 0)
38 toparray--;
39 }

The class analyzer calls the constructor and then the methods in any order many times.

The verification of this class highlights two problems:

• The stack::push method may write after the last element of the array, resulting in
the OBAI orange check at line 28.

• If called before push, the stack::top method will access element -1, resulting in the
OBAI and NIV checks at line 13.

Fixing these problems will eliminate run-time errors in this class.

Template Classes

A template class allows you to create a class without explicit knowledge of the data type
that the class operations handle. Polyspace cannot verify a template class directly. The
software can only verify a specific instance of the template class. To verify a template
class:

16 Configure Verification of Modules or Libraries

16-14

1 Create an explicit instance of the class.
2 Define a typedef of the instance and provide that typedef for verification.

In the following example, calc is a template class that can handle any data type through
the identifier myType.

template <class myType> class calc
{
public:
 myType multiply(myType x, myType y);
 myType add(myType x, myType y);
};
template <class myType> myType calc<myType>::multiply(myType x,myType y)
{
 return x*y;
}
template <class myType> myType calc<myType>::add(myType x, myType y)
{
 return x+y;
}

To verify this class:

1 Add the following code to your Polyspace project.

template class calc<int>;
typedef calc<int> my_template;

2 Provide my_template as argument of the option Class. See Class (-class-
analyzer).

Abstract Classes

In the real world, an instance of an abstract class cannot be created, so it cannot be
analyzed. However, it is easy to establish a verification by removing the pure declarations.
For example, this can be accomplished via an abstract class definition change:

void abstract_func () = 0; by void abstract_func ();

If an abstract class is provided for verification, the software will make the change
automatically and the virtual pure function (abstract_func in the example above) will
then be ignored during the verification of the abstract class.

This means that no call will be made from the generated main, so the function is
completely ignored. Moreover, if the function is called by another one, the pure virtual

 Verify C++ Classes

16-15

function will be stubbed and an orange check will be placed on the call with the message
“call of virtual function [f] may be pure.”

Consider the following classes:

A is an abstract class

B is a simple class.

A and B are base classes of C.

C is not an abstract class.

As it is not possible to create an object of class A, this class cannot be analyzed separately
from other classes. Therefore, you are not allowed to specify class A to the Polyspace
class analyzer. Of course, class C can be analyzed in the same way as in the previous
section “Multiple Inheritance.”

Static Classes

If a class defines a static methods, it is called in the generated main as a classical one.

Inherited Classes

When a function is not defined in a derived class, even if it is visible because it is
inherited from a father's class, it is not called in the generated main. In the example
below, the class Point is derived from the class Location:

16 Configure Verification of Modules or Libraries

16-16

class Location
{
protected:
 int x;
 int y;
 Location (int intx, int inty);
public:
 int getx(void) {return x;};
 int gety(void) {return y;};
};
class Point : public Location
{
protected:
 bool visible;
public :
 Point(int intx, int inty) : Location (intx, inty)
 {
 visible = false;
 };
 void show(void) { visible = true;};
 void hide(void) { visible = false;};
 bool isvisible(void) {return visible;};
};

Although the two methods Location::getx and Location::gety are visible for
derived classes, the generated main does not include these methods when analyzing the
class Point.

Inherited members are considered to be volatile if they are not explicitly initialized in the
father's constructors. In the example above, the two members Location::x and
Location::y will be considered volatile. If we analyze the above example in its current
state, the method Location:: Location(constructor) will be stubbed.

Simple Inheritance

Consider the following classes:

 Verify C++ Classes

16-17

A is the base class of B and D.

B is the base class of C.

In a case such a this, Polyspace software allows you to run the following verifications:

1 You can analyze class A just by providing its code to the software. This corresponds to
the previous “Simple Class” section in this chapter.

2 You can analyze class B class by providing its code and the class A declaration. In this
case, A code will be stubbed automatically by the software.

3 You can analyze class B class by providing B and A codes (declaration and definition).
This is a “first level of integration” verification. The class analyzer will not call A
methods. In this case, the objective is to find bugs only in the class B code.

4 You can analyze class C by providing the C code, the B class declaration and the A
class declaration. In this case, A and B codes will be stubbed automatically.

16 Configure Verification of Modules or Libraries

16-18

5 You can analyze class C by providing the A, B and C code for an integration
verification. The class analyzer will call all the C methods but not inherited methods
from B and A. The objective is to find only defects in class C.

In these cases, there is no need to provide D class code for analyzing A, B and C classes as
long as they do not use the class (e.g., member type) or need it (e.g., inherit).

Multiple Inheritance

Consider the following classes:

A and B are base classes of C.

In this case, Polyspace software allows you to run the following verifications:

1 You can analyze classes A and B separately just by providing their codes to the
software. This corresponds to the previous “Simple Class” section in this chapter.

2 You can analyze class C by providing its code with A and B declarations. A and B
methods will be stubbed automatically.

3 You can analyze class C by providing A, B and C codes for an integration verification.
The class analyzer will call all the C methods but not inherited methods from A and B.
The objective is to find bugs only in class C.

 Verify C++ Classes

16-19

Virtual Inheritance

Consider the following classes:

B and C classes virtually inherit the A class

B and C are base classes of D.

A, B, C and D can be analyzed in the same way as described in the previous section
“Abstract Classes.”

Virtual inheritance has no impact on the way of using the class analyzer.

Class Integration

Consider a C class that inherits from A and B classes and has object members of AA and
BB classes.

16 Configure Verification of Modules or Libraries

16-20

A class integration verification consists of verifying class C and providing the codes for A,
B, AA and BB. If some definitions are missing, the software will automatically stub them.

 Verify C++ Classes

16-21

Interpret Polyspace Code Prover
Results

• “Interpret Polyspace Code Prover Results” on page 17-2
• “Code Prover Result and Source Code Colors” on page 17-10
• “Code Prover Run-Time Checks” on page 17-17
• “Dashboard” on page 17-21
• “Concurrency Modeling” on page 17-27
• “Results List” on page 17-29
• “Source” on page 17-33
• “Result Details” on page 17-41
• “Call Hierarchy” on page 17-44
• “Variable Access” on page 17-47
• “Code Prover Analysis Following Red and Orange Checks” on page 17-55
• “Order of Code Prover Run-Time Checks” on page 17-61
• “Orange Checks in Code Prover” on page 17-63
• “Managing Orange Checks” on page 17-66
• “Critical Orange Checks” on page 17-71
• “Limit Display of Orange Checks” on page 17-74
• “Software Quality Objectives” on page 17-77
• “Reduce Orange Checks” on page 17-86
• “Test Orange Checks for Run-Time Errors” on page 17-90
• “Limitations of Automatic Orange Tester” on page 17-94

17

Interpret Polyspace Code Prover Results
When you open the results of a Polyspace Code Prover analysis, you see a list on the
Results List pane. The results consist of run-time checks, coding rule violations, code
metrics or global variable usage.

You can first narrow down the focus of your review:

• Use filters on the results list columns to narrow down the list. For instance, you can
focus on the high-impact defects.

• Organize results by file and function. Use the icon above the list.

Since the results of a Code Prover run-time check are dependent on the results of
previous checks, it helps to start review from the beginning of a function and work
your way down the function.

Once you narrow down the list, you can begin reviewing individual results. This topic
describes how to review a result.

17 Interpret Polyspace Code Prover Results

17-2

To begin your review, select a result in the list.

Interpret Result
Interpret Message

The first step is to understand what is wrong. Read the message on the Result Details
pane and the related line of code on the Source pane. Use the tools described below to
understand the result.

At this point, you might be ready to decide whether to fix the issue or not.

 Interpret Polyspace Code Prover Results

17-3

The message consists of several parts:

• Check color and icon: See “Code Prover Result and Source Code Colors” on page 17-
10. In case of checks for run-time errors:

• : Red indicates a definite error.
• : Orange indicates a possible error.
• : Gray indicates unreachable code.
• : Green indicates absence of that error.

• Description of the run-time check.

In the example above, the check determines if an array index goes outside the array
bounds.

• Values relevant to the run-time check.

In the example above, the message states the array size (127), the array bounds
(0..126) and the range of values that the array index variable can take at that point in
the code (0..555).

• Relevant sources of imprecision (for orange checks).

In the example above, the message states that two volatile variables might be
responsible for the check.

See Variable Ranges in Source Code Tooltips

On the Source pane, variables and operations with tooltips are underlined.

17 Interpret Polyspace Code Prover Results

17-4

In this example, tooltips appear on:

• s8_ret: You see its data type and range of values before the + operation.

If a data type conversion occurs during the + operation, you also see this in the
tooltip.

• +: You see the value of the left and right operand, and the result.
• =: You see any data type conversion that occurs during the assignment and the result.

Seek Additional Resources for Help

Sometimes, you need additional help for certain results. Click the icon to open a help
page for the selected result. See code examples illustrating the result.

Find Root Cause of Result
Sometimes, the root cause might be far from the actual location where the result is
displayed. For instance, a variable that you read might be non-initialized because the
initialization is not reachable. The defect is shown when you read the variable, but the
root cause is perhaps a previous if or while condition that is always false.

Navigate in Source Code

Sometimes, the Result Details pane shows one sequence of events that leads to the
result. However, in most situations, you have to find your own navigation pathways
through the code. Using tooltips on variables, follow the propagation of variable ranges as
you navigate through the code.

int func (int var) { /* Initial range of var */
 …

 Interpret Polyspace Code Prover Results

17-5

 var -= get (); /* New range of var */
 …
 set(&var); /* New range of var */
}

Use these quick navigation pathways in the user interface:

• Search for all references to a variable and browse through them.

To begin, right-click the variable name on the Source pane.
• Navigate from a function call to its definition.

To begin, right-click the function name on the Source pane.
• Navigate from a function to its callers and callees.

To begin, click the icon on the Result Details pane. You see the function
containing the result, with its callers and callees. Click a caller or callee name to
navigate to the call site. Double-click a name to navigate to the definition.

Alternatively, click the icon to see a graphical representation of the call sequence
leading to the result. To navigate to functions in this sequence, click through nodes in
the graph.

• Navigate from a function call or loop keyword to an error in the function or loop body.

If the error occurs only in a specific function call or specific loop iteration, the function
call or loop iteration is highlighted red. To begin, right-click the red function call or
loop keyword. Select Go To Cause if the option exists.

• Navigate across all instances of a global variable.

To begin, click the on the Result Details pane. See all global variables in the
result and read/write operations on them.

17 Interpret Polyspace Code Prover Results

17-6

Before you begin navigating through pathways in your code, ask the question: What am I
looking for? Based on your answer, choose the appropriate navigation tool. For instance:

• To investigate a Non-initialized variable check, you might want to make sure that
the variable is not initialized at all. To look for previous instances of the variable, on
the Source pane, right-click the variable and select Search For All References.
Alternatively, double-click the variable. These options show only instances of a specific
variable and not other variables with the same name in other scopes.

• To investigate a violation of MISRA C:2012 Rule 17.7:

 Interpret Polyspace Code Prover Results

17-7

The value returned by a function having non-void return type shall be used.

you might want to navigate from a function call to the function definition. Right-click
the function and select Go To Definition.

For other examples of what to look for, see “Code Prover Run-Time Checks” on page 17-

17. After you navigate away from the current result, use the icon on the Result
Details pane to come back.

Navigate in Separate Window

If reviewing a result requires deeper navigation in your source code, you can create a
duplicate source code window that focuses on the result while you navigate in the original
source code window.

Right-click on the Source pane and select Create Duplicate Code Window. Right-click
on the tab showing the duplicate file name (ending with -spawn 1) and select New
Vertical Group.

17 Interpret Polyspace Code Prover Results

17-8

Perform the navigation steps in the duplicate file window while the defect still appears on
the original file window. After the investigation is over, close the duplicate window.

See Also

More About
• “Filter and Group Results” on page 20-2
• “Address Polyspace Results Through Bug Fixes or Comments” on page 19-2

 See Also

17-9

Code Prover Result and Source Code Colors
This topic explains the various colors used in displaying the results of a Polyspace Code
Prover analysis.

Result Colors
Polyspace displays the different verification results with specific icons and colors on the
Results List and Result Details pane.

Run-Time Checks

Polyspace Code Prover checks each operation in your code for particular run-time errors.
The software assigns a color to the operation based on whether it proved the existence or
absence of a run-time error on all or some execution paths.

17 Interpret Polyspace Code Prover Results

17-10

Check
Color

Purpose Example Icon

Red Highlights operations that are
proven to cause a particular error
on all execution paths*.

Polyspace Code Prover verification
determines errors with reference
to the language standard. Though
some of the errors can be
acceptable for a particular
compilation environment, they
violate the language standard. To
allow some of the environment-
dependent behavior, use
appropriate analysis options. For
more information, see “Verification
Assumptions” and “Check
Behavior”.

Red Overflow on:

z = x+y;

The operation + overflows for
every value of x and y that the
verification considers at that
point.

Gray Highlights unreachable code. Gray Unreachable code
check:

if(x>0)
{}
else
{}

The else branch is
unreachable for all values of x
that the verification considers
at that point.

 Code Prover Result and Source Code Colors

17-11

Check
Color

Purpose Example Icon

Orange Highlights operations that can
cause an error on certain
execution paths.

For more information, see “Orange
Checks in Code Prover” on page
17-63.

Orange Overflow on:

z = x+y;

The analysis could not prove
whether the operation +
overflows.

The most common reason is
that the operation overflows
only for some values of x and
y that the verification
considers at that point. You
can use the tooltips on the
variables x and y in the
operation to see the range of
values that the verification
considers.

Green Highlights operations that are
proven to not cause a particular
error on all execution paths*.

Green Overflow on:

z = x+y;

The operation + does not
overflow for all values of x
and y that the verification
considers at that point.

* For most checks, the software terminates an execution path following the first run-time
error on the path. Therefore, if it proves a definite error (red) or absence of error (green)
on an operation, the proof is valid only for the execution paths that have not yet been
terminated at that point in the code. See “Code Prover Analysis Following Red and
Orange Checks” on page 17-55.

Other Results

Besides checks for run-time errors, Polyspace Code Prover also displays other results
about your code.

17 Interpret Polyspace Code Prover Results

17-12

Result Purpose Icon
Coding
rule
violations

Indicates violation of predefined or
custom coding rules.

 for predefined rules and for
custom rules.

Code
metrics

Indicates code complexity metrics. for metrics that do not exceed a limit
you specified and for metrics that
exceed a limit.

Global
variables

Indicates global variable
declaration.

 for shared potentially unprotected
variables and for non-shared
unused variables

Source Code Colors
Polyspace uses the following color scheme for displaying code on the Source pane.

• Lines with checks:

For every check on the Results List pane, Polyspace assigns the check color to the
corresponding section of code.

• For lines containing macros, if the macro is collapsed, then Polyspace colors the
entire line with the color of the most severe check on the line. The severity
decreases in this order: red, gray, orange, green.

This unreachable for loop contains a macro MAX_SIZE. The entire line is colored
gray.

If there is no check in a line containing a macro, Polyspace underlines the line in
black when the macro is collapsed.

• For all other lines, Polyspace colors only the keyword or identifier associated with
the check.

This assignment has three checks: i and used_global are initialized but the array
tab can be accessed outside its bounds. The [operator is colored orange to
indicate the issue.

 Code Prover Result and Source Code Colors

17-13

• Lines with coding rule violations:

For every coding rule violation on the Results List pane, Polyspace assigns to the
corresponding keyword or identifier:

• A symbol if the coding rule is a predefined rule. The predefined rules available
are MISRA C, MISRA AC AGC, MISRA C++, or JSF C++.

This if statement and || operation violates MISRA rules.

• A symbol if the coding rule is a custom rule.

This function name violates a custom naming convention.

• Lines with tooltips:

If a tooltip is available for a keyword or identifier on the Source pane, Polyspace:

• Uses solid underlining for the keyword or identifier if it is associated with a check.

This line has both checks and tooltips on input, % and used_global.

• Uses dashed underlining for the keyword or identifier if it is not associated with a
check.

This line has tooltips on for and <, but no checks on them.

• Uses dashed red underlining on function calls to indicate that the function body
contains a definite run-time error. The tooltip shows the line in the function body
that causes the error.

This call to function_with_red leads to a run-time error.

17 Interpret Polyspace Code Prover Results

17-14

• Function definitions:

When a function is defined, Polyspace colors the function name in blue.

• Lines deactivated due to conditional compilation:

Polyspace assigns a lighter shade of gray to code deactivated due to conditional
compilation. Such code occurs, for instance, in #ifdef statements where the macro
for a branch is not defined. This code does not affect the verification.

Global Variable Colors
The Variable Access pane shows the global variables in your code along with the read
and write operations on the variables.

For instance, used_global is a global variable that is written four times: once during
initialization, once in the function function_with_red, and twice in the function
function_with_grey.

 Code Prover Result and Source Code Colors

17-15

The color scheme is as follows:

• Variable colors:

• Orange: Shared, unprotected global variable (only applicable to multitasking code)
• Green: Shared, protected global variable (only applicable to multitasking code)
• Black: Unshared, used global variable
• Gray: Unshared, unused global variable

See “Global Variables”.
• Operation colors: If an operation occurs in unreachable code, it is grey, otherwise

black.

In the preceding example, one operation in the function function_with_grey is
unreachable but the other is reachable.

For more information, see “Variable Access” on page 17-47.

17 Interpret Polyspace Code Prover Results

17-16

Code Prover Run-Time Checks
Polyspace Code Prover checks each operation in your code for certain run-time errors and
displays the result as a red, green or orange check. For more information, see “Code
Prover Result and Source Code Colors” on page 17-10.

You must review a red or orange check and determine whether to fix your code. The
tables below list the checks that Polyspace Code Prover performs and how you can review
them.

Data Flow Checks
Check How to Review Details
Function not
called

Investigate why a function does
not appear in the call graph
starting from the main or another
entry point function.

“Review and Fix Function Not
Called Checks” on page 18-16

Function not
reachable

Identify the call sites of a function
and investigate why they occur in
unreachable code.

“Review and Fix Function Not
Reachable Checks” on page 18-
18

Non-
initialized
local
variable

Locate prior variable
initializations if any and see if
your program can bypass them.

“Review and Fix Non-initialized
Local Variable Checks” on page
18-49

Non-
initialized
pointer

Locate prior pointer initializations
if any and see if your program
can bypass them.

“Review and Fix Non-initialized
Pointer Checks” on page 18-53

Non-
initialized
variable

Locate prior initializations of the
global variable if any and see if
your program can bypass them.

“Review and Fix Non-initialized
Variable Checks” on page 18-56

Return value
not
initialized

Identify paths through your
function body that do not end in
a return statement.

“Review and Fix Return Value Not
Initialized Checks” on page 18-
85

 Code Prover Run-Time Checks

17-17

Check How to Review Details
Unreachable
code

Investigate why a conditional
statement in your code is
redundant, for instance, always
true or always false.

“Review and Fix Unreachable
Code Checks” on page 18-92

Numerical Checks
Check How to Review Details
Division by
zero

Review prior operations in your
code that lead to zero value of a
denominator.

“Review and Fix Division by Zero
Checks” on page 18-10

Invalid shift
operations

Review prior operations in your
code that lead to a shift amount
outside bounds or a negative
value being left-shifted.

“Review and Fix Invalid Shift
Operations Checks” on page 18-
36

Overflow Review prior operations in your
code that lead to an operation
overflowing.

“Review and Fix Overflow
Checks” on page 18-78

Static Memory Checks
Check How to Review Details
Absolute
address usage

Review uses of absolute address
in your code and make sure that
the addresses are valid.

“Review and Fix Absolute
Address Usage Checks” on page
18-3

Illegally
dereferenced
pointer

Review prior operations in your
code that lead to a pointer
pointing outside its allocated
memory buffer.

“Review and Fix Illegally
Dereferenced Pointer Checks” on
page 18-22

Out of bounds
array index

Review prior operations in your
code that lead to an array index
being greater than or equal to
array size.

“Review and Fix Out of Bounds
Array Index Checks” on page 18-
73

17 Interpret Polyspace Code Prover Results

17-18

Control Flow Checks
Check How to Review Details
Non-
terminating
call

Review operations in the function
body and find which run-time
error occurs because of issues
specific to the current function
call.

“Review and Fix Non-Terminating
Call Checks” on page 18-59

Non-
terminating
loop

Review operations in the loop and
determine why the loop does not
terminate or why a definite run-
time error occurs in one of the
loop runs.

“Review and Fix Non-Terminating
Loop Checks” on page 18-64

C++ Checks
Check How to Review Details
Invalid C++
specific
operations

Determine root cause of
nonpositive array size or
incorrect usage of the
typeid or the
dynamic_cast operator.

“Review and Fix Invalid C++
Specific Operations Checks” on
page 18-33

Function not
returning
value

Identify paths through your
function body that do not end in
a return statement.

“Review and Fix Function Not
Returning Value Checks” on page
18-20

Incorrect
object
oriented
programming

Investigate why a
certain virtual member call
or this pointer usage represents
an incorrect pattern of object
oriented programming.

“Review and Fix Incorrect Object
Oriented Programming Checks”
on page 18-30

Null this-
pointer
calling
method

Investigate why the pointer to the
current object can be NULL-
valued.

“Review and Fix Null This-pointer
Calling Method Checks” on page
18-71

 Code Prover Run-Time Checks

17-19

Check How to Review Details
Uncaught
exception

Investigate how an exception can
escape uncaught from the
function where it is thrown.

“Review and Fix Uncaught
Exception Checks” on page 18-
89

Other Checks
Check How to Review Details
Correctness
condition

Find the root cause of a function
pointer misuse, incorrect array
conversion or variable values
outside specified constraints.

“Review and Fix Correctness
Condition Checks” on page 18-
4

Invalid use
of standard
library
routine

Investigate why the arguments in
the current call to the standard
library routine are invalid.

“Review and Fix Invalid Use of
Standard Library Routine
Checks” on page 18-42

User
assertion

Investigate why the condition in
an assert statement fails.

“Review and Fix User Assertion
Checks” on page 18-98

17 Interpret Polyspace Code Prover Results

17-20

Dashboard
The Dashboard pane in the Polyspace user interface provides statistics on the
verification results in a graphical format.

On this tab, you can view four graphs and charts:

• Code covered by verification

This column graph displays:

• The percentage of files checked for run-time errors (verified). You can see this
percentage in the Files column.

 Dashboard

17-21

• The percentage of functions in verified files that are checked for run-time errors
(verified). You can see this percentage in the Functions column.

• The percentage of elementary operations in verified functions that are checked for
run-time errors. You can see this percentage in the Code operations column.

Click the column graph to open the Code covered by verification window.

This window contains:

17 Interpret Polyspace Code Prover Results

17-22

• The fraction of procedures that are unreachable in the format, Number of
unreachable procedures/Total number of procedures.

• A list of unreachable procedures along with the file and line number where they
are defined. Selecting a procedure displays the procedure definition in the Source
pane.

A low coverage can indicate an early red check or missing function call. Consider the
following code:

1 void coverage_eg(void)
2 {
3 int x;
4
5 x = 1 / x;
6 x = x + 1;
7 propagate();
8 }

Verification generates only one red Non-initialized local variable check, for a read
operation on the variable x — see line 5. The software does not display checks for
these elementary operations:

• On line 5, for the division operation, a Division by zero check.
• On line 5, for the division operation, an Overflow check.
• On line 6, for the addition operation, an Overflow check.
• On line 6, for another read operation on x, a Non-initialized local variable

check.

As the software displays only one out of the five operation checks for the code, the
percentage of elementary operations covered is 1/5 or 20%. The software does not
take into account the checks inside the unreachable function propagate(). For more
information, see “Reasons for Unchecked Code” on page 23-86.

• Check distribution

This pie chart displays the number of checks of each color. For a description of the
check colors, see “Code Prover Result and Source Code Colors” on page 17-10.

Using this pie chart, you can obtain an estimate of:

• The number of checks to review.
• The selectivity of your verification — the fraction of checks that are not orange.

 Dashboard

17-23

You can follow certain coding rules or specify certain verification options to reduce
the number of orange checks. See “Reduce Orange Checks” on page 17-86.

• Top 5 orange sources

An orange source is a variable or function that leads to an orange check. This column
graph displays five orange sources affecting the most number of checks.

An orange source can cause multiple orange checks in Code Prover. When you click an
orange source in this graph, the Results List pane shows only the orange checks
coming from this source.

For instance, in this code, the unknown value input can cause an overflow and a
division by zero. The variable input is an orange source that causes two orange
checks.

void func (int input) {
int val1;
double val2;
val1 = input++;
val2 = 1.0/input;
}

Each column represents an orange source. The columns are arranged in the order of
number of checks affected. The height of the column indicates the number of checks
affected by the corresponding orange source. Place your cursor on a column to open a
tooltip showing the source name and the number of checks affected by the source.

17 Interpret Polyspace Code Prover Results

17-24

Using this chart, you can:

• View the five sources affecting the most number of checks. Select a column to view
further details of the corresponding orange source in the Orange Sources pane.

• Prioritize your review of orange checks. If there are sources affecting a large
number of orange checks, address those sources if possible before you begin a
systematic review of orange checks. See “Create Constraint Template After
Analysis” on page 12-3.

• Top 5 coding rule violations

This column graph displays the five most violated coding rules. Each column
represents a coding rule and is indexed by the rule number. The height of the column
indicates the number of violations of the coding rule represented by that column.

For a list of supported coding rules, see “Supported MISRA C:2004 and MISRA AC
AGC Rules” on page 15-3, “MISRA C:2012 Directives and Rules”, “Supported MISRA C
++ Coding Rules” on page 15-86, and “Supported JSF C++ Coding Rules” on page 15-
124.

 Dashboard

17-25

You can also perform the following actions on this pane:

• Select elements on the graphs to filter results from the Results List pane. See “Filter
and Group Results” on page 20-2.

• View the configuration used to obtain the result. Select the link Configuration.
• View information about functions that are not reached during the analysis. Select the

link Unreachable functions.
• View the analysis assumptions behind the result. Select the link Analysis

assumptions.
• View the modeling of the multitasking configuration of your code. Select the link

Concurrency modeling on page 17-27.

17 Interpret Polyspace Code Prover Results

17-26

Concurrency Modeling
The Concurrency Modeling view displays all the tasks and interrupts that the analysis
extracts from your code and your Polyspace multitasking configuration.

in the table, the functions are listed in the first column by order of decreasing priority.
The second column shows how Polyspace detects each task or interrupt: automatically,
manually from the Polyspace configuration, or from an external file.

From this view, you can:

 Concurrency Modeling

17-27

• Click a function name to go to its definition in the source code.
• Click an event to go to the corresponding call to the concurrency primitive in the

source code, for instance pthread_create.
• Click Manually configured, for functions that are manually configured, to go to the

Multitasking node on the Configuration pane.

17 Interpret Polyspace Code Prover Results

17-28

Results List
The Results List pane lists all analysis results along with their attributes.

For each result, the Results List pane contains the check attributes, listed in columns:

Attribute Description
Family Group to which the result belongs, for

instance, red check, gray check, etc.
ID Unique identification number of the result.
Type Result information such as run-time check

color (red, orange, green), coding rule
standard (MISRA C: 2004, MISRA C: 2012),
etc.

Group Category of the result, for instance:

• For run-time checks: Groups such as
static memory, numerical, control flow,
etc.

• For coding rule violations: Groups
defined by the coding rule standard.

For instance, MISRA C: 2012 defines
groups related to code constructs such
as functions, pointers and arrays, etc.

Check Result name, for instance:

• For run-time checks: Check name
• For coding rule violations: Coding rule

number
Detail Additional information about a result. The

column shows the first line of the Result
Details pane.

For an example of how to use this column,
see the result MISRA C:2012 Dir 1.1.

 Results List

17-29

Attribute Description
Information For orange checks, this column indicates

whether the check is related to path or
input values. For more information, see
“Critical Orange Checks” on page 17-71.

For coding rule violations, this column
indicates whether the rule belongs to the
Required subset.

For global variables, this column contains
the global variable name.

File File containing the instruction where the
result occurs

Class Class containing the instruction where the
result occurs. If the result is not inside a
class definition, then this column contains
the entry, Global Scope.

Function Function containing the instruction where
the result occurs. If the function is a
method of a class, it appears in the format
class_name::function_name.

Folder Path to the folder that contains the source
file with the result

CERT ID or ISO-17961 ID CERT C99 or ISO/IEC TS 17961 IDs
corresponding to the Code Prover results.
Note that you primarly use Bug Finder for
checking security standards.

See:

• “CERT C Coding Standard and
Polyspace Results” (Polyspace Bug
Finder)

• “ISO/IEC TS 17961 Coding Standard
and Polyspace Results” (Polyspace Bug
Finder)

17 Interpret Polyspace Code Prover Results

17-30

Attribute Description
Line Line number of the instruction where the

result occurs.
Col Column number of the instruction where

the result occurs. The column number is
the number of characters from the
beginning of the line.

% Percentage of run-time checks that are not
orange (total selectivity rate). This column
is most useful when you choose the option
File from the list. The entry in this
column against a file or function indicates
the percentage of checks in the file or
function that are not orange.

Severity Level of severity you have assigned to the
result. The possible levels are:

• Unset
• High
• Medium
• Low

Status Review status you have assigned to the
result. The possible statuses are:

• Unreviewed (default status)
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

 Results List

17-31

Attribute Description
Justified Check boxes showing whether you have

justified the results. To justify a result, you
must assign the status Justified, No
action planned or Not a defect.

If you choose the option File from the
list, this column indicates the percentage of
checks that you have justified per file and
function.

Comments Comments you have entered about the
result

To show or hide any of the columns, right-click anywhere on the column titles. From the
context menu, select or clear the title of the column that you want to show or hide.

Using this pane, you can:

• Navigate through the results.
• Organize your result review using filters on the columns. For more information, see

“Filter and Group Results” (Polyspace Bug Finder).

17 Interpret Polyspace Code Prover Results

17-32

Source
The Source pane shows the source code with the results highlighted with specific colors
and icons. For more information, see “Code Prover Result and Source Code Colors” on
page 17-10.

On the Source pane, you can:

• Examine Source Code

On the Source pane, if you right-click a text string, the context menu provides options
to examine your code. For example, right-click the global variable PowerLevel:

 Source

17-33

Use the following options to examine and navigate through your code:

• Search "PowerLevel" in Current Source File — List occurrences of the string
within the current source file in the Search pane.

• Search "PowerLevel" in All Source Files — List occurrences of the string within
all source files in the Search pane.

17 Interpret Polyspace Code Prover Results

17-34

• Search For All References — List all references in the Search pane. The
software supports this feature for global and local variables, functions, types, and
classes.

• Go To Definition — Go to the line of code that contains the definition of
PowerLevel. The software supports this feature for global and local variables,
functions, types, and classes. If the definition is not available to Polyspace,
selecting the option takes you to the function declaration.

• Go To Line — Open the Go To Line dialog box. If you specify a line number and
click Enter, the software displays the specified line of code.

• Expand All Macros or Collapse All Macros — Display or hide the content of
macros in current source file.

• View Variable Range

Place your cursor over a check to view range information for variables, operands,
function parameters, and return values.

If a tooltip is available for a keyword or identifier on the Source pane, Polyspace:

• Uses solid underlining for the keyword or identifier if it is associated with a check.
• Uses dashed underlining for the keyword or identifier if it is not associated with a

check.

 Source

17-35

The range displayed is the same as the range that the software calculates during
verification (or includes the range if rounded during display). For instance, for floating
point variables, the tooltips show the variable range using the following rules:

• The range appears as a collection of values, for instance 1.0 or 2.0 or NaN, or
an interval [1.0 .. 2.0].

• The displayed range includes the actual variable range. For instance, the range
[1.0 .. 2.0] on a variable indicates that the variable cannot have the value
0.9999 or 2.0001.

However, the displayed range can also include additional values because of
approximation.

• Constants are displayed using either fixed point (1.0, -2.0, etc.) or scientific
format when it improves readability (1.0E+10, -1.2E-20, etc.).

• The tooltips clearly indicate which values are shown with rounding. For instance,
the value 1.0 does not involve rounding but 1.2345... shows a variable that is
displayed with rounding towards zero.

When rounded, at least 5 significant digits are displayed.

17 Interpret Polyspace Code Prover Results

17-36

• Expand Macros

You can view the contents of source code macros in the source code view. A code
information bar displays M icons that identify source code lines with macros.

When you click a line with this icon, the software displays the contents of macros on
that line.

To display the normal source code again, click the line away from the shaded region,
for example, on the arrow icon.

 Source

17-37

To display or hide the content of all macros:

1 Right-click any point within the source code view.
2 From the context menu, select either Expand All Macros or Collapse All

Macros.

Note

1 The Result Details pane also allows you to view the contents of a macro if the
check you select lies within a macro.

2 You cannot expand OSEK API macros in the Source pane.

• Manage Multiple Files

You can view multiple source files in the Source pane as separate tabs.

On the Source pane toolbar, right-click a view.

From the Source pane context menu, you can:

17 Interpret Polyspace Code Prover Results

17-38

• Close – Close the currently selected source file. You can also use the χ button to
close the tabs.

• Close Others – Close all source files except the currently selected file.
• Close All – Close all source files.
• Next – Display the next view.
• Previous – Display the previous view.
• New Horizontal Group – Split the Source pane horizontally to display the

selected source file below another file.
• New Vertical Group – Split the Source pane vertically to display the selected

source file side-by-side with another file.
• Floating – Display the current source file in a new window, outside the Source

pane.
• View Code Block

On the Source pane, to highlight a block of code, click either its opening or closing
brace.

 Source

17-39

• See Function Callers and Callees

You can click on a function name to see callers and callees of the function on the Call
Hierarchy pane.

• When a function is defined, the source code shows the function name in blue. Click
the function name to update the Call Hierarchy pane.

• When a function is called, the function call either shows a run-time check color or
not. If the function does not have a run-time check color (see func2 below), click
the function name to update the Call Hierarchy pane.

If the function has a run-time check color (see func above), right-click the function
and select Go To Definition. The Call Hierarchy pane updates to show the callers
and callees.

17 Interpret Polyspace Code Prover Results

17-40

Result Details
On the Results List pane, if you select a check, you see additional information on the
Result Details pane.

On this pane, you can also assign a Severity and Status to each check. You can also enter
comments to describe the results of your review. This action helps you track the progress
of your review and avoid reviewing the same check twice.

View Traceback

Sometimes, on the Result Details pane, you can see the sequence of instructions leading
to the check (traceback). You can select each instruction and navigate to it in your source
code.

 Result Details

17-41

The following columns appear in the traceback:

Column Description
Event Code instructions related to the defect.

For instance, if an Out of Bounds Array Index error occurs in a loop,
the Result Details pane can show updates to the array index that
occur inside the loop. The update statements might physically occur in
your code before or after the array access. However, because the
statements occur in a loop, they are related to the array access.

Scope Function containing the instructions. If the instructions are not in a
function, the column lists the file containing the instructions.

Line Line number of the instruction.

Show Error Call Graph

Click the Show error call graph icon, in the Result Details pane toolbar to display
the call sequence that leads to the code associated with a result.

17 Interpret Polyspace Code Prover Results

17-42

For global variables, this graph shows the call sequence leading to read and write
operations on the global variable.

Show Call Hierarchy and Variable Access

From the Result Details pane, you can open the Call Hierarchy and Variable Access
panes.

• Select the button to open the Call Hierarchy pane.

On this pane, you can see the function in which the current check occurs, along with
its callers and callees. For more information, see “Call Hierarchy” on page 17-44.

• Select the button to open the Variable Access pane.

On this pane, you can see the global variables in your code. For more information, see
“Variable Access” on page 17-47.

 Result Details

17-43

Call Hierarchy
The Call Hierarchy pane displays the call tree of functions in the source code.

For each function,foo, the Call Hierarchy pane lists the functions and tasks that call
foo (callers) and those called by foo (callees). The callers are indicated by (functions),
or (tasks). The callees are indicated by (functions) or (tasks). The Call
Hierarchy pane lists both direct function calls and indirect calls through function
pointers. The indirect calls are shown with the icon. Calls that are unreachable are
shown with the function name in grey.

You open the Call Hierarchy pane using the icon in your result details. To update the
pane:

• You can click a run-time check, either on the Results List or Source pane. You see
the function containing the check along with its callers and callees.

• You can click a function name in your source code. You see the callers and callees of
the function.If the function name also shows a run-time check color, instead of clicking
the function name, right-click the name and select Go To Definition.

In the following example, the Call Hierarchy pane displays the function,
generic_validation, along with its callers and callees.

17 Interpret Polyspace Code Prover Results

17-44

Depending on the name, the corresponding line number in the Call Hierarchy pane
refers to a different line in the source code:

• For the function name, the line number refers to the beginning of the function
definition. In the preceding example, the definition of generic_validation begins
on line 69.

• For a callee name, the number refers to the line where the callee is called. In the
preceding example, callee, functional_ranges, is called by generic_validation
on line 86.

• For a caller name, the number refers to the line where the caller calls the function. In
the preceding example, caller main calls generic_validation on line 50.

Tip Select a caller or callee name to navigate to the call location in the source code.

You can perform the following actions from the Call Hierarchy pane:

• Show/Hide Callers and Callees

Customize the view to display callers only or callees only. Show or hide callers and
callees by clicking this button

 Call Hierarchy

17-45

• Navigate Call Hierarchy

You can navigate the call hierarchy in your source code using this pane. For a function,
double-click a caller or callee name to navigate to the caller or callee definition in the
source code.

• Determine if Function is Stubbed

You can determine from the Stubbed column if a function is stubbed. The entries in
the column show why a function was stubbed.

• Automatic: Polyspace cannot find the function definition. For instance, you did not
provide the file containing the definition.

• User specified: You override the function definition by using the option
Functions to stub (-functions-to-stub).

• Lookup table: You verify generated code with functions that return values from
specific kinds of lookup tables. You use the option Generate stubs for
Embedded Coder lookup tables (-stub-embedded-coder-lookup-
table-functions).

• Std library: The function is a standard library function. You do not provide the
function definition explicitly in your Polyspace project.

• Mapped to std library: You map the function to a standard library function by
using the option -function-behavior-specifications.

For more information, see “Stubbed Functions”.

17 Interpret Polyspace Code Prover Results

17-46

Variable Access
The Variable Access pane displays global variables. For each global variable, the pane
lists all functions and tasks performing read/write access on the variables, along with
their attributes, such as values, read/write accesses and shared usage.

For each variable and each read/write access, the Variable Access pane contains the
relevant attributes. For the variables, the various attributes are listed in this table.

Attribute Description
Variables Name of Variable
File Source file containing variable declaration
Values Value (or range of values) of variable

This column is empty for pointer variables.
Reads Number of times the variable is read
Writes Number of times the variable is written
Written by task Name of tasks writing on variable
Read by task Name of tasks reading variable

 Variable Access

17-47

Attribute Description
Protection Whether shared variable is protected from

concurrent access

(Filled only when Usage column has entry,
Shared)

The possible entries in this column are:

• Critical Section: If variable is accessed in
critical section of code

• Temporal Exclusion: If variable is accessed
in mutually exclusive tasks

For more details on these entries, see
“Multitasking”.

Usage Shared, if variable is shared between tasks;
otherwise, blank

Line Line number of variable declaration
Col Column number (number of characters from

beginning of line) of variable declaration
Data Type Data type of variable (C/C++ data types or

structures/classes)

Double-click a variable name to view read/write access operations on the variable. The
arrowhead symbols and in the Variable Access pane indicate functions performing
read and write access respectively on the global variable. Likewise, tasks performing read
and write access are indicated by the symbols and respectively. For further
information on tasks, see Tasks (-entry-points).

For access operations on the variables, the various attributes described in the pane are
listed in this table.

Attribute Description
Variables Names of function (or task) performing read/

write access on the variable

17 Interpret Polyspace Code Prover Results

17-48

Attribute Description
Values Value or range of values of variable in the

function or task performing read/write access

This column is empty for pointer variables.
Written by task Only for tasks: Name of task performing write

access on variable
Read by task Only for tasks: Name of task performing read

access on variable
Line Line number where function or task accesses

variable
Col Column number where function or task accesses

variable
File Source file containing access operation on

variable

For example, consider the global variable, SHR2:

The function, Tserver, in the file, tasks1.c, performs two write operations on SHR2.
This is indicated in the Variable Access pane by the two instances of Tserver() under
the variable, SHR2, marked by . Likewise, the two write accesses by tasks, server1
and server2, are also listed under SHR2 and marked by .

The color scheme for variables in the Variable Access pane is:

• Black: global variable.
• Orange: global variable, shared between tasks with no protection against concurrent

access.

 Variable Access

17-49

• Green: global variable, shared between tasks and protected against concurrent access.
• Gray: global variable, declared but not used in reachable code.

If a task performs certain operations on a global variable, but the operations are in
unreachable code, the tasks are colored gray.

The information about global variables and read/write access operations obtained from
the Variable Access pane is called the data dictionary.

You can also perform the following actions from the Variable Access pane.

• View Access Graph

View the access operations on a global variable in graphical format using the Variable

Access pane. Select the global variable and click .

Here is an example of an access graph:

17 Interpret Polyspace Code Prover Results

17-50

 Variable Access

17-51

• View Structured Variables

For structured variables, view the individual fields from the Variable Access pane.
For example, for the structure, SHR4, the pane displays the fields, SHR4.A and
SHR4.B, and the functions performing read/write access on them.

• View Operations on Anonymous Variables

You can view operations on anonymous variables. For example, consider this line of
code that declares an unnamed union with the variable at an absolute address:

union {char, c; int i; } @0x1234;

When you analyze the preceding code and specify the iar compiler, the unnamed
variable at 0x1234 appears in the Variable Access pane with a name that starts with
pstanonymous.

17 Interpret Polyspace Code Prover Results

17-52

• View Access Through Pointers

View access operations on global variables performed indirectly through pointers.

If a read/write access on a variable is performed through pointers, then the access is

marked by (read) or (write).

For instance, in the file, initialisations.c, the variable, arr, is declared as a
pointer to the array, tab.

In the file main.c, tab is read in the function, interpolation(), through the
pointer variable, arr. This operation is shown in the Variable Access pane by the
icon.

During dynamic memory allocation, memory is allocated directly to a pointer. Because
the Values column is populated only for non-pointer variables, you cannot use this
column to find the values stored in dynamically allocated memory. Use the Variable
Access pane to navigate to dereferences of the pointer on the Source pane. Use the
tooltips on this pane to find the values following each pointer dereference.

• Show/Hide Callers and Callees

Customize the Variable Access pane to show only the shared variables. On the
Variable Access pane toolbar, click the Non-Shared Variables button to show or
hide non-shared variables.

• Hide Access in Unreachable Code

Hide read/write access occurring in unreachable code by clicking the filter button
.

• Limitations

You cannot see an addressing operation on a global variable or object (in C++) as a
read/write operation in the Variable Access pane. For example, consider the
following C++ code:

 Variable Access

17-53

class C0
{
public:
 C0() {}
 int get_flag()
 {
 volatile int rd;
 return rd;
 }
 ~C0() {}
private:
 int a; /* Never read/written */
};

C0 c0; /* c0 is unreachable */

int main()
{
 if (c0.get_flag()) /* Uses address of the method */
 {
 int *ptr = take_addr_of_x();
 return 1;
 }
 else
 return 0;
}

You do not see the method call c0.get_flag() in the Variable Access pane because
the call is an addressing operation on the method belonging to the object c0.

17 Interpret Polyspace Code Prover Results

17-54

Code Prover Analysis Following Red and Orange Checks
Polyspace considers that all execution paths that contain a run-time error terminate at the
location of the error. For a given execution path, Polyspace highlights the first occurrence
of a run-time error as a red or orange check and excludes that path from consideration.
Therefore:

• Following a red check, Polyspace does not analyze the remaining code in the same
scope as the check.

• Following an orange check, Polyspace analyzes the remaining code. But it considers
only a reduced subset of execution paths that did not contain the run-time error.
Therefore, if a green check occurs on an operation after an orange check, it means
that the operation does not cause a run-time error only for this reduced set of
execution paths.

Exceptions to this behavior can occur. For instance:

• For an orange overflow, if you specify wrap-around for Overflow computation
mode (-scalar-overflows-behavior), Polyspace wraps the result of an
overflow and does not terminate the execution paths.

• For a subnormal float result, if you specify warn-all for Subnormal detection
mode (-check-subnormal), Polyspace does not terminate the execution paths
with subnormal results.

The path containing a run-time error is terminated for the following reasons:

• The state of the program is unknown following the error. For instance, following an
Illegally dereferenced pointer error on an operation x=*ptr, the value of x is
unknown.

• You can review an error as early in your code as possible, because the first error on an
execution path is shown in the verification results.

• You do not have to review and then fix or justify the same result more than once. For
instance, consider these statements, where the vertical ellipsis represents code in
which the variable i is not modified.

x = arr[i];
.
.
y = arr[i];

 Code Prover Analysis Following Red and Orange Checks

17-55

If an orange Out of bounds array index check appears on x=arr[i], it means that i
can be outside the array bounds. You do not want to review another orange check on
y=arr[i] arising from the same cause.

Use these two rules to understand your checks. The following examples show how the two
rules can result in checks that can be misleading when viewed out of context. Understand
the examples below thoroughly to practice reviewing checks in context of the remaining
code.

Code Following Red Check
The following example shows what happens after a red check:
void red(void)
{
int x;
x = 1 / x ;
x = x + 1;
}

When Polyspace verification reaches the division by x, x has not yet been initialized.
Therefore, the software generates a red Non-initialized local variable check for
x.

Execution paths beyond division by x are stopped. No checks are generated for the
statement x = x + 1;.

Green Check Following Orange Check
The following example shows how a green check can result from a previous orange check.
An orange check terminates execution paths that contain an error. A green check on an
operation after an orange check means that the operation does not cause a run-time error
only for the remaining execution paths.
extern int Read_An_Input(void);
void propagate(void)
{
 int x;
 int y[100];
 x = Read_An_Input();
 y[x] = 0;
 y[x] = 0;
}

In this function:

17 Interpret Polyspace Code Prover Results

17-56

• x is assigned the return value of Read_An_Input. After this assignment, the software
estimates the range of x as [-2^31, 2^31-1].

• The first y[x]=0; shows an Out of bounds array index error because x can
have negative values.

• After the first y[x]=0;, from the size of y, the software estimates x to be in the range
[0,99].

• The second y[x]=0; shows a green check because x lies in the range [0,99].

Gray Check Following Orange Check
The following example shows how a gray check can result from a previous orange check.

Consider the following example:

extern int read_an_input(void);

void main(void)
{
 int x;
 int y[100];
 x = read_an_input();
 y[x] = 0;
 y[x-1] = (1 / x) + x ;
 if (x == 0)
 y[x] = 1;
}

 From the gray check, you can trace backwards as follows:

• The line y[x]=1; is unreachable.
• Therefore, the test to assess whether x = 0 is always false.
• The return value of read_an_input() is never equal to 0.

However, read_an_input can return any value in the full integer range, so this is not
the correct explanation.

Instead, consider the execution path leading to the gray code:

• The orange Out of bounds array index check on y[x]=0; means that subsequent
lines deal with x in [0,99].

 Code Prover Analysis Following Red and Orange Checks

17-57

• The orange Division by Zero check on the division by x means that x cannot be equal
to 0 on the subsequent lines. Therefore, following that line, x is in [1,99].

• Therefore, x is never equal to 0 in the if condition. Also, the array access through
y[x-1] shows a green check.

Red Check Following Orange Check
The following example shows how a red error can reveal a bug which occurred on
previous lines.

%% file1.c %%

void f(int);
int read_an_input(void);

int main() {
 int x,old_x;
 x = read_an_input();
 old_x = x;
 if (x<0 || x>10)
 return 1;
 f(x);
 x = 1 / old_x;
 // Red Division by Zero
 return 0;
}

%% file2.c %%

#include <math.h>

void f(int a) {
 int tmp;
 tmp = sqrt(0-a);
}

A red check occurs on x=1/old_x; in file1.c because of the following sequence of
steps during verification:

1 When x is assigned to old_x in file1.c, the verification assumes that x and old_x
have the full range of an integer, that is [-2^31 , 2^31-1].

2 Following the if clause in file1.c, x is in [0,10]. Because x and old_x are equal,
Polyspace considers that old_x is in [0,10] as well.

3 When x is passed to f in file1.c, the only possible value that x can have is 0. All
other values lead to a run-time exception in file2.c, that is tmp = sqrt(0–a);.

4 A red error occurs on x=1/old_x; in file1.c because the software assumes old_x
to be 0 as well.

17 Interpret Polyspace Code Prover Results

17-58

Red Checks in Unreachable Code
Code Prover can sometimes show red checks in code that is supposed to be unreachable
and gray. When propagating variable ranges, Code Prover sometimes makes
approximations. In making these approximations, Code Prover might consider an
otherwise unreachable branch as reachable. If an error appears in that unreachable
branch, it is colored red.

Consider the statement:

if (test_var == 5) {
 // Code Section
}

If test_var only has the value 5, the if branch is unreachable. If Code Prover makes an
approximation because of which test_var acquires the value 5, the branch is now
reachable and can show checks of other colors.

Use this figure to understand the effect of approximations. Because of approximations, a
check color that is higher up can supersede the colors below. A check that should be red
or green (indicating a definite error or definite absence of error) can become orange
because a variable acquires extra values that cannot occur at run time. A check that
should be gray can show red, green and orange checks because Code Prover considers an
unreachable branch as reachable.

 Code Prover Analysis Following Red and Orange Checks

17-59

See Also

Related Examples
• “Interpret Polyspace Code Prover Results” on page 17-2
• “Order of Code Prover Run-Time Checks” on page 17-61

17 Interpret Polyspace Code Prover Results

17-60

Order of Code Prover Run-Time Checks
If multiple checks are performed on the same operation, Code Prover performs them in a
specific order. The order of checks is important only if one of the checks is not green. If a
check is red, the subsequent checks are not performed. If a check is orange, the
subsequent checks are performed for a reduced set of values. For details, see “Code
Prover Analysis Following Red and Orange Checks” on page 17-55.

A simple example is the order of checks on a pointer dereference. Code Prover first
checks if the pointer is initialized and then checks if the pointer points to a valid location.
The check Illegally dereferenced pointer follows the check Non-initialized
local variable.

The order of checks can be nontrivial if one of the operands in a binary operation is a
floating-point variable. Code Prover checks the operation in this order:

1 Invalid operation on floats: If you enable the option to consider non-finite
floats, this check determines if the operation can result in NaN.

2 Overflow: This check determines if the result overflows.

If you enable the option to consider non-finite floats, this check determines if the
operation can result in infinities.

3 Subnormal float: If you enable the subnormal detection mode, this check
determines if the operation can result in subnormal values.

For instance, suppose you enable options to forbid infinities, NaNs and subnormal results.
In this example, the operation y = x + 0; is checked for all three issues. The operation
appears red but consists of three checks: an orange Invalid operation on floats, an
orange Overflow, and a red Subnormal float check.

#include <float.h>
#include <assert.h>

double input();

int main() {
 double x = input();
 double y;
 assert (x != x || x > DBL_MAX || (x > 0. && x < DBL_MIN));
 y = x + 0.;
 return 0;
}

 Order of Code Prover Run-Time Checks

17-61

At the + operation, x can have three groups of values: x is NaN, x > DBL_MAX, and x >
0. && x < DBL_MIN.

The checks are performed in this order:

1 Invalid operation on floats: The check is orange because one execution path
considers that x can be NaN.

For the next checks, this path is not considered.
2 Overflow: The check is orange because one group of execution paths considers that

x > DBL_MAX. For this group of paths, the + operation can result in infinity.

For the next check, this group of paths is not considered.
3 Subnormal float: On the remaining group of execution paths, x > 0. && x <

DBL_MIN. All values of x cause subnormal results. Therefore, this check is red.

The message on the Result Details pane reflects this reduction in paths. The message
for the Subnormal float check states (when finite) to show that infinite values were
removed from consideration.

The values for the left and right operands reflect all values before the operation, and not
the reduced set of values. Therefore, the left operand still shows Inf and NaN even
though these values were not considered for the check.

See Also
Consider non finite floats (-allow-non-finite-floats) | Infinities (-
check-infinite) | Invalid operation on floats | NaNs (-check-nan) |
Overflow | Subnormal float

More About
• “Code Prover Analysis Following Red and Orange Checks” on page 17-55

17 Interpret Polyspace Code Prover Results

17-62

Orange Checks in Code Prover
In this section...
“When Orange Checks Occur” on page 17-63
“Why Review Orange Checks” on page 17-63
“How to Review Orange Checks” on page 17-64
“How to Reduce Orange Checks” on page 17-64

When Orange Checks Occur
An orange check indicates that Polyspace detects a possible run-time error but cannot
prove it. A check on an operation appears orange if both conditions are true:

First condition Second condition Example
The operation occurs
multiple times on an
execution path or on
multiple execution paths.

During static verification,
the operation fails only a
fraction of times or only on a
fraction of paths.

The operation occurs in:

• A loop with more than
one iterations.

• A function that is called
more than once.

The operation involves a
variable that can take
multiple values.

During static verification,
the operation fails only for a
fraction of values.

The operation involves a
volatile variable.

During static verification, Polyspace can consider more execution paths than the
execution paths that occur during run time. If an operation fails on a subset of paths,
Polyspace cannot determine if that subset actually occurs during run time. Therefore,
instead of a red check, it produces an orange check on the operation.

Why Review Orange Checks
Considering a superset of actual execution paths is a sound approximation because
Polyspace does not lose information. If an operation contains a run-time error, Polyspace
does not produce a green check on the operation. If Polyspace cannot prove the run-time
error because of approximations, it produces an orange check. Therefore, you must
review orange checks.

 Orange Checks in Code Prover

17-63

Examples of Polyspace approximations include:

• Approximating the range of a variable at a certain point in the execution path. For
instance, Polyspace can approximate the range {-1} U [0,10] of a float variable
by [-1,10].

• Approximating the interleaving of instructions in multitasking code. For instance, even
if certain instructions in a pair of tasks cannot interrupt each other, Polyspace
verification might not take that into account.

How to Review Orange Checks
To ensure that an operation does not fail during run time:

1 Determine if the execution paths on which the operation fails can actually occur.

For more information, see “Interpret Polyspace Code Prover Results” on page 17-2.
2 If any of the execution paths can occur, fix the cause of the failure.
3 If the execution paths cannot occur, enter a comment in your Polyspace result or

source code, describing why they cannot occur. See “Address Polyspace Results
Through Bug Fixes or Comments” on page 19-2.

In a later verification, you can import these comments into your results. Then, if the
orange check persists in the later verification, you do not have to review it again.

How to Reduce Orange Checks
Polyspace performs approximations because of one of the following.

• Your code does not contain complete information about run-time execution. For
example, your code is partially developed or contains variables whose values are
known only at run time.

If you want fewer orange checks, provide the information that Polyspace requires. For
more information, see “Provide Context for Verification” on page 17-86.

• Your code is very complex. For example, there can be multiple type conversions or
multiple goto statements.

If you want fewer orange checks, reduce the complexity of your code and follow
recommended coding practices. For more information, see “Follow Coding Rules” on
page 17-87.

17 Interpret Polyspace Code Prover Results

17-64

• Polyspace must complete the verification in reasonable time and use reasonable
computing resources.

If you want fewer orange checks, improve the verification precision. But higher
precision also increases verification time. For more information, see “Improve
Verification Precision” on page 17-87.

 Orange Checks in Code Prover

17-65

Managing Orange Checks
Polyspace checks every operation in your code for certain run-time errors. Therefore, you
can have several orange checks in your verification results. To avoid spending
unreasonable time on an orange check review, you must develop an efficient review
process.

Depending on your stage of software development and quality goals, you can choose to:

• Review all red checks and critical orange checks.
• Review all red checks and all orange checks.

To see only red and critical orange checks, from the drop-down list in the left of the
Results List pane toolbar, select Critical checks.

17 Interpret Polyspace Code Prover Results

17-66

Software Development Stage
Development Stage Situation Review Process
Initial stage or unit
development stage

In initial stages of
development, you can have
partially developed code or
want to verify each source
file independently. In that
case, it is possible that:

• You have not defined all
your functions and class
methods.

• You do not have a main
function

Because of insufficient
information in the code,
Polyspace makes
assumptions that result in
many orange checks. For
instance, if you use the
default configuration,
Polyspace assumes full
range for inputs of functions
that are not called in the
code.

In the initial stages of
development, review all red
checks. For orange checks,
depending on your
requirements, do one of the
following:

• You want your partially
developed code to be
free of errors
independent of the
remaining code. For
instance, you want your
functions to not cause
run-time errors for any
input.

If so, review orange
checks at this stage.

• You might want your
partially developed code
to be free of errors only
in the context of the
remaining code.

If so, do one of the
following:

• Ignore orange checks
at this stage.

• Provide the context
and then review
orange checks. For
instance, you can
provide stubs for
undefined functions

 Managing Orange Checks

17-67

Development Stage Situation Review Process
to emulate them more
accurately.

For more information,
see “Provide Context
for Verification” on
page 17-86.

Later stage or integration
stage

In later stages of
development, you have
provided all your source
files. However, it is possible
that your code does not
contain all information
required for verification. For
example, you have variables
whose values are known
only at run time.

Depending on the time you
want to spend, do one of the
following:

• Review red checks only.
• Review red and critical

orange checks.

17 Interpret Polyspace Code Prover Results

17-68

Development Stage Situation Review Process
Final stage • You have provided all

your source files.
• You have emulated run-

time environment
accurately through the
verification options.

Depending on the time you
want to spend, do one of the
following:

• Review red checks and
critical orange checks.

• Review red checks and
all orange checks.

For each orange check:

• If the check indicates a
run-time error, fix the
cause of the error.

• If the check indicates a
Polyspace approximation,
enter a comment in your
results or source code.

As part of your final release
process, you can have one of
these criteria:

• All red and critical
orange checks must be
reviewed and justified.

• All red and orange
checks must be reviewed
and justified.

To justify a check, assign the
Status of No action
planned or Justified to
the check.

Quality Goals
For critical applications, you must review all red and orange checks.

 Managing Orange Checks

17-69

• If an orange check indicates a run-time error, fix the cause of the error.
• If an orange check indicates a Polyspace approximation, enter a comment in your

results or source code.

As part of your final release process, review and justify all red and orange checks. To
justify a check, assign the Status of No action planned or Justified to the check.

For noncritical applications, you can choose whether or not to review the noncritical
orange checks.

See Also

Related Examples
• “Limit Display of Orange Checks” on page 17-74

More About
• “Orange Checks in Code Prover” on page 17-63

17 Interpret Polyspace Code Prover Results

17-70

Critical Orange Checks
The software identifies a subset of orange checks that are most likely run-time errors. If
you select Critical checks from the drop-down list in the left of the Results List pane
toolbar, you can view this subset.

These orange checks are related to path and bounded input values. Here, input values
refer to values that are external to the application. Examples include:

• Inputs to functions called by generated main. For more information on functions called
by generated main, see Functions to call (-main-generator-calls).

• Global and volatile variables.
• Data returned by a stubbed function. The data can be the value returned by the

function or a function parameter modified through a pointer.

Path
The following example shows a path-related orange check that might be identified as a
potential run-time error.

Consider the following code.

void path(int x) {
 int result;
 result = 1 / (x - 10);
 // Orange division by zero
 }

void main() {
 path(1);
 path(10);
 }

The software identifies the orange ZDV check as a potential error. The Result Details
pane indicates the potential error:
...
Warning: scalar division by zero may occur
...

This Division by zero check on result=1/(x-10) is orange because:

 Critical Orange Checks

17-71

• path(1) does not cause a division by zero error.
• path(10) causes a division by zero error.

Polyspace indicates the definite division by zero error through a Non-terminating call
error on path(10). If you select the red check on path(10), the Result Details pane
provides the following information:
NTC Reason for the NTC: {path.x=10)

Bounded Input Values
Most input values can be bounded by data range specifications (DRS). The following
example shows an orange check related to bounded input values that might be identified
as a potential run-time error.

int tab[10];
extern int val;
// You specify that val is in [5..10]

void assignElement(int index) {
 int result;
 result = tab[index];
 // Orange Out of bounds array index
 }
void main(void) {
 assignElement(val);
}

If you specify a PERMANENT data range of 5 to 10 for the variable val, verification
generates an orange Out of bounds array index check on tab[index]. The Result
Details pane provides information about the potential error:
Warning: array index may be outside bounds: [0..9]
This check may be an issue related to bounded input values
Verifying DRS on extern variable val may remove this orange.
 array size: 10
 array index value: [5 .. 10]

Unbounded Input Values
The following example shows an orange check related to unbounded input values that
might be identified as a potential run-time error:

int tab[10];
extern int val;

17 Interpret Polyspace Code Prover Results

17-72

void assignElement(int index) {
 int result;
 result = tab[index];
 // Orange Out of bounds array index
 }
void main(void) {
 assignElement(val);
}

The verification generates an orange Out of bounds array index check on tab[index].
The Result Details pane provides information about the potential error:
Warning: array index may be outside bounds: [0..9]
This check may be an issue related to unbounded input values
If appropriate, applying DRS to extern variable val may remove this orange.
 array size: 10
 array index value: [-231 .. 231-1]

 Critical Orange Checks

17-73

Limit Display of Orange Checks
This example shows how to control the number and type of orange checks displayed on
the Results List pane. Use the drop-down list in the left of the Results List pane toolbar.
To reduce your review effort, you can do one of the following:

• Display only the critical orange checks.

Use the option Critical checks in the drop-down list. For more information, see
“Critical Orange Checks” on page 17-71.

• Limit the number or suppress orange checks for certain check types, using additional
options on drop-down list.

You can add predefined options to the list or create your own options. If you create
your own options, you can share the option files to help developers in your
organization review at least a certain number or percentage of orange checks.

1 Select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To add predefined options to the drop-down list on the Results List pane, select
Include Quality Objectives Scopes.

The Scope Name list shows additional options, HIS, SQO-4, SQO-5 and SQO-6.
Select an option to see the limit values.

In addition to orange checks, the options impose limits on the display of code
metrics and coding rule violations. The option HIS displays code metrics only. For
a detailed explanation of the predefined options, see “Software Quality
Objectives” on page 17-77.

• To create your own options in the drop-down list on the Results List pane, select
New. Save your option file.

On the left pane, select Run-time Check. On the right pane, to suppress a check
completely, clear the box next to the check. To suppress a check partly, specify a
percentage less than 100 to display.

To suppress all checks belonging to a category such as Numerical, clear the box
next to the category name. For more information on the categories, see “Run-Time
Checks”. If only a fraction of checks in a category are selected, the check box next
to the category name displays a symbol.

17 Interpret Polyspace Code Prover Results

17-74

Instead of a percentage, you can specify a number or the string ALL. To specify a
number, clear the box Specify percentage of checks.

3 Select Apply or OK.

 Limit Display of Orange Checks

17-75

On the Results List pane, the drop-down list on the Results List pane displays the
additional options.

4 Select the option corresponding to the limits that you want. Only the number or
percentage that you specify remain on the Results List pane.

• If you specify an absolute number, Polyspace displays that number of orange
checks.

• If you specify a percentage, Polyspace calculates that percentage of the total
green and orange checks. The software then considers whether green checks
alone make up the percentage. If they do not make up the percentage, the
software then displays sufficient orange checks to make up the percentage. For
example, if you specify 60, the software checks if 60% of your green and orange
checks comprise of green checks only. Otherwise, it displays sufficient orange
checks to make up the 60%.

You can use a review scope with percentage specifications to ensure that at least
60% of (green + orange) checks are either green or justified orange. To justify a
check, you must assign a Status of either No action planned or Justified.
For more information, see “Address Polyspace Results Through Bug Fixes or
Comments” on page 19-2.

See Also

Related Examples
• “Filter and Group Results” on page 20-2
• “Reduce Orange Checks” on page 17-86
• “Critical Orange Checks” on page 17-71

17 Interpret Polyspace Code Prover Results

17-76

Software Quality Objectives
The Software Quality Objectives or SQOs are a set of thresholds against which you can
compare your verification results. You can develop a review process based on the
Software Quality Objectives. In your review process, you consider only those results that
cause your project to fail a certain SQO level.

You can use a predefined SQO level or define your own SQOs. Following are the quality
thresholds specified by each predefined SQO.

SQO Level 1

Metric Threshold Value
Comment density of a file 20
Number of paths through a function 80
Number of goto statements 0
Cyclomatic complexity 10
Number of calling functions 5
Number of calls 7
Number of parameters per function 5
Number of instructions per function 50
Number of call levels in a function 4
Number of return statements in a function 1
Language scope, an indicator of the cost of
maintaining or changing functions.
Calculated as follows:
(N1+N2) / (n1+n2)

• n1 — Number of different operators
• N1 — Total number of operators
• n2 — Number of different operands
• N2 — Total number of operands

4

Number of recursions 0

 Software Quality Objectives

17-77

Metric Threshold Value
Number of direct recursions 0
Number of unjustified violations of the
following MISRA C:2004 rules:

• 5.2
• 8.11, 8.12
• 11.2, 11.3
• 12.12
• 13.3, 13.4, 13.5
• 14.4, 14.7
• 16.1, 16.2, 16.7
• 17.3, 17.4, 17.5, 17.6
• 18.4
• 20.4

0

Number of unjustified violations of the
following MISRA C:2012 rules:

• 8.8, 8.11, and 8.13
• 11.1, 11.2, 11.4, 11.5, 11.6, and 11.7
• 14.1 and 14.2
• 15.1, 15.2, 15.3, and 15.5
• 17.1 and 17.2
• 18.3, 18.4, 18.5, and 18.6
• 19.2
• 21.3

0

17 Interpret Polyspace Code Prover Results

17-78

Metric Threshold Value
Number of unjustified violations of the
following MISRA C++ rules:

• 2-10-2
• 3-1-3, 3-3-2, 3-9-3
• 5-0-15, 5-0-18, 5-0-19, 5-2-8, 5-2-9
• 6-2-2, 6-5-1, 6-5-2, 6-5-3, 6-5-4, 6-6-1,

6-6-2, 6-6-4, 6-6-5
• 7-5-1, 7-5-2, 7-5-4
• 8-4-1
• 9-5-1
• 10-1-2, 10-1-3, 10-3-1, 10-3-2, 10-3-3
• 15-0-3, 15-1-3, 15-3-3, 15-3-5, 15-3-6,

15-3-7, 15-4-1, 15-5-1, 15-5-2
• 18-4-1

0

SQO Level 2

In addition to all the requirements of SQO Level 1, this level includes the following
thresholds:

Metric Threshold Value
Number of unjustified red checks 0
Number of unjustified Non-terminating
call and Non-terminating loop checks

0

SQO Level 3

In addition to all the requirements of SQO Level 2, this level includes the following
thresholds:

Metric Threshold Value
Number of unjustified gray Unreachable
code checks

0

 Software Quality Objectives

17-79

SQO Level 4

In addition to all the requirements of SQO Level 3, this level includes the following
thresholds:

Metric Threshold Value
Percentage of justified orange checks,
calculated as the number of green and
justified orange checks divided by the total
number of green and orange checks.

Invalid C++ specific operations:
50
Correctness condition: 60
Division by zero: 80
Uncaught exception: 50
Function not returning value: 80
Illegally dereferenced pointer: 60
Return value not initialized: 80
Non-initialized local variable: 80
Non-initialized pointer: 60
Non-initialized variable: 60
Null this-pointer calling method:
50
Incorrect object oriented
programming: 50
Out of bounds array index: 80
Overflow: 60
Invalid shift operations: 80
User assertion: 60

SQO Level 5

In addition to all the requirements of SQO Level 4, this level includes the following
thresholds:

17 Interpret Polyspace Code Prover Results

17-80

Metric Threshold Value
Number of unjustified violations of the
following MISRA C:2004 rules:

• 6.3
• 8.7
• 9.2, 9.3
• 10.3, 10.5
• 11.1, 11.5
• 12.1, 12.2, 12.5, 12.6, 12.9, 12.10
• 13.1, 13.2, 13.6
• 14.8, 14.10
• 15.3
• 16.3, 16.8, 16.9
• 19.4, 19.9, 19.10, 19.11, 19.12
• 20.3

0

Number of unjustified violations of the
following MISRA C:2012 rules:

• 11.8
• 12.1 and 12.3
• 13.2 and 13.4
• 14.4
• 15.6 and 15.7
• 16.4 and 16.5
• 17.4
• 20.4, 20.6, 20.7, 20.9, and 20.11

0

 Software Quality Objectives

17-81

Metric Threshold Value
Number of unjustified violations of the
following MISRA C++ rules:

• 3-4-1, 3-9-2
• 4-5-1
• 5-0-1, 5-0-2, 5-0-7, 5-0-8, 5-0-9, 5-0-10,

5-0-13, 5-2-1, 5-2-2, 5-2-7, 5-2-11, 5-3-3,
5-2-5, 5-2-6, 5-3-2, 5-18-1

• 6-2-1, 6-3-1, 6-4-2, 6-4-6, 6-5-3
• 8-4-3, 8-4-4, 8-5-2, 8-5-3
• 11-0-1
• 12-1-1, 12-8-2
• 16-0-5, 16-0-6, 16-0-7, 16-2-2, 16-3-1

0

Percentage of justified orange checks,
calculated as the number of green and
justified orange checks divided by the total
number of green and orange checks.

Invalid C++ specific operations:
70
Correctness condition: 80
Division by zero: 90
Uncaught exception: 70
Function not returning value: 90
Illegally dereferenced pointer: 70
Return value not initialized: 90
Non-initialized local variable: 90
Non-initialized pointer: 70
Non-initialized variable: 70
Null this-pointer calling method:
70
Incorrect object oriented
programming: 70
Out of bounds array index: 90
Overflow: 80

17 Interpret Polyspace Code Prover Results

17-82

Metric Threshold Value
Invalid shift operations: 90
User assertion: 80

SQO Level 6

In addition to all the requirements of SQO Level 5, this level includes the following
thresholds:

Metric Threshold Value
Percentage of justified orange checks,
calculated as the number of green and
justified orange checks divided by the total
number of green and orange checks.

Invalid C++ specific operations:
90
Correctness condition: 100
Division by zero: 100
Uncaught exception: 90
Function not returning value: 100
Illegally dereferenced pointer: 80
Return value not initialized: 100
Non-initialized local variable:
100
Non-initialized pointer: 80
Non-initialized variable: 80
Null this-pointer calling method:
90
Incorrect object oriented
programming: 90
Out of bounds array index: 100
Overflow: 100
Invalid shift operations: 100
User assertion: 100

 Software Quality Objectives

17-83

SQO Exhaustive

In addition to all the requirements of SQO Level 1, this level includes the following
thresholds. The thresholds for coding rule violations apply only if you check for coding
rule violations.

Metric Threshold Value
Number of unjustified MISRA C and MISRA
C++ coding rule violations

0

Number of unjustified red checks 0
Number of unjustified Non-terminating
call and Non-terminating loop checks

0

Number of unjustified gray Unreachable
code checks

0

Percentage of justified orange checks,
calculated as the number of green and
justified orange checks divided by the total
number of green and orange checks.

100

For information on the rationales behind these levels, see Software Quality Objectives for
Source Code.

Comparing Verification Results Against Software Quality
Objectives
You can compare your verification results against SQOs either in the Polyspace user
interface or the Polyspace Metrics web interface.

• In the Polyspace user interface, you can use the menu in the Results List toolbar to
display only those results that you must fix or justify to attain a certain Software
Quality Objective.

17 Interpret Polyspace Code Prover Results

17-84

https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/p/72337_Software_Quality_Objectives_V3.0.pdf
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/p/72337_Software_Quality_Objectives_V3.0.pdf

To activate the SQO options in this menu, select Tools > Preferences. On the Review
Scope tab, select Include Quality Objectives Scope.

• In the Polyspace Metrics web interface, you can first determine whether your project
fails to attain a certain Software Quality Objective. The web interface generates a
Quality Status of PASS or FAIL for your project. If your project has a Quality Status
of FAIL, the web interface highlights in red those results that you must fix or justify to
attain the Software Quality Objective. You can choose to only download those results
to the Polyspace user interface and review them. For more information, see “Compare
Metrics Against Software Quality Objectives” on page 22-18.

Note You cannot use the menu in the user interface to suppress red or gray checks.
Therefore, you cannot directly compare your project against predefined SQO levels 1, 2
and 3 in the Polyspace user interface. However, in the Polyspace Metrics web interface,
you can compare your project against all predefined SQO levels.

 Software Quality Objectives

17-85

Reduce Orange Checks
An orange check indicates that Polyspace detects a possible run-time error but cannot
prove it. To help Polyspace produce more proven results, you can:

• Specify appropriate verification options.
• Follow appropriate coding practices.

You can also limit the number and family of orange checks displayed on Results List. For
more information, see “Limit Display of Orange Checks” on page 17-74.

You can take one or more of the following actions for orange check reduction.

Provide Context for Verification
This example shows how to provide additional information about run-time execution of
your code. Sometimes, the code you provide does not contain this information. For
instance:

• You do not have a main function
• You have a function that is declared but not defined.
• You have function arguments whose values are available only at run-time.
• You have concurrently running functions that are intended for execution in a specific

sequence.

Without sufficient information, Polyspace Code Prover cannot verify the presence or
absence of run-time errors.

To provide more context for verification and reduce orange checks, use the following
methods.

Method Example
Define how the main generated by
Polyspace initializes variables and calls
functions

“Code Prover Verification”

Define ranges for global variables and
function arguments.

“Create Constraint Template After Analysis”
on page 12-3

17 Interpret Polyspace Code Prover Results

17-86

Method Example
Define execution sequence for multitasking
code.

“Configuring Polyspace Multitasking
Analysis Manually” on page 13-14

Map an imprecisely analyzed function to a
standard function for precise results at the
function call sites.

-function-behavior-specifications

Improve Verification Precision
This example shows how to improve the precision of your verification. Increased precision
reduces orange checks, but increases verification time.

Use the following options. In the Polyspace user interface, the options appear on the
Configuration pane under the Precision node.

Option Purpose
Precision level (-O) Specify the verification algorithm.
Verification level (-to) Specify the number of times the Polyspace

verification process runs on your source
code.

Improve precision of
interprocedural analysis (-path-
sensitivity-delta)

Propagate greater information about
function arguments into the called function.

Sensitivity context (-context-
sensitivity)

If a function contains a red and green check
on the same instruction from two different
calls, display both checks instead of an
orange check.

Follow Coding Rules
This example shows how to follow coding rules that help Polyspace Code Prover prove the
presence or absence of run-time errors. If your code follows certain subsets of MISRA
coding rules, Polyspace can verify the presence or absence of run-time errors more easily.

1 Check whether your code follows the relevant subset of coding rules.

a In the Polyspace user interface, on the Configuration pane, depending on the
code, select one of the options under the Coding Rules node.

 Reduce Orange Checks

17-87

Type of Code Option Rule Description
Handwritten C code Check MISRA C:

2004 or Check
MISRA C:2012

• “Software Quality
Objective Subsets
(C:2004)” on page
15-47

• “Software Quality
Objective Subsets
(C:2012)” on page
15-59

Generated C code Check MISRA AC
AGC

“Software Quality
Objective Subsets (AC
AGC)” on page 15-53

Handwritten C++
code

Check MISRA C++
rules

“Software Quality
Objective Subsets (C+
+)” on page 15-116

b From the option drop-down list, select SQO-subset1 or SQO-subset2.
2 Run verification and review your results.
3 Fix the coding rule violations.

Reduce Application Size
Sometimes, the application size causes a loss of precision.

In a relatively smaller application, Code Prover retains more precise information about
variable ranges. For instance, suppose a variable takes these values:
{-2,-1,2,10,15,16,17}. If this variable is the denominator in a division, Code Prover shows
a green Division by zero as long as it retains this precise information. If the application
size grows beyond a certain point, to reduce computational complexity, Code Prover
approximates this range to, for instance, {-2,2} U {10} U {15,17}. Now, if the variable is
used for division, Code Prover shows an orange Division by zero.

To improve precision, you can divide the application into multiple modules. Verify each
module independently of the other modules. You can review the complete results for one
module, while the verification of the other modules are still running.

• You can let the software modularize your application. The software divides your source
files into multiple modules such that the interdependence between the modules is as
little as possible. To begin, select Tools > Run Modularize.

17 Interpret Polyspace Code Prover Results

17-88

• If you are running verification in the user interface, you can create multiple modules
in your project and copy source files into those modules.

• You can perform a file-by-file verification. Each file constitutes a module by itself. See
Verify files independently (-unit-by-unit).

See Also

More About
• “Orange Checks in Code Prover” on page 17-63
• “Managing Orange Checks” on page 17-66

 See Also

17-89

Test Orange Checks for Run-Time Errors
This example shows how to run dynamic tests on orange checks. An orange check means
that Polyspace static verification detects a possible error but cannot prove it. Orange
checks can occur because of:

• Run-time errors.
• Approximations that Polyspace made during static verification.

For more information, see “Orange Checks in Code Prover” on page 17-63.

By running tests, you can determine which orange checks represent run-time errors.
Provided that you have emulated the run-time environment accurately, if a dynamic test
fails, the orange check represents a run-time error. For this example, save the following
code in a file test_orange.c:

volatile int r;
#include <stdio.h>

int input() {
 int k;
 k = r%21 - 10;
 // k has value in [-10,10]
 return k;
}

void main() {
int x=input();
printf("%.2f",1.0/x);
}

Run Tests for Full Range of Input

Note The Automatic Orange Tester is not supported on Mac.

1 Create a Polyspace project. Add test_orange.c to your project.
2 In the project configuration, under Advanced Settings, select Automatic Orange

Tester.

17 Interpret Polyspace Code Prover Results

17-90

After verification, Polyspace generates additional source code that tests each orange
check for run-time errors. The software compiles this instrumented code. When you
run the automatic orange tester later, the software tests the resulting binary code.

3 Run a verification and open the results.

An orange Division by zero error appears on the operation 1.0/x.
4 Select Tools > Automatic Orange Tester.
5 In the Automatic Orange Tester window, click Start.

The Automatic Orange Tester runs tests on your code. If the tests take too long, use
the Stop All button to stop the tests. Reduce Number of tests before running again.

 Test Orange Checks for Run-Time Errors

17-91

6 After the tests are completed, under AOT Results, view the number of Tests that
detected run-time errors.

The orange Division by zero check represents a run-time error, so you see test case
failures.

7 On the Results tab, click the row describing the check.

A Test Case Detail window shows:

• The operation on which the tests were run.
• The test cases that failed with the reason for the failure.

Run Tests for Specified Range of Input
The Automatic Orange Tester window lists variables that cause orange checks. Because
Polyspace does not have sufficient information about these variables, it makes
assumptions about their range. If you know the variable range, you can specify it before
running dynamic tests on orange checks. For pointer variables, you can specify the
amount of memory written through the pointer. For instance, if the pointer points to an
array, you can specify whether the first element of the array or the entire array is written
through the pointer.

1 In the Automatic Orange Tester window, on the row describing r, click Advanced.
2 In the Edit Values window, under Variable Values, select Range of values.
3 Specify a minimum value of 1 and maximum of 9 for r. The Automatic Orange Tester

saves the range as a .tgf file in the Polyspace-Instrumented folder in your
results folder.

4 Click Start to restart tests on the orange Division by zero check for r in [1,9].

A division by zero cannot occur for r in [1,9], so there are no test failures. Although
a test failure indicates a run-time error for specified inputs, because of the finite
number of tests performed, the absence of test failures does not mean absence of a
run-time error.

5 To prove that your range converts the orange check into a green check, you must
provide the range during another static verification.

a In the Automatic Orange Tester window, select File > Export Constraints.
b Save your ranges as a text file.

17 Interpret Polyspace Code Prover Results

17-92

c Before running the next verification, on the Configuration pane, under Inputs
& Stubbing, provide the text file for Constraint setup.

d Run a verification and open your results.

Instead of orange, there is a green Division by zero check on the operation
1.0/x.

See Also

Related Examples
• “Identify Function Call with Run-Time Error” on page 18-62
• “Limit Display of Orange Checks” on page 17-74

More About
• “Limitations of Automatic Orange Tester” on page 17-94
• “Orange Checks in Code Prover” on page 17-63
• “Managing Orange Checks” on page 17-66

 See Also

17-93

Limitations of Automatic Orange Tester
The Automatic Orange Tester has the following limitations:

Unsupported Platforms
The Automatic Orange Tester is not supported on Mac.

Unsupported Polyspace Options
The software does not support the following options with -automatic-orange-tester.

• -div-round-down
• -char-is-16bits
• -short-is-8bits

In addition, the software does not support global asserts in the code of the form
Pst_Global_Assert(A,B) .

Options with Restrictions
Do not specify the following with -automatic-orange-tester:

• -allow-non-finite-floats
• -check-subnormal
• -data-range-specification (in global assert mode)
• -target [c18 | tms320c3c | x86_64 | sharc21x61]

You must use the -target mcpu option together with -pointer-is-32bits.

Unsupported C Routines
The software does not support verification of C code that contains calls to the following
routines:

• va_start
• va_arg

17 Interpret Polyspace Code Prover Results

17-94

• va_end
• va_copy
• setjmp
• sigsetjmp
• longjmp
• siglongjmp
• signal
• sigset
• sighold
• sigrelse
• sigpause
• sigignore
• sigaction
• sigpending
• sigsuspend
• sigvec
• sigblock
• sigsetmask
• sigprocmask
• siginterrupt
• srand
• srandom
• initstate
• setstate

 Limitations of Automatic Orange Tester

17-95

Reviewing Checks

• “Review and Fix Absolute Address Usage Checks” on page 18-3
• “Review and Fix Correctness Condition Checks” on page 18-4
• “Review and Fix Division by Zero Checks” on page 18-10
• “Review and Fix Function Not Called Checks” on page 18-16
• “Review and Fix Function Not Reachable Checks” on page 18-18
• “Review and Fix Function Not Returning Value Checks” on page 18-20
• “Review and Fix Illegally Dereferenced Pointer Checks” on page 18-22
• “Review and Fix Incorrect Object Oriented Programming Checks” on page 18-30
• “Review and Fix Invalid C++ Specific Operations Checks” on page 18-33
• “Review and Fix Invalid Shift Operations Checks” on page 18-36
• “Review and Fix Invalid Use of Standard Library Routine Checks” on page 18-42
• “Invalid Use of Standard Library Floating Point Routines” on page 18-45
• “Review and Fix Non-initialized Local Variable Checks” on page 18-49
• “Review and Fix Non-initialized Pointer Checks” on page 18-53
• “Review and Fix Non-initialized Variable Checks” on page 18-56
• “Review and Fix Non-Terminating Call Checks” on page 18-59
• “Identify Function Call with Run-Time Error” on page 18-62
• “Review and Fix Non-Terminating Loop Checks” on page 18-64
• “Identify Loop Operation with Run-Time Error” on page 18-68
• “Review and Fix Null This-pointer Calling Method Checks” on page 18-71
• “Review and Fix Out of Bounds Array Index Checks” on page 18-73
• “Review and Fix Overflow Checks” on page 18-78
• “Detect Overflows in Buffer Size Computation” on page 18-83
• “Review and Fix Return Value Not Initialized Checks” on page 18-85
• “Review and Fix Uncaught Exception Checks” on page 18-89
• “Review and Fix Unreachable Code Checks” on page 18-92

18

• “Review and Fix User Assertion Checks” on page 18-98
• “Find Relations Between Variables in Code” on page 18-103
• “Review Polyspace Results on AUTOSAR Code” on page 18-107

18 Reviewing Checks

18-2

Review and Fix Absolute Address Usage Checks
Follow one or more of these steps until you determine a fix for the Absolute address
usage check. There are multiple ways to fix this check. For a description of the check and
code examples, see Absolute address usage.

Tip This check is green by default. To reduce the number of orange checks, if you trust
that all absolute addresses in your code are valid, you can retain this default behavior.

For best use of this check, leave this check green by default during initial stages of
development. During integration stage, use the option -no-assumption-on-absolute-
addresses and detect all uses of absolute memory addresses. Browse through them and
make sure that the addresses are valid.

1 Select the check on the Results List pane.

The Source pane displays the code operation containing the absolute address.
2 If you determine that the address is valid, add a comment and justification in your

result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

 Review and Fix Absolute Address Usage Checks

18-3

Review and Fix Correctness Condition Checks
Follow one or more of these steps until you determine a fix for the Correctness
condition check. There are multiple ways to fix a red or orange check. For a description
of the check and code examples, see Correctness condition.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
On the Results List pane, select the check. View the cause of check on the Result
Details pane. The following list shows some of the possible causes:

• An array is converted to another array of larger size.

In the following example, a red check occurs because an array is converted to another
array of larger size.

• When dereferenced, a function pointer has value NULL.

In the following example, a red check occurs because, when dereferenced, a function
pointer has value NULL.

• When dereferenced, a function pointer does not point to a function.

In the following example, an orange check occurs because Polyspace cannot determine
if a function pointer points to a function when dereferenced. This situation can occur
if, for instance, you assign an absolute address to the function pointer.

18 Reviewing Checks

18-4

• A function pointer points to a function, but the argument types of the pointer and the
function do not match. For example:

typedef int (*typeFuncPtr) (complex*);
int func(int* x);
.
.
typeFuncPtr funcPtr = &func;

In the following example, a red check occurs because:

• The function pointer points to a function func.
• func expects an argument of type int, but the corresponding argument of the

function pointer is a structure.

• A function pointer points to a function, but the argument numbers of the pointer and
the function do not match. For example:

typedef int (*typeFuncPtr) (int, int);
int func(int);
.
.
typeFuncPtr funcPtr = &func;.

In the following example, a red check occurs because:

• The function pointer points to a function func.
• func expects one argument but the function pointer has two arguments.

 Review and Fix Correctness Condition Checks

18-5

• A function pointer points to a function, but the return types of the pointer and the
function do not match. For example:

typedef double (*typeFuncPtr) (int);
int func(int);
.
.
typeFuncPtr funcPtr = &func;

In the following example, a red check occurs because:

• The function pointer points to a function func.
• func returns an int value, but the return type of the function pointer is double.

• The value of a variable falls outside the range that you specify through the Global
Assert mode. See “Constrain Global Variable Range” on page 12-11.

In the following example, a red check occurs because:

• You specify a range 0...10 for the variable glob.
• The value of the variable falls outside this range.

18 Reviewing Checks

18-6

Step 2: Determine Root Cause of Check
Based on the check information on the Result Details pane, perform further steps to
determine the root cause. You can perform the following steps in the Polyspace user
interface only.

Check Information How to Determine Root Cause
An array is converted to another array of
larger size.

1 To determine the array sizes, see the
definition of each array variable.

Right-click the variable and select Go
To Definition.

2 If you dynamically allocate memory to
an array, it is possible that their sizes
are not available during definition.
Browse through all instances of the
array variable to find where you
allocate memory to the array.

a Right-click the variable. Select
Search For All References.

All instances of the variable appear
on the Search pane with the
current instance highlighted.

b On the Search pane, select the
previous instances.

 Review and Fix Correctness Condition Checks

18-7

Check Information How to Determine Root Cause
Issues when dereferencing a function
pointer:

• The function pointer has value NULL
when dereferenced.

• The function pointer does not point to a
function when dereferenced.

• The function pointer points to a
function, but the argument types of the
pointer and the function do not match.

• The function pointer points to a
function, but the argument numbers of
the pointer and the function do not
match.

• The function pointer points to a
function, but the return types of the
pointer and the function do not match.

1 Find the location where you assign the
function pointer to a function.

a Right-click the function pointer.
Select Search For All
References.

All instances of the function
pointer appear on the Search pane
with the current instance
highlighted.

b On the Search pane, select the
previous instances.

2 Determine the argument and return
types of the function pointer type and
the function. Identify if there is a
mismatch between the two. For
instance, in the following example,
determine the argument and return
types of typeFuncPtr and func.

typeFuncPtr funcPtr = func;

a Right-click the function pointer
type and select Go To Definition.

b Right-click the function and select
Go To Definition. If the definition
does not exist, this option shows
the function stub definition
instead. In this case, find the
function declaration.

3 Sometimes, you assign a function
pointer to a function with matching
signature, but the assignment is
unreachable. Check if this is the case.

18 Reviewing Checks

18-8

Check Information How to Determine Root Cause
The value of a variable falls outside the
range that you specify through the Global
Assert mode.

Browse through all previous instances of
the global variable. Identify a suitable point
to constrain the variable.

1 Right-click the variable. Select Show
In Variable Access View.

2 On the Variable Access pane, select
each instance of the variable.

Step 3: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

 Review and Fix Correctness Condition Checks

18-9

Review and Fix Division by Zero Checks
Follow one or more of these steps until you determine a fix for the Division by zero
check. There are multiple ways to fix a red or orange check. For a description of the
check and code examples, see Division by zero.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Place your cursor on the / or % operation that causes the Division by zero error.

Obtain the following information from the tooltip:

• The values of the right operand (denominator).

In the preceding example, the right operand, val, has a range that contains zero.

Possible fix: To avoid the division by zero, perform the division only if val is not zero.

18 Reviewing Checks

18-10

Integer Floating-point
if(val != 0)
 func(1.0/val);
else
 /* Error handling */

#define eps 0.0000001
.
.
if(val < -eps || val > eps)
 func(1.0/val);
else
 /* Error handling */

• The probable root cause for division by zero, if indicated in the tooltip.

In the preceding example, the software identifies a stubbed function, getVal, as
probable cause.

Possible fix: To avoid the division by zero, constrain the return value of getVal. For
instance, specify that getVal returns values in a certain range, for example, 1..10.
For more information, see “Constrain Stubbed Functions” on page 12-15.

Step 2: Determine Root Cause of Check
Before a / or % operation, test if the denominator is zero. Provide appropriate error
handling if the denominator is zero.

Only if you do not expect a zero denominator, determine root cause of check. Trace the
data flow starting from the denominator variable. Identify a point where you can specify a
constraint to prevent the zero value.

In the following example, trace the data flow starting from arg2:

void foo() {
 double time = readTime();
 double dist = readDist();
 .
 .
 bar(dist,time);
}

void bar(double arg1, double arg2) {
 double vel;
 vel=arg1/arg2;
}

You might find that:

 Review and Fix Division by Zero Checks

18-11

1 bar is called with full-range of values.

Possible fix: Call bar only if its second argument time is greater than zero.
2 time obtains a full-range of values from readTime.

Possible fix: Constrain the return value of readTime, either in the body of readTime
or through the Polyspace Constraint Specification interface, if you do not have the
definition of readTime. For more information, see “Constrain Stubbed Functions” on
page 12-15.

To trace the data flow, select the check and note the information on the Result Details
pane.

• If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction.

• If the Result Details pane shows the line number of probable cause for the check,
right-click on the Source pane. Select Go To Line.

• Otherwise:

1 Find the previous write operation on the operand variable.

Example: The value of arg2 is written from the value of time in bar.
2 At the previous write operation, identify a new variable to trace back.

Place your cursor on the variables involved in the write operation to see their
values. The values help you decide which variable to trace.

Example: At bar(dist,time), you find that time has a full-range of values.
Therefore, you trace time.

3 Find the previous write operation on the new variable. Continue tracing back in
this way until you identify a point to specify your constraint.

Example: The previous write operation on time is time=readTime(). You can
choose to specify your constraint on the return value of readTime.

Depending on the variable, use the following navigation shortcuts to find previous
instances. You can perform the following steps in the Polyspace user interface only.

18 Reviewing Checks

18-12

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the Search
pane with the current instance highlighted.

2 On the Search pane, select the previous instances.
• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

Right-click the variable. If
the option Show In
Variable Access View
appears, the variable is a
global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance of
the variable is shown.

2 On this pane, select the previous instances of the
variable.

Write operations on the variable are indicated with
and read operations with .

Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is not
available to Polyspace, selecting the option takes you to
the function declaration.

2 In the definition of func, identify each return
statement. The variable that the function returns is your
new variable to trace back.

You can also determine if variables in any operation are related from some previous
operation. See “Find Relations Between Variables in Code” on page 18-103.

 Review and Fix Division by Zero Checks

18-13

Step 3: Look for Common Causes of Check
Look for common causes of the Division by zero check.

• For a variable that you expect to be non-zero, see if you test the variable in your code
to exclude the zero value.

Otherwise, Polyspace cannot determine that the variable has non-zero values. You can
also specify constraints outside your code. See “Specify External Constraints” on page
12-2.

• If you test the variable to exclude its zero value, see if the test occurs in a reduced
scope compared to the scope of the division.

For example, a statement assert(var !=0) occurs in an if or while block, but a
division by var occurs outside the block. If the code does not enter the if or while
block, the assert does not execute. Therefore, outside the if or while block,
Polyspace assumes that var can still be zero.

Possible fix:

• Investigate why the test occurs in a reduced scope. In the above example, see if
you can place the statement assert(var !=0) outside the if or for block.

• If you expect the if or while block to always execute, investigate when it does not
execute.

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you are using a volatile variable in your code. Then:

1 Polyspace assumes that the variable is full-range at every step in the code. The range
includes zero.

2 A division by the variable can cause Division by zero error.
3 If you know that the variable takes a non-zero value, add a comment and justification

describing why you did not change your code.

18 Reviewing Checks

18-14

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

Disabling This Check

You can effectively disable this check. If your compiler supports infinities and NaNs from
floating-point operations, you can enable a verification mode that incorporates infinities
and NaNs. See Consider non finite floats (-allow-non-finite-floats).

 Review and Fix Division by Zero Checks

18-15

Review and Fix Function Not Called Checks
Follow one or more of these steps until you determine a fix for the Function not called
check. There are multiple ways to fix this check. For a description of the check and code
examples, see Function not called.

If you determine that the check represents defensive code or a function that is part of a
library, add a comment and justification in your result or code explaining why you did not
change your code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

Note This check is not turned on by default. To turn on this check, you must specify the
appropriate analysis option. For more information, see Detect uncalled functions
(-uncalled-function-checks).

Step 1: Interpret Check Information
On the Results List pane, select the check. On the Source pane, the body of the function
is highlighted in gray.

Step 2: Determine Root Cause of Check
1 Search for the function name and see if you can find a call to the function in your

code.

On the Search pane, enter the function name. From the drop-down list beside the
search field, select Source.

Possible fix: If you do not find a call to the function, determine why the function
definition exists in your code.

18 Reviewing Checks

18-16

2 If you find a call to the function, see if it occurs in the body of another uncalled
function.

Possible fix: Investigate why the latter function is not called.
3 See if you call the function indirectly, for example, through function pointers.

If the indirection is too deep, Polyspace sometimes cannot determine that a certain
function is called.

Possible fix: If Polyspace cannot determine that you are calling a function indirectly,
you must verify the function separately. You do not need to write a new main function
for this other verification. Polyspace can generate a main function if you do not
provide one in your source. You can change the main generation options if needed.
For more information on the options, see “Code Prover Verification”.

Step 3: Look for Common Causes of Check
Look for the following common causes of the Function not called check.

• Determine if you intended to call the function but used another function instead.
• Determine if you intended to replace some code with a function call. You wrote the

function definition, but forgot to replace the original code with the function call.

If this situation occurs, you are likely to have duplicate code.
• See if you intend to call the function from yet unwritten code. If so, retain the function
definition.

• For code intended for multitasking, see if you have specified all your entry point
functions.

To see the options used for the result, select the link View configuration for results
on the Dashboard pane.

For more information, see Tasks (-entry-points).
• For code intended for multitasking, see if your main function contains an infinite loop.

Polyspace Code Prover requires that your main function must complete execution
before the other entry points begin.

For more information, see “Configuring Polyspace Multitasking Analysis Manually” on
page 13-14.

 Review and Fix Function Not Called Checks

18-17

Review and Fix Function Not Reachable Checks
Follow one or more of these steps until you determine a fix for the Function not
reachable check. There are multiple ways to fix this check. For a description of the check
and code examples, see Function not reachable.

If you determine that the check represents defensive code, add a comment and
justification in your result or code explaining why you did not change your code. See
“Address Polyspace Results Through Bug Fixes or Comments” on page 19-2.

Note This check is not turned on by default. To turn on this check, you must specify the
appropriate analysis option. For more information, see Detect uncalled functions
(-uncalled-function-checks).

Step 1: Interpret Check Information
Select the check on the Results List pane. On the Source pane, you can see the function
definition in gray.

Step 2: Determine Root Cause of Check
Determine where the function is called and review why all the function call sites are
unreachable. You can perform the following steps in the Polyspace user interface only.

1 Select the check on the Results List pane.

18 Reviewing Checks

18-18

2
On the Result Details pane, click the button.

On the Call Hierarchy pane, you see the callers of the function denoted by .
3 On the Call Hierarchy pane, select each caller.

This action takes you to the function call on the Source pane.
4 See if the caller itself is called from unreachable code. If the caller definition is

entirely in gray on the Source pane, it is called from unreachable code. Follow the
same investigation process, starting from step 1, for the caller.

5 Otherwise, investigate why the section of code from which you call the function is
unreachable.

The code can be unreachable because it follows a red check or because it contains
the gray Unreachable code check.

• If a red check occurs, fix your code to remove the check.
• If a gray Unreachable code check occurs, review the check and determine if you

must fix your code. See “Review and Fix Unreachable Code Checks” on page 18-
92.

Note If you do not see a caller name on the Call Hierarchy pane, determine if you are
calling the function indirectly, for example through a function pointer. Determine if a
mismatch occurs between the function pointer declaration and the function call through
the pointer.

Polyspace places a red or orange Correctness condition check on the indirect call if a
mismatch occurs. To detect a mismatch in indirect function calls, look for the
Correctness condition check on the Results List pane. For more information, see
Correctness condition.

 Review and Fix Function Not Reachable Checks

18-19

Review and Fix Function Not Returning Value Checks
Follow one or more of these steps until you determine a fix for the Function not
returning value check. For a description of the check and code examples, see Function
not returning value.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Select the check on the Results List pane. The Result Details pane displays further
information about the check.

You can see:

• The immediate cause of the check.

In this example, the software has identified that a function with a non-void return
type might not have a return statement.

• The probable root cause of the check, if indicated.

In this example, the software has identified that the check is possibly path-related.
More than one call to the function exists, and the check is green on at least one call.

Step 2: Determine Root Cause of Check
Determine why a return statement does not exist on certain execution paths.

1 Browse the function body for return statements.
2 If you find a return statement:

a See if the return statement occurs in a block inside the function.

For instance, the return statement occurs in an if block. An execution path
that does not enter the if block bypasses the return statement.

18 Reviewing Checks

18-20

b See if you can identify the execution paths that bypass the return statement.

For instance, an if block that contains the return statement is bypassed for
certain function inputs.

c If the function is called multiple times in your code, you can identify which
function call led to bypassing of the return statement. Use the option Sensitivity
Context to determine the check color for each function call.

Possible fix: If the return type of the function is incorrect, change it. Otherwise, add a
return statement on all execution paths. For instance, if only a fraction of branches of an
if-else if-else condition have a return statement, add a return statement in the
remaining branches. Alternatively, add a return statement outside the if-else if-
else condition.

 Review and Fix Function Not Returning Value Checks

18-21

Review and Fix Illegally Dereferenced Pointer Checks
Follow one or more of these steps until you determine a fix for the Illegally
dereferenced pointer check. There are multiple ways to fix this check. For a description
of the check and code examples, see Illegally dereferenced pointer.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Place your cursor on the dereference operator.

Obtain the following information from the tooltip:

• Whether the pointer can be NULL.

In the following example, ptr can be NULL when dereferenced.

Possible fix: Dereference ptr only if it is not NULL.

if(ptr !=NULL)
 *ptr = 1;
else
 /* Alternate action */

18 Reviewing Checks

18-22

• Whether the pointer points to dynamically allocated memory.

In the following example, ptr can point to dynamically allocated memory. It is possible
that the dynamic memory allocation operator returns NULL.

Possible fix: Check the return value of the memory allocation operator for NULL.

ptr = (char*) malloc(i);
if(ptr==NULL)
 /* Error handling*/
else {
 .
 .
 *ptr=0;
 .
 .
}

• Whether pointer points outside allowed bounds. A pointer points outside bounds when
the sum of pointer size and offset is greater than buffer size.

In the following example, the offset size (4096 bytes) together with pointer size (4
bytes) is greater than the buffer size (4096 bytes). If the pointer points to an array:

• The buffer size is the array size.
• The offset is the difference between the beginning of the array and the current

location of the pointer.

 Review and Fix Illegally Dereferenced Pointer Checks

18-23

Possible fix: Investigate why the pointer points outside the allowed buffer.
• Whether pointer can point outside allowed bounds because buffer size is unknown.

In the following example, the buffer size is unknown.

Possible fix: Investigate whether the pointer is assigned:

• The return value of an undefined function.
• The return value of a dynamic memory allocation function. Sometimes, Polyspace

cannot determine the buffer size from the dynamic memory allocation.
• Another pointer of a different type, for instance, void*.

• The probable root cause for illegal pointer dereference, if indicated in the tooltip.

In the following example, the software identifies a stubbed function, getAddress, as
probable cause.

18 Reviewing Checks

18-24

Possible fix: To avoid the illegally dereferenced pointer, constrain the return value of
getAddress. For instance, specify that getAddress returns a pointer to a 10-
element array. For more information, see “Constrain Stubbed Functions” on page 12-
15.

Step 2: Determine Root Cause of Check
Select the check and note the information on the Result Details pane.

• If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction and trace back to the root cause.

• If the Result Details pane shows the line number of probable cause for the check, in
the Polyspace user interface, right-click the Source pane. Select Go To Line.

• Otherwise, based on the nature of the error, use one of the following methods to find
the root cause. You can perform the following steps in the Polyspace user interface
only.

 Review and Fix Illegally Dereferenced Pointer Checks

18-25

Error How to Find Root Cause
Pointer can be
NULL.

Find an execution path where the pointer is assigned the
value NULL or not assigned a definite address.

1 Right-click the pointer and select Search For All
References.

2 Find each previous instance where the pointer is
assigned an address.

3 For each instance, on the Source pane, place your
cursor on the pointer. The tooltip indicates whether the
pointer can be NULL.

Possible fix: If the pointer can be NULL, place a check for
NULL immediately after the assignment.

if(ptr==NULL)
 /* Error handling*/
else {
 .
 .
 }

4 If the pointer is not NULL, see if the assignment occurs
only in a branch of a conditional statement. Investigate
when that branch does not execute.

Possible fix: Assign a valid address to the pointer in all
branches of the conditional statement.

Pointer can point to
dynamically
allocated memory.

Identify where the allocation occurs.

1 Right-click the pointer and select Search For All
References.

2 Find the previous instance where the pointer receives a
value from a dynamic memory allocation function such as
malloc.

Possible fix: After the allocation, test the pointer for
NULL.

18 Reviewing Checks

18-26

Error How to Find Root Cause
Pointer can point
outside bounds
allowed by the
buffer.

1 Find the allowed buffer.

a On the Search tab, enter the name of the variable
that the pointer points to. You already have this
name from the tooltip on the check.

b Search for the variable definition. Typically, this is
the first search result.

If the variable is an array, note the array size. If the
variable is a structure, search for the structure type
name on the Search tab and find the structure
definition. Note the size of the structure field that
the pointer points to.

2 Find out why the pointer points outside the allowed
buffer.

a Right-click the pointer and select Search For All
References.

b Identify any increment or decrement of the pointer.
See if you intended to make the increment or
decrement.

Possible fix: Remove unintended pointer arithmetic.
To avoid pointer arithmetic that takes a pointer
outside allowed buffer, use a reference pointer to
store its initial value. After every arithmetic
operation on your pointer, compare it with the
reference pointer to see if the difference is outside
the allowed buffer.

Step 3: Look for Common Causes of Check
Look for common causes of the Illegally dereferenced pointer check.

• If you use pointers for moving through an array, see if you can use an array index
instead.

 Review and Fix Illegally Dereferenced Pointer Checks

18-27

To avoid use of pointer arithmetic in your code, look for violations of MISRA C: 2004
rule 17.4 or MISRA C: 2012 rule 18.4. For more information, see “Check for Coding
Rule Violations” on page 14-2.

• See if you use pointers for moving through the fields of a structure.

Polyspace does not allow the pointer to one field of a structure to point to another
field. To allow this behavior, use the option Enable pointer arithmetic across
fields (-allow-ptr-arith-on-struct).

• See if you are dereferencing a pointer that points to a structure but does not have
sufficient memory for all its fields. Such a pointer usually results from type-casting a
pointer to a smaller structure.

Polyspace does not allow such dereference. To allow this behavior, use the option
Allow incomplete or partial allocation of structures (-size-in-
bytes).

• If an orange check occurs in a function body, see if you are passing arrays of different
sizes in different calls to the function.

See if one particular call causes the orange check. For a tutorial, see “Identify
Function Call with Run-Time Error” on page 18-62.

• See if you are performing a cast between two pointers of incompatible sizes.

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, the pointer receives an address from an undefined function. Then:

1 Polyspace assumes that the function can return NULL.

Therefore, the pointer dereference is orange.
2 Polyspace also assumes an allowed buffer size based on the type of the pointer.

If you increment the pointer, you exceed the allowed buffer. The pointer dereference
that follows the increment is orange.

18 Reviewing Checks

18-28

3 If you know that the function returns a non-NULL value or if you know the true
allowed buffer, add a comment and justification in your code describing why you did
not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

 Review and Fix Illegally Dereferenced Pointer Checks

18-29

Review and Fix Incorrect Object Oriented Programming
Checks

In this section...
“Step 1: Interpret Check Information” on page 18-30
“Step 2: Determine Root Cause of Check” on page 18-31

Follow one or more of these steps until you determine a fix for the Incorrect object
oriented programming check. For a description of the check and code examples, see
Incorrect object oriented programming.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
On the Results List pane, select the check. The Result Details pane displays further
information about the check.

You can see:

• The immediate cause of the check. For instance:

• You dereference a function pointer that has the value NULL or points to an invalid
member function.

The member function is invalid if its argument or return type does not match the
pointer argument or return type.

• You call a pure virtual member function of a class from the class constructor or
destructor.

• You call a member function using an incorrect this pointer.

To see why the this pointer can be incorrect, see Incorrect object oriented
programming.

18 Reviewing Checks

18-30

• The probable root cause of the check, if indicated.

Step 2: Determine Root Cause of Check
If you cannot determine the root cause based on the check information, use navigation
shortcuts in the user interface to navigate to the root cause.

Based on the specific error, use one of the following methods to find the root cause.

Error How to Find Root Cause
You dereference a
function pointer that
has the value NULL.

Right-click the function pointer and select Search For All
References. Find the instance where you assign NULL to the
function pointer.

You dereference a
function pointer that
points to an invalid
member function.

Compare the argument and return types of the function pointer
and the member function that it points to.

1 Right-click the function pointer on the Source pane and
select Search For All References. Find the instances
where you:

• Define the function pointer.
• Assign the address of a member function to the function

pointer.
2 Find the member function definition. Right-click the

member function name on the Source pane and select Go
To Definition.

 Review and Fix Incorrect Object Oriented Programming Checks

18-31

Error How to Find Root Cause
You call a pure
virtual member
function from a
constructor or
destructor.

Find the member function declaration and determine whether
you intended to declare it as virtual or pure virtual.
Alternatively, determine if you can replace the call to the pure
virtual function with another operation, for instance, a call to
a different member function.

1 Right-click the function name on the Source pane and
select Search for function_name in All Source Files.

2 Find the function declaration from the search results.

A pure virtual function has a declaration such as:

virtual void func() = 0;

You call a member
function using an
incorrect this pointer.

Determine why the this pointer is incorrect.

For instance, if a red Incorrect object oriented
programming check appears on a function call ptr->func()
and the message indicates that the this pointer is incorrect,
trace the data flow for ptr.

• Right-click the function pointer on the Source pane and
select Search For All References.

• Browse through all write operations on the pointer. Look for
the following issues:

• Cast between pointers of unrelated types.
• Pointer arithmetic that takes a pointer outside its

allowed buffer, for instance, the bounds of an array.

If a red Incorrect object oriented programming check
appears on a function call obj.func(), trace the data flow for
obj. See if obj is not initialized previously.

18 Reviewing Checks

18-32

Review and Fix Invalid C++ Specific Operations Checks
Follow one or more of these steps until you determine a fix for the Invalid C++ specific
operations check. There are multiple ways to fix a red or orange check. For a description
of the check and code examples, see Invalid C++ specific operations.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
On the Results List pane, select the check. The Result Details pane displays further
information about the check.

You can see:

• The immediate cause of the check. For instance:

• The size of an array is not strictly positive.

For instance, you create an array using the statement arr = new char [num].
num is possibly zero or negative.

Possible fix: Use num as an array size only if it is positive.
• The typeid operator dereferences a possibly NULL pointer.

Possible fix: Before using the typeid operator on a pointer, test the pointer for
NULL.

• The dynamic_cast operator performs an invalid cast.

 Review and Fix Invalid C++ Specific Operations Checks

18-33

Possible fix: The invalid cast results in a NULL return value for pointers and the
std::bad_cast exception for references. Try to avoid the invalid cast. Otherwise,
if the invalid cast is on pointers, make sure that you test the return value of
dynamic_cast for NULL before dereference. If the invalid cast is on references,
make sure that you catch the std::bad_cast exception in a try-catch
statement.

• The probable root cause of the check, if indicated.

Step 2: Determine Root Cause of Check
If you cannot determine the root cause based on the check information, use navigation
shortcuts in the user interface to navigate to the root cause.

Based on the nature of the error, use one of the following methods to find the root cause.

Error How to Find Root Cause
An array size is
nonpositive.

1 Trace the data flow for the size variable.

Follow the same root cause investigation steps as for a
Division by Zero check. See “Review and Fix Division by
Zero Checks” on page 18-10.

2 Identify a point where you can constrain the array size
variable to positive values.

The typeid operator
dereferences a
possibly NULL pointer.

1 Trace the data flow for the pointer variable.

Follow the same root cause investigation steps as for an
Illegally dereferenced pointer check. See “Review and Fix
Illegally Dereferenced Pointer Checks” on page 18-22.

2 Identify a point where you can test the pointer for NULL.
The dynamic_cast
operator performs an
invalid cast.

Navigate to the definitions of the classes involved. Determine the
inheritance relationship between the classes.

1 On the Source pane in the Polyspace user interface, right-
click the class name.

2 Select Go To Definition.

18 Reviewing Checks

18-34

Step 3: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you obtain the array size variable from a stubbed function getSize. Then:

1 Polyspace assumes that the return value of getSize is full-range. The range includes
nonpositive values.

2 Using the variable as array size in dynamic memory allocation causes orange Invalid
C++ specific operations.

3 If you know that the variable takes a positive value, add a comment and justification
explaining why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

 Review and Fix Invalid C++ Specific Operations Checks

18-35

Review and Fix Invalid Shift Operations Checks
Follow one or more of these steps until you determine a fix for the Invalid shift
operations check. There are multiple ways to fix the check. For a description of the
check and code examples, see Invalid shift operations.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Select the red or orange Invalid shift operations check. Obtain the following
information from the Result Details pane:

• The reason for the check being red or orange. Possible reasons:

• The shift amount can be outside allowed bounds.

The software also states the allowed range for the shift amount.
• Left operand of left shift can be negative.

In the example below, a red error occurs because the shift amount is outside allowed
bounds. The allowed range for the shift amount is 0 to 31.

Possible fix: To avoid the red or orange check, perform the shift operation only if the
shift amount is within bounds.

if(shiftAmount < (sizeof(int) * 8))
 /* Perform the shift */

18 Reviewing Checks

18-36

else
 /* Error handling */

• Probable root cause for the check, if the software provides this information.

In the preceding example, the software identifies a stubbed function, getVal as
probable cause.

Possible fix: To avoid the orange check, constrain the return value of getVal. For
instance, specify that getVal returns values in a certain range, for example, 0..10.
For more information, see “Constrain Stubbed Functions” on page 12-15.

Step 2: Determine Root Cause of Check
• If the shift amount is outside bounds, trace the data flow for the shift variable. Identify

a suitable point where you can constrain the shift variable.

In the following example, trace the data flow for shiftAmount.

void func(int val) {
 int shiftAmount = getShiftAmount();
 int res = val >> shiftAmount;
}

You might find that getShiftAmount returns full-range of values.

Possible fix:

• Perform the shift operation only if shiftAmount is between 0 and
(sizeof(int))*8 - 1.

• Constrain the return value of getShiftAmount, in the body of getShiftAmount
or through the Polyspace Constraint Specification interface, if you do not have the

 Review and Fix Invalid Shift Operations Checks

18-37

definition of getShiftAmount. For more information, see “Constrain Stubbed
Functions” on page 12-15.

• If the left operand of a left shift operation can be negative, trace the data flow for the
left operand variable. Identify a suitable point where you can constrain the left
operand variable.

In the following example, trace the data flow for shiftAmount.

void func(int shiftAmount) {
 int val = getVal();
 int res = val << shiftAmount;
}

You might find that getVal returns full-range of values.

Possible fix:

• Perform the shift operation only if val is positive.
• Constrain the return value of getVal, in the body of getVal or through the

Polyspace Constraint Specification interface, if you do not have the definition of
getVal. For more information, see “Constrain Stubbed Functions” on page 12-15.

• If you want Polyspace to allow the operation, use the analysis option Allow
negative operand for left shifts. See Allow negative operand for left
shifts (-allow-negative-operand-in-shift).

To trace the data flow, select the check and note the information on the Result Details
pane.

• If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction.

• If the Result Details pane shows the line number of probable cause for the check,
right-click on the Source pane. Select Go To Line.

• Otherwise:

1 Find the previous write operation on the variable you want to trace.
2 At the previous write operation, identify a new variable to trace back.

Place your cursor on the variables involved in the write operation to see their
values. The values help you decide which variable to trace.

3 Find the previous write operation on the new variable. Continue tracing back in
this way until you identify a point to specify your constraint.

18 Reviewing Checks

18-38

Depending on the variable, use the following navigation shortcuts to find previous
instances. You can perform the following steps in the Polyspace user interface only.

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the
Search pane with the current instance
highlighted.

2 On the Search pane, select the previous
instances.

• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

Right-click the variable.
If the option Show In
Variable Access View
appears, the variable is
a global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance
of the variable is shown.

2 On this pane, select the previous instances of the
variable.

Write operations on the variable are indicated with
 and read operations with .

 Review and Fix Invalid Shift Operations Checks

18-39

Variable How to Find Previous Instances of Variable
Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is
not available to Polyspace, selecting the option
takes you to the function declaration.

2 In the definition of func, identify each return
statement. The variable that the function returns is
your new variable to trace back.

You can also determine if variables in any operation are related from some previous
operation. See “Find Relations Between Variables in Code” on page 18-103.

Step 3: Look for Common Causes of Check
Look for common causes of the Invalid Shift Operations check.

• See if you have specified the right target processor type. The target processor type
determines the number of bits allowed for a certain variable type.

To determine the number of bits allowed:

1 Navigate to the variable definition. Note the variable type.

Right-click the variable and select Go To Definition, if the option exists.
2 See the number of bits allowed for the type.

In the configuration used for your results, select the Target & Compiler node.
Click the Edit button next to the Target processor type list.

• For left shifts with a negative operand, see if you intended to perform a right shift
instead.

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

18 Reviewing Checks

18-40

For instance, you obtain a variable from an undefined function and perform a left shift on
it. Then:

1 Polyspace assumes that the function can return a negative value.
2 The left shift operation can occur on a negative value and therefore there is an

orange check on the operation.
3 If you know that the function returns a positive value, add a comment and

justification describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

 Review and Fix Invalid Shift Operations Checks

18-41

Review and Fix Invalid Use of Standard Library Routine
Checks

Follow one or more of these steps until you determine a fix for the Invalid use of
standard library routine check. For a description of the check and code examples, see
Invalid use of standard library routine.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Select the check on the Results List pane. View further information about the check on
the Result Details pane. The check is red or orange because of invalid function
arguments.

The cause of a red or orange check depends on the standard library function that you use.
The following table shows the possible causes for some of the commonly used functions.

Function Cause of Red or Orange Check
islower, isdigit, and
other character-handling
functions in ctype.h

The value of the argument can be outside the range
allowed for an unsigned char variable.

Note that you can use the macro EOF as argument.

18 Reviewing Checks

18-42

Function Cause of Red or Orange Check
Functions in math.h The software checks for multiple kinds of errors in

sequence. The software performs each check only for
those execution paths where the previous check passes.

Some examples are given below. For more information
and a list of functions, see “Invalid Use of Standard
Library Floating Point Routines” on page 18-45.
sqrt The value of the argument

can be negative.
pow The first argument can be

negative while the second
argument is a non-integer.

exp, exp2, or the hyperbolic
functions

The argument can be so
large that the result exceeds
the value allowed for a
double.

log The argument can be zero
or negative.

asin or acos The argument can be
outside the range [-1,1].

tan The argument can have the
value HALF_PI.

acosh The argument can be less
than 1.

atanh The argument can be
greater than 1 or less than
-1.

fprintf, fscanf, and
other file handling functions

The file pointer argument can be non-readable. For
example, it can be NULL.

Functions that take string
arguments

The string argument can be an invalid string. For
example, it does not end with a terminating '\0'.

 Review and Fix Invalid Use of Standard Library Routine Checks

18-43

Function Cause of Red or Orange Check
memmove or memcpy The third argument of this function specifies the number

of bytes to copy from the second to the first argument.
This number can exceed the memory allocated to the first
or second argument.

Step 2: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you obtain a value from an undefined function and perform the sqrt
operation on it. Then:

1 Polyspace assumes that the function can return a negative value.
2 Therefore, the software produces an orange Invalid Use of Standard Library

Routine check on the sqrt function call.
3 If you know that the function returns a positive value, to avoid the orange, you can

specify a constraint on the return value of your function. See “Constrain Stubbed
Functions” on page 12-15. Alternately, add a comment and justification describing
why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

18 Reviewing Checks

18-44

Invalid Use of Standard Library Floating Point Routines
Polyspace Code Prover performs the Invalid Use of Standard Library Routine check
on standard library routines to determine if their arguments are valid. The check works
differently for memory routines, floating-point routines or string routines because their
arguments can be invalid in different ways. This topic describes how the check works for
standard library floating-point routines.

For more information on the check, see Invalid use of standard library
routine.

What the Check Looks For
The Invalid Use of Standard Library Routine check sequentially looks for the
following issues in use of floating-point routines.

• Domain error: A domain error occurs if the arguments of the function are invalid. The
definition of invalid argument varies based on whether you allow non-finite floats or
not. If you allow non-finite floats but:

• Specify that you must be warned about NaN results, a domain error occurs if the
function returns NaN and the arguments themselves are not NaN.

• Specify that NaN results must be forbidden, a domain error occurs if the function
returns NaN or the arguments themselves are NaN.

For details, see NaNs (-check-nan).

The check works in almost the same way as the check Invalid operation on
floats. The Invalid Use of Standard Library Routine check works on standard
library functions while the Invalid Operation on Floats check works on numerical
operations involving floating-point variables.

• Overflow error: An overflow error occurs if the result of the function overflows. The
definition of overflow varies based on whether you allow non-finite floats and based on
the rounding modes you specify. If you allow non-finite floats but specify that you must
be warned about infinite results, an overflow error occurs if the function returns
infinity and the arguments themselves are not infinity. For details, see Infinities
(-check-infinite).

 Invalid Use of Standard Library Floating Point Routines

18-45

The check works in the same way as the check Overflow. The Invalid Use of
Standard Library Routine check works on standard library functions while the
Overflow check works on numerical operations involving floating-point variables.

• Invalid pointer argument: For functions such as frexp that take pointer arguments,
the verification checks if it is valid to dereference the pointer. For instance, the pointer
is not NULL or does not point outside allowed bounds.

The check looks for these errors in sequence.

• If the check finds a definite domain error, it does not look for the overflow error.
• If the check finds a possible domain error, it looks for the overflow error only for the

execution paths where the domain error does not occur.

The check for each error itself can consist of multiple conditions, which are also checked
in sequence. Each check is performed only for those execution paths where the previous
check passes.

Single-Argument Functions Checked
The Invalid Use of Standard Library Routine check covers the following routines,
their single-precision versions with suffix f (if they have one) and their long double
versions with suffix l. The check works in exactly the same way for C and C++ code.

• acos
• acosh
• asin
• asinh
• atan
• atanh
• ceil
• cos
• cosh
• exp
• exp2
• expm1
• fabs

18 Reviewing Checks

18-46

• floor
• log
• log10
• log1p
• logb
• round
• sin
• sinh
• sqrt
• tan
• tanh
• trunc
• cbrt

Functions with Multiple Arguments
The Invalid Use of Standard Library Routine check covers the following routines,
their single-precision versions with suffix f (if they have one) and their long double
versions with suffix l. The check works in exactly the same way for C and C++ code.

• atan2
• fdim
• fma
• fmax
• fmin
• fmod
• frexp
• hypot
• ilogb
• ldexp
• modf
• nextafter

 Invalid Use of Standard Library Floating Point Routines

18-47

• nexttoward
• pow
• remainder

See Also
Consider non finite floats (-allow-non-finite-floats) | Float rounding
mode (-float-rounding-mode)

18 Reviewing Checks

18-48

Review and Fix Non-initialized Local Variable Checks
Follow one or more of these steps until you determine a fix for the Non-initialized local
variable check. There are multiple ways to fix this check. For a description of the check
and code examples, see Non-initialized local variable.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Place your cursor on the variable on which the Non-initialized local variable error
appears.

Obtain the probable root cause for the variable being non-initialized, if indicated in the
tooltip.

In the preceding example, the software identifies a stubbed function, initialize, as
probable cause.

Possible fix: To avoid the check, you can specify that initialize writes to its
arguments. For more information, see “Constrain Stubbed Functions” on page 12-15.

Step 2: Determine Root Cause of Check
You can perform the following steps in the Polyspace user interface only.

 Review and Fix Non-initialized Local Variable Checks

18-49

1 Search for the variable definition. See if you initialize the variable when you define it.

Right-click the variable and select Go To Definition, if the option exists.
2 If you do not want to initialize the variable during definition, browse through all

instances of the variable. Determine if you initialize the variable in any of those
instances.

Do one of the following:

• On the Source pane, double-click the variable.

Previous instances of the variable are highlighted. Scroll up to find them.
• On the Source pane, right-click the variable. Select Search For All References.

Select the previous instances on the Search pane.

Possible fix: If you do not initialize the variable, identify an instance where you can
initialize it.

3 If you find an instance where you initialize the variable, determine if you perform the
initialization in the scope where the Non-initialized local variable error appears.

For instance, you initialize the variable only in some branches of an if ...
elseif ... else statement. If you use the variable outside the statement, the
variable can be non-initialized.

Possible fix:

• Perform the initialization in the same scope where you use it.

In the preceding example, perform the initialization outside the if ...
elseif ... else statement.

• Perform the initialization in a block with smaller scope but make sure that the
block always executes.

In the preceding example, perform the initialization in all branches of the if ...
elseif ... else statement. Make sure that one branch of the statement
always executes.

Step 3: Look for Common Causes of Check
Look for common causes of the Non-initialized local variable check.

18 Reviewing Checks

18-50

• See if you pass the variable to another function by reference or pointers before using
it. Determine if you initialize the variable in the function body.

To navigate to the function body, right-click the function and select Go To Definition,
if the option exists.

• Determine if you initialize the variable in code that is not reachable.

For instance, you initialize the variable in code that follows a break or return
statement.

Possible fix: Investigate the unreachable code. For more information, see “Review and
Fix Unreachable Code Checks” on page 18-92.

• Determine if you initialize the variable in code that can be bypassed during execution.

For instance, you initialize the variable in a loop inside a function. However, for certain
function arguments, the loop does not execute.

Possible fix:

• Initialize the variable during declaration.
• Investigate when the code can be bypassed. Determine if you can avoid bypassing

of the code.
• If the variable is an array, determine if you initialize all elements of the array.
• If the variable is a structured variable, determine if you initialize all fields of the

structure.

If you do not initialize a certain field of the structure, see if the field is unused.

Possible fix: Initialize a field of the structure if you use the field in your code.

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you pass a variable to a function by pointer or reference. You intend to
initialize the variable in the function body, but you do not provide the function body
during verification. Then:

 Review and Fix Non-initialized Local Variable Checks

18-51

• Polyspace assumes that the function might not initialize the variable.
• If you use the variable following the function call, Polyspace considers that the

variable can be non-initialized. It produces an orange Non-initialized local variable
check on the variable.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

Disabling This Check

You can disable this check. If you disable this check, Polyspace assumes that at
declaration, variables have full-range of values allowed by their type. For more
information, see Disable checks for non-initialization (-disable-
initialization-checks).

18 Reviewing Checks

18-52

Review and Fix Non-initialized Pointer Checks
Follow one or more of these steps until you determine a fix for the Non-initialized
pointer check. There are multiple ways to fix this check. For a description of the check
and code examples, see Non-initialized pointer.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Select the check on the Results List pane. On the Result Details pane, obtain further
information about the check.

Step 2: Determine Root Cause of Check
Right-click the pointer variable and select Go To Definition. Initialize the variable when
you define it. If you do not want to initialize during definition, identify a suitable point to
initialize the variable before you read it.

For orange checks, determine why the pointer is non-initialized on certain execution
paths.

1 Find previous instances where write operations are performed on the pointer.
2 For each write operation, determine if the operation occurs:

 Review and Fix Non-initialized Pointer Checks

18-53

• Before the read operation containing the orange Non-initialized pointer check.

Possible fix: If the write operation occurs after the read operation, see if you
intended to perform the operations in reverse order.

• In an unreachable code block.

Possible fix: Investigate why the code block is unreachable. See “Review and Fix
Unreachable Code Checks” on page 18-92.

• In a code block that is not reached on certain execution paths. For example, the
operation occurs in an if block in a function. The if block is not entered for
certain function inputs.

Possible fix: Perform a write operation on all the execution paths. In the preceding
example, perform the write operation in all branches of the if ... elseif ...
else statement.

Depending on the nature of the variable, use the appropriate method to find previous
operations on the variable. You can perform the following steps in the Polyspace user
interface only.

Variable How to Find Previous Operations on Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the Search
pane with the current instance highlighted.

2 On the Search pane, select the previous instances.
• Browse the source code.

1 On the Source pane, double-click the variable.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

18 Reviewing Checks

18-54

Variable How to Find Previous Operations on Variable
Global Variable

Right-click the variable. If
the option Show In
Variable Access View
appears, the variable is a
global variable.

1 Select the option Show In Variable Access View.

The current instance of the variable is shown on the
Variable Access pane.

2 On this pane, select the previous instances of the
variable.

Write operations on the variable are indicated with .
Read operations are indicated with .

Step 3: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

Disabling This Check

You can disable the check in two ways:

• You can disable the check only for non-local pointers. Polyspace considers global
pointer variables to be initialized to NULL according to ANSI C standards. For more
information, see Ignore default initialization of global variables.

• You can disable the check completely along with other initialization checks. If you
disable this check, Polyspace assumes that at declaration, pointers can be NULL or
point to memory blocks at an unknown offset. For more information, see Disable
checks for non-initialization (-disable-initialization-checks).

 Review and Fix Non-initialized Pointer Checks

18-55

Review and Fix Non-initialized Variable Checks
Follow one or more of these steps until you determine a fix for the Non-initialized
variable check. There are multiple ways to fix this check. For a description of the check
and code examples, see Non-initialized variable.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
On the Results List pane, select the check. On the Result Details pane, obtain further
information about the check.

Obtain the following information:

• Probable cause of check, if described on the Result Details pane.

In the preceding example, there is an orange Non-initialized variable check on the
global variable globVar.

The software detects that the check is potentially a path-related issue. Therefore, the
global variable can be non-initialized only on certain execution paths. For example,
you initialized the global variable in an if block, but did not initialize it in the
corresponding else block.

Possible fix: Determine along which paths the global variables can be non-initialized.
• Value of global variable, if initialized.

In the preceding example, when initialized, the global variable globVar has value 0.

18 Reviewing Checks

18-56

Step 2: Determine Root Cause of Check
You can perform the following steps in the Polyspace user interface only.

Right-click the variable and select Go To Definition. Initialize the variable when you
define it. If you do not want to initialize during definition, identify a suitable point to
initialize the variable before you read it.

If the check is orange, determine why the variable is non-initialized on certain execution
paths.

1 Right-click the variable. Select Show In Variable Access View.
2 On the Variable Access pane, select each write operation on the variable.

Write operations are indicated with and read operations with .
3 Determine if the write operation occurs:

• Before the read operation containing the orange Non-initialized variable check.

Possible fix: If the write operation occurs after the read operation, see if you
intended to perform the operations in reverse order.

• In an unreachable code block.

Possible fix: Investigate why the code block is unreachable. See “Review and Fix
Unreachable Code Checks” on page 18-92.

• In a code block that is not reached on certain execution paths. For example, the
operation occurs in an if block in a function. The if block is not entered for
certain function inputs.

Possible fix: Perform a write operation on all the execution paths. In the preceding
example, perform the write operation in all branches of the if ... elseif ...
else statement.

Step 3: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

 Review and Fix Non-initialized Variable Checks

18-57

Disabling This Check

You can disable this check in two ways:

• You can specify that global variables must be considered as initialized. Polyspace
considers global variables to be initialized according to ANSI C standards. The default
values are:

• 0 for int
• 0 for char
• 0.0 for float

For more information, see Ignore default initialization of global variables.
• You can disable the check along with other initialization checks. If you disable this

check, Polyspace assumes that at declaration, variables have the full range of values
allowed by their type. For more information, see Disable checks for non-
initialization (-disable-initialization-checks).

18 Reviewing Checks

18-58

Review and Fix Non-Terminating Call Checks
Follow one or more of these steps until you determine a fix for the Non-terminating call
check. There are multiple ways to fix the check. For a description of the check and code
examples, see Non-terminating call.

For the general workflow on reviewing checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

A red Non-terminating call check on a function call indicates one of the following:

• An operation in the function body failed for that particular call. Because there are
other calls to the same function that do not cause a failure, the operation failure
typically appears as an orange check in the function body.

• The function does not return to its calling context for other reasons. For example, a
loop in the function body does not terminate.

Step 1: Determine Root Cause of Check
Determine the root cause of the check in the function body. You can perform the following
steps in the Polyspace user interface only.

1 Navigate to the function definition.

Right-click the function call containing the red check. Select Go To Definition, if the
option exists.

2 In the function body, determine if there is a loop where the termination condition is
never satisfied.

Possible fix: Change your code or the function arguments so that the termination
condition is satisfied.

3 Otherwise, in the function body, identify which orange check caused the red Non-
terminating call check on the function call.

If you cannot find the orange check by inspection, rerun verification using the
analysis option Sensitivity context. Provide the function name as option argument.
The software marks the orange check causing the red Non-terminating call check
as a dark orange check.

For more information, see Sensitivity context (-context-sensitivity).

 Review and Fix Non-Terminating Call Checks

18-59

For a tutorial on using the option, see “Identify Function Call with Run-Time Error”
on page 18-62.

Possible fix: Investigate the cause of the orange check. Change your code or the
function arguments to avoid the orange check.

Step 2: Look for Common Causes of Check
To trace a Non-terminating call check on a function call to an orange check in the
function body, try the following:

• If the function call contains arguments, in the function body, search for all instances of
the function parameters. See if you can find an orange check related to the
parameters. Because other calls to the same function do not cause an operation
failure, it is likely that the failure is related to the function parameter values in the red
call.

In the following example, in the body of func, search for all instances of arg1 and
arg2. Right-click the variable name and select Search For All References.

void func(int arg1, double arg2) {
 .
 .
}

void main() {
 int valInt1,valInt2;
 double valDouble1, valDouble2;
 .
 .
 func(valInt1, valDouble1);
 func(valInt2, valDouble2);
}

Because valInt1 and valDouble1 do not cause an operation failure in func, the
failure might be due to valInt2 or valDouble2. Because valInt2 and valDouble2
are copied to arg1 and arg2, the orange check must occur in an operation related to
arg1 or arg2.

• If the function call does not contain arguments, identify what is different between
various calls to the function. See if you can relate the source of this difference to an
orange check in the function body.

18 Reviewing Checks

18-60

For instance, if the function reads a global variable, different calls to the function can
operate on different values of the global variable. Determine if the function body
contains an orange check related to the global variable.

 Review and Fix Non-Terminating Call Checks

18-61

Identify Function Call with Run-Time Error
This tutorial shows how to identify the function call that causes a run-time error in the
function body.

If a function contains two different colors on the same operation for two different calls,
the software combines the call contexts and displays an orange check on the operation.
For example, when some function calls cause a red or orange check on an operation in the
function body and other calls cause a green check, in your verification results, the
operation is orange.

You have to distinguish orange checks that arise from combination of call contexts
because an orange check can arise from other causes. Using the option Sensitivity
context, make this distinction by storing individual call contexts for a function.

In this tutorial, a function is called twice. You identify which function call causes a run-
time error in the function body.

1 Run analysis on this code and open the results.

void func(int arg) {
 int loc_var = 0;
 loc_var = 1/arg;
}

void main(void) {
 int num = 1;
 func(num + 10);
 func(num - 1);
}

A red Non-terminating call check appears on the second call to func. In the body
of func, there is an orange Division by zero check on the / operation.

2 Specify that you want to store individual call context information for the function
func.

a In your project configuration, select the Precision node.
b Select custom for Sensitivity context.
c

Click to add a new field. Enter func.
3 Run verification and open the results.

18 Reviewing Checks

18-62

An orange Division by zero check still appears in the body of func. However, this
orange check is marked on the Results List pane as a dark orange check and is
denoted by a mark. Instead of a red Non-terminating call check, a dashed, red
line appears on the second call to func.

4 Select the orange check.

The Result Details pane shows the call contexts for the check. You can see that one
call produces a red check on the / operation and the other call produces a green
check. You can click each call to navigate to it in your source code.

See Also
Non-terminating call

Related Examples
• “Review and Fix Non-Terminating Call Checks” on page 18-59
• “Test Orange Checks for Run-Time Errors” on page 17-90

More About
• “Orange Checks in Code Prover” on page 17-63

 See Also

18-63

Review and Fix Non-Terminating Loop Checks
Follow one or more of these steps until you determine a fix for the Non-terminating
loop check. There are multiple ways to fix the check. For a description of the check and
code examples, see Non-terminating loop.

For the general workflow on reviewing checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Place your cursor on the loop keyword such as for or while.

Obtain the following information from the tooltip:

• Whether the loop is infinite or contains a run-time error.

In the following example, it is likely that the loop is infinite.

• If the loop contains a run-time error, the number of loop iterations. Because Polyspace
considers that execution stops when a run-time error occurs, from this number, you
can determine which loop iteration contains the error.

In the following example, it is likely that the loop contains a run-time error. The error
is likely to occur on the 31st loop iteration.

Step 2: Determine Root Cause of Check
• If the loop is infinite, determine why the loop-termination condition is never satisfied.

If you deliberately have an infinite loop in your code, such as for cyclic applications,
you can add a comment and justification in your result or code. See “Address
Polyspace Results Through Bug Fixes or Comments” on page 19-2.

18 Reviewing Checks

18-64

• If the loop contains a run-time error, identify the error that causes the Non-
terminating loop check. Fix the error.

In the loop body, the run-time error typically occurs as an orange check of another
type on an operation. The check is orange and not red because the operation typically
passes the check in the first few loop iterations and fails only in a later iteration.
However, because the failure occurs every time the loop runs, the Non-terminating
loop check on the loop keyword is red.

For loops with few iterations, you can navigate directly from the loop keyword to the
operation causing the run-time error.

• To find the source of error, on the Source pane, select the red loop keyword. The
Result Details pane shows the full history leading to the operation that causes the
run-time error.

• Navigate to the source of error in the loop body. Right-click the loop keyword and
select Go to Cause if the option exists.

 Review and Fix Non-Terminating Loop Checks

18-65

For a tutorial, see “Identify Loop Operation with Run-Time Error” on page 18-68.

Step 3: Look for Common Causes of Check
• If the loop is infinite:

• Check your loop-termination condition.
• Inside the loop body, see if you change at least one of the variables involved in the

loop-termination condition.

For instance, if the loop-termination condition is while (count1 + count2 <
count3), see if you are changing at least one of count1, count2, or count3 in
the loop.

• If you are changing the variables involved in the loop-termination condition, see if
you are changing them in the right direction.

18 Reviewing Checks

18-66

For instance, if the loop termination condition is while(i<10) and you decrement
i in the loop, the loop does not terminate. You must increment i.

• If the loop contains a run-time error:

• If the loop control variable is an array index, see if you have an orange Out of
bounds array index error in the loop body.

• If the loop control variable is passed to a function, see if you can relate the red
Non-terminating loop error to an orange error in the function body.

 Review and Fix Non-Terminating Loop Checks

18-67

Identify Loop Operation with Run-Time Error
This tutorial shows how to interpret Polyspace Code Prover results that highlight a run-
time error inside a loop.

If an error occurs in a loop, the error shows in the analysis results as a red Non-
terminating loop check on the loop keyword (for, while, and so on).

for (i = 0; i <= 10; i++)

The operation causing the error shows as an orange check in the loop. To distinguish this
orange check from other orange checks in the loop, navigate directly from the red loop
keyword to the operation responsible for the run-time error.

In this tutorial, a function is called in a loop. The function body contains another loop,
which has an operation causing a run-time error. You trace from the first loop to the
operation causing the run-time error.

1 Run verification on this code and open the results:

int a[100];

int f (int i);

void main() {
 int i,x=0;
 for (i = 0; i <= 10; i++) {
 x += f(i);
 }
}

int f (int i) {
 int j, x;
 x = 0;
 for (j = 0; j <= 10; j++) {
 x += a[10 + (i * j)];
 }
 return x;
}

2 Select the red Non-terminating loop result. The Source pane highlights the for
loop in main.

18 Reviewing Checks

18-68

3 Trace from the for loop in main to the operation causing the error. The operation is
x+= a[10 + (i*j)]. An Out of bounds array index error occurs when i is 9 and
j is 10. The error shows in orange on the [operator.

To trace from the red for keyword to the orange array access operation:

• Navigate directly to the operation. Right-click the for keyword and select Go to
Cause.

• See the full history from the for keyword to the array access operation. Select
the red for keyword. The Result Details pane shows the history.

You can read the event history in sequence. The outer loop loop runs nine times
without error. On the tenth iteration (i=9), the loop enters the function f. Inside
f, the inner loop runs ten times without error. On the eleventh iteration (j=10),
the array access causes an error.

You can use this information to determine how to fix the run-time error on the array
access operation.

Note You can navigate directly to the root cause of an error for loops with only a small
number of iterations.

See Also
Non-terminating loop

 See Also

18-69

Related Examples
• “Review and Fix Non-Terminating Loop Checks” on page 18-64
• “Test Orange Checks for Run-Time Errors” on page 17-90

More About
• “Orange Checks in Code Prover” on page 17-63

18 Reviewing Checks

18-70

Review and Fix Null This-pointer Calling Method Checks

In this section...
“Step 1: Interpret Check Information” on page 18-71
“Step 2: Determine Root Cause of Check” on page 18-72

Follow one or more of these steps until you determine a fix for the Null this-pointer
calling method check. For a description of the check and code examples, see Null
this-pointer calling method.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Select the check on the Results List pane. The Result Details pane displays further
information about the check.

You can see:

• The immediate cause of the check.

In this example, the pointer used to call a method addNewClient can be NULL.
• The probable root cause of the check, if indicated.

In this example, the check can be related to a stubbed function returnPointer.

 Review and Fix Null This-pointer Calling Method Checks

18-71

Step 2: Determine Root Cause of Check
Find an execution path where the pointer is either assigned the value NULL or assigned
values from an undefined function or unknown function inputs. In the latter case, the
software assumes that the pointer can be NULL.

Select the check on the Results List pane.

• If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction and trace back to the root cause.

• If the Result Details pane shows the line number of probable cause for the check, in
the Polyspace user interface, right-click the Source pane. Select Go To Line.

• If the Result Details pane does not lead you to the root cause, using the Source pane
in the Polyspace user interface, find how the pointer used to call the method can be
NULL.

1 Right-click the pointer and select Search For All References.
2 Find each previous instance where the pointer is assigned an address.
3 For each instance, on the Source pane, place your cursor on the pointer. The

tooltip indicates whether the pointer can be NULL.

Possible fix: If the pointer can be NULL, place a check for NULL immediately after
the assignment.

if(ptr==NULL)
 /* Error handling*/
else {
 .
 .
 }

4 If the pointer is not NULL, see if the assignment occurs only in a branch of a
conditional statement. Investigate when that branch does not execute.

Possible fix: Assign a valid address to the pointer in all branches of the conditional
statement.

18 Reviewing Checks

18-72

Review and Fix Out of Bounds Array Index Checks
Follow one or more of these steps until you determine a fix for the Out of bounds array
index check. There are multiple ways to fix the check. For a description of the check and
code examples, see Out of bounds array index.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Place your cursor on the [symbol.

Obtain the following information from the tooltip:

• Array size. The allowed range for array index is 0 to (array size - 1).
• Actual range for array index

In the preceding example, the array size is 10. Therefore, the allowed range for the array
index is 0 to 9. However, the actual range is 0 to 10.

Possible fix: To avoid the out of bounds array index, access the array only if the index is
between 0 and (array size - 1).

#define SIZE 100
int arr[SIZE];
.
.
if(i<SIZE)

 Review and Fix Out of Bounds Array Index Checks

18-73

 val = arr[i]
else
 /*Error handling */

Step 2: Determine Root Cause of Check
If you want to know or change the array size, right-click the array variable and select Go
To Definition, if the option exists. Otherwise, trace the data flow starting from the array
index variable. Identify a point where you can constrain the index variable.

To trace the data flow, select the check, and note the information on the Result Details
pane.

• If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction.

• If the Result Details pane shows the line number of probable cause for the check,
right-click on the Source pane. Select Go To Line.

• Otherwise:

1 Find previous instances of the array index variable.
2 Browse through those instances. Find the instance where you constrain the array

index variable to (array size - 1).

Possible fix: If you do not find an instance where you constrain the index variable,
specify a constraint for the variable. For example:

if(index<SIZE)
 read(array[index]);

3 Determine if the constraint applies to the instance where the Out of bounds
array index error occurs.

For example, you can constrain the index variable in a for loop using
for(index=0; index<SIZE; index++). However, you access the array
outside the loop where the constraint does not apply.

Possible fix: Investigate why the constraint does not apply. See if you have to
constrain the index variable again.

4 If the index variable is obtained from another variable, trace the data flow for the
second variable. Determine if you have constrained that second variable to (array
size - 1).

18 Reviewing Checks

18-74

Depending on the variable, use the following navigation shortcuts to find previous
instances. You can perform the following steps in the Polyspace user interface only.

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the Search
pane with the current instance highlighted.

2 On the Search pane, select the previous instances.
• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

Right-click the variable. If
the option Show In
Variable Access View
appears, the variable is a
global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance of
the variable is shown.

2 On this pane, select the previous instances of the
variable.

Write operations on the variable are indicated with
and read operations with .

Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is not
available to Polyspace, selecting the option takes you to
the function declaration.

2 In the definition of func, identify each return
statement. The variable that the function returns is your
new variable to trace back.

 Review and Fix Out of Bounds Array Index Checks

18-75

You can also determine if variables in any operation are related from some previous
operation. See “Find Relations Between Variables in Code” on page 18-103.

Step 3: Look for Common Causes of Check
Look for common causes of the Out of bounds array index check.

• See if you are starting the array index variable from 0.
• In the condition that constrains your array index variable, see if you use <= when you

intended to use <.
• If a check occurs in or immediately after a for or while loop, determine if you have

to reduce the number of runs of the loop.
• If you use the sizeof function to constrain your array, see if you are dividing

sizeof(array) by sizeof(array[0]) to obtain the array size.

sizeof(array) returns the array size in bytes.

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you constrain the array index using a function whose definition you do not
provide. Then:

1 Polyspace cannot determine that the array index variable is constrained.
2 When you use this variable as array index, an Out of bounds array index error can

occur.
3 If you know that the variable is constrained to the array size, add a comment and

justification describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

18 Reviewing Checks

18-76

For instance, constraining a global variable in one function and using it as array index in
a second function causes vulnerabilities in your code. If a new function is called between
the previous two functions and modifies your global variable, the constraint no longer
applies.

 Review and Fix Out of Bounds Array Index Checks

18-77

Review and Fix Overflow Checks
Follow one or more of these steps until you determine a fix for the Overflow check. There
are multiple ways to fix the check. For a description of the check and code examples, see
Overflow.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Place your cursor on the operation that overflows.

Obtain the following information from the tooltip:

• The operand variable you can constrain to avoid the overflow.

In the preceding example, the left operand, val, has full range of values.

Possible fix: To avoid the overflow, perform the multiplication only if val is in a certain
range.

if(val < INT_MAX/2)
 return(val*2);

18 Reviewing Checks

18-78

else
 /* Alternate action */

• The probable root cause for overflow, if indicated in the tooltip.

In the preceding example, the software identifies a stubbed function, getVal, as
probable cause.

Possible fix: To avoid the overflow, constrain the return value of getVal. For instance,
specify that getVal returns values in a certain range, for example, 1..10. For more
information, see “Constrain Stubbed Functions” on page 12-15.

Step 2: Determine Root Cause of Check
Trace the data flow starting from the operand variable that you want to constrain.
Identify a suitable point to specify your constraint.

In the following example, trace the data flow starting from tempVal.

val = func();
.
.
tempVal = val;
.
.
tempVal++ ;

In this example, you might find that:

1 tempVal obtains a full-range of values from val.

Possible fix: Assign val to tempVal only if val is less than a certain value.
2 val obtains a full-range of values from func.

Possible fix: Constrain the return value of func, either in the body of func or
through the Polyspace Constraint Specification interface, if func is stubbed. For
more information, see “Constrain Stubbed Functions” on page 12-15.

To trace the data flow, select the check and note the information on the Result Details
pane.

• If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction.

 Review and Fix Overflow Checks

18-79

• If the Result Details pane shows the line number of probable cause for the check,
right-click on the Source pane. Select Go To Line.

• Otherwise:

1 Find the previous write operation on the operand variable.

Example: The previous write operation on tempVal is tempVal=val.
2 At the previous write operation, identify a new variable to trace back.

Place your cursor on the variables involved in the write operation to see their
values. The values help you decide which variable to trace.

Example: At tempVal=val, you find that val has a full-range of values.
Therefore, you trace val.

3 Find the previous write operation on the new variable. Continue tracing back in
this way until you identify a point to specify your constraint.

Example: The previous write operation on val is val=func(). You can choose to
specify your constraint on the return value of func.

Depending on the variable, use the following navigation shortcuts to find previous
instances. You can perform the following steps in the Polyspace user interface only.

18 Reviewing Checks

18-80

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the Search
pane with the current instance highlighted.

2 On the Search pane, select the previous instances.
• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

Right-click the variable. If
the option Show In
Variable Access View
appears, the variable is a
global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance of
the variable is shown.

2 On this pane, select the previous instances of the
variable.

Write operations on the variable are indicated with
and read operations with .

Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is not
available to Polyspace, selecting the option takes you to
the function declaration.

2 In the definition of func, identify each return
statement. The variable that the function returns is your
new variable to trace back.

You can also determine if variables in any operation are related from some previous
operation. See “Find Relations Between Variables in Code” on page 18-103.

 Review and Fix Overflow Checks

18-81

Tip To distinguish between integer and float overflows, use the Detail column on the
Results List pane. Click the column header so that integer and float overflows are
grouped together. If you do not see the Detail column, right-click any other column
header and enable this column.

Step 3: Look for Common Causes of Check
If the operation causing the overflow occurs in a loop or in the body of a recursive
function:

• See if you can reduce the number of loop runs or recursions.
• See if you can place an exit condition in the loop or recursive function before the

operation overflows.

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you are using a volatile variable in your code. Then:

1 Polyspace assumes that the volatile variable is full-range at every step in the code.
2 An operation using that variable can overflow and is therefore orange.
3 If you know that the variable takes a smaller range of values, add a comment and

justification in your code describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

18 Reviewing Checks

18-82

Detect Overflows in Buffer Size Computation
If you are computing the size of a buffer from unsigned integers, for the Detect
overflows option, instead of the default value signed, use signed-and-unsigned.
Using this option helps you detect an overflow at the buffer computation stage.
Otherwise, you might see an error later due to insufficient buffer. This option is available
on the Check Behavior node in the Configuration pane.

For this example, save the following C code in a file display.c:

#include <stdlib.h>
#include <stdio.h>

int get_value(void);

void display(unsigned int num_items) {
 int *array;
 array = (int *) malloc(num_items * sizeof(int)); // overflow error
 if (array) {
 for (unsigned int ctr = 0; ctr < num_items; ctr++) {
 array[ctr] = get_value();
 }
 for (unsigned int ctr = 0; ctr < num_items; ctr++) {
 printf("Value is %d.\n", ctr, array[ctr]);
 }
 free(array);
 }
}

void main() {
 display(33000);
}

1 Create a Polyspace project and add display.c to the project.
2 On the Configuration pane, select the following options:

• Target & Compiler: From the Target processor type drop-down list, select a
type with 16-bit int such as c167.

• Check Behavior: From the Detect overflows drop-down list, select signed.
3 Run the verification and open the results.

 Detect Overflows in Buffer Size Computation

18-83

Polyspace detects an orange Illegally dereferenced pointer error on the line
array[ctr] = get_value() and a red Non-terminating loop error on the for
loop.

This error follows from an earlier error. For a 16-bit int, there is an overflow on the
computation num_items * sizeof(int). Polyspace does not detect the overflow
because it occurs in computation with unsigned integers. Instead Polyspace wraps
the result of the computation causing the Illegally dereferenced pointer error
later.

4 From the Detect overflows drop-down list, select signed-and-unsigned.
5 Polyspace detects a red Overflow error in the computation num_items *

sizeof(int).

See Also
Polyspace Analysis Options
Detect overflows (-scalar-overflows-checks)

Polyspace Results
Overflow | Illegally dereferenced pointer

18 Reviewing Checks

18-84

Review and Fix Return Value Not Initialized Checks
Follow one or more of these steps until you determine a fix for the Return value not
initialized check. There are multiple ways to fix this check. For a description of the check
and code examples, see Return value not initialized.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

Step 1: Interpret Check Information
Select the check on the Results List pane. On the Result Details pane, view further
information about the check.

View the probable cause of check, if mentioned on the Result Details pane.

In the preceding example, the software identifies a stubbed function, inputRep, as
probable cause.

Possible fix: To avoid the check, constrain the argument or return value of inputRep. For
instance, specify that inputRep returns values in a certain range, for example, 1..10.
For more information, see “Constrain Stubbed Functions” on page 12-15.

Step 2: Determine Root Cause of Check
Determine the root cause of the check in the function body. You can perform the following
steps in the Polyspace user interface only.

 Review and Fix Return Value Not Initialized Checks

18-85

1 Navigate to the function definition.

Right-click the function call containing the check. Select Go To Definition, if the
option exists.

2 In the function body, check if a return statement occurs before the closing brace of
the function.

3 If a return statement does not exist:

a On the Search pane, search for the word return, or manually scroll through the
function body and look for return statements.

b For each return statement, determine if the statement appears in a scope
smaller than function scope.

For instance, a return statement occurs only in one branch of an if-else
statement.

Possible fix: See if you can place the return statement at the end of the function
body. For instance, replace the following code

int func(int ch) {
 switch(ch) {
 case 1: return 1;
 break;
 case 2: return 2;
 break;
 }
}

with

int func(int ch) {
 int temp;
 switch(ch) {
 case 1: temp = 1;
 break;
 case 2: temp = 2;
 break;
 }
 return temp;
}

For information on how to enforce this practice, see Number of Return
Statements.

18 Reviewing Checks

18-86

Step 3: Look for Common Causes of Check
Look for common causes of the Return value not initialized check.

• See if the return statements appear in if-else, for or while blocks. Identify
conditions when the function does not enter the block.

For instance, the function might not enter a while block for certain function inputs.

Possible fix:

• See if you can place the return statement at the end of the function body.
• Otherwise, determine how to avoid the condition when the function does not enter

the block.

For instance, if a function does not enter a block for certain inputs, see if you must
pass different inputs.

• See if you have code constructs such as goto that interrupt the normal control flow.
See if there are conditions when return statements in your function cannot be
reached because of these code constructs.

Possible fix:

• Avoid goto statements. For information on how to enforce this practice, see
Number of Goto Statements.

• Otherwise, determine how to avoid the condition when return statements in your
function cannot be reached.

Step 4: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, you have a return statement in branches of an if-elseif block but you
do not have the final else block. The condition you are testing in the if-elseif blocks
involve variables obtained from an undefined function. Then:

1 Polyspace assumes that for certain values of those variables, none of the if-elseif
blocks are entered.

 Review and Fix Return Value Not Initialized Checks

18-87

2 Therefore, it is possible that the return statements are not reached.
3 If you know that those values of the variables do not occur, add a comment and

justification describing why you did not change your code.

For more information, see “Code Prover Analysis Assumptions”.

Disabling This Check

You can disable this check. If you disable this check, Polyspace assumes the following
about a function return value if the function is missing return statements:

• If the return value is a non-pointer variable, it has full-range of values allowed by its
type.

• If the return value is a pointer, it can be NULL-valued or point to a memory block at an
unknown offset.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).

18 Reviewing Checks

18-88

Review and Fix Uncaught Exception Checks
Follow one or more of these steps until you determine a fix for the Uncaught exception
check. For a description of the check and code examples, see Uncaught exception.

Step 1: Interpret Check Information
Select the check on the Results List pane. On the Result Details pane, view further
information about the check.

A red or orange Uncaught exception check can arise due to the following reasons.

Message in Result Details Description
Function throws or call to
function throws.

The function body contains a throw statement or a
function call that leads to a throw statement.

Possible Fix: Navigate to the function containing the
throw statement. Catch the exception as early as possible
by using a try-catch block.

Exception raised is not
specified in the throw list.

The function header contains a throw declaration. The
data types in the declaration do not match the data type in
throw statements in the function body.

Possible Fix: Change the data type in the throw
declaration or the throw statements in the function body.

Step 2: Determine Root Cause of Check
If you do not catch an exception, it propagates up the function call hierarchy from the
function where the exception originates to the main function. If you fix a red or orange
Uncaught exception check in the function where the exception originates, the later
Uncaught exception checks are also fixed.

Navigate to the Uncaught exception check in the function where the exception
originates. You can start from an arbitrary Uncaught exception check on the Source
pane in the Polyspace user interface.

• If the Uncaught exception check appears on a function definition, see the function
header.

 Review and Fix Uncaught Exception Checks

18-89

1 If the check appears on the function name in the header, find another function call
in the body that contains a red or orange Uncaught exception check. If the
check appears on the function return type in the header, you have already found
the function where the exception originates.

2 If you find another function call with an Uncaught exception check, right-click
the call and select Go To Definition. You go to one level down in the function call
hierarchy to the function definition.

If the option Go To Definition is not available, on the Result Details pane, select

the icon. Use the Call Hierarchy pane to navigate the function call hierarchy.
3 Continue navigating down the call hierarchy until you find the function that

contains a throw statement.
• If the Uncaught exception check appears on a function call:

1 Right-click the call and select Go To Definition. You go to one level down in the
function call hierarchy to the function definition.

If the option Go To Definition is not available, on the Result Details pane, select

the icon. Use the Call Hierarchy pane to navigate the function call hierarchy.
2 Continue navigating down the call hierarchy until you find the function that

contains a throw statement.
• If the Uncaught exception check appears on a new statement, navigate to the
definition of the constructor that you are using for object creation. Use the same root
cause navigation steps as earlier until you find the throw statement that causes the
check.

To navigate to the constructor definition from the new statement:

1 Select the Uncaught exception check on the new statement.
2

On the Result Details pane, select the icon.
3 On the Call Hierarchy pane, double-click the constructor

className::className.

Possible Fix: Catch the exception as early as possible.

• If the throw statement appears in the function body, place the statement in a try-
catch block.

18 Reviewing Checks

18-90

• You can also catch the exception one level up in the call hierarchy. Place the call to the
function in a try-catch block.

To navigate one level up in the call hierarchy, select the function name in the header.

On the Result Details pane, select the icon. On the Call Hierarchy pane, select
each caller denoted by .

 Review and Fix Uncaught Exception Checks

18-91

Review and Fix Unreachable Code Checks
Follow one or more of these steps until you determine a fix for the Unreachable code
check. There are multiple ways to fix this check. For a description of the check and code
examples, see Unreachable code.

If you determine that the check represents defensive code, add a comment and
justification in your result or code explaining why you did not change your code. See
“Address Polyspace Results Through Bug Fixes or Comments” on page 19-2.

Step 1: Interpret Check Information
1 Select the check on the Results List or Source pane.
2 View the message on the Result Details pane.

The message explains why the block of code is unreachable.

3 A code block is usually unreachable when the condition that determines entry into
the block is not satisfied. See why the condition is not satisfied.

a On the Source pane, place your cursor on the variables involved in the condition
to determine their values.

b Using these values, see why the condition is not satisfied.

Note Sometimes, a condition itself is redundant. For example, it is always true or
coupled:

• Through an || operator to another condition that is always true.
• Through an && operator to another condition that is always false.

For example, in the following code, the condition x%2==0 is redundant because the
first condition x>0 is always true.

assert(x>0);
if(x>0 || x%2 == 0)

18 Reviewing Checks

18-92

If a condition is redundant, instead of a block of code, the condition itself is marked
gray.

Step 2: Determine Root Cause of Check
Trace the data flow for each variable involved in the condition.

In the following example, trace the data flow for arg.

void foo(void) {
 int x=0;
 .
 .
 bar(x);
 .
 .
}

void bar(int arg) {
 if(arg==0) {
 /*Block 1*/
 }
 else {
 /*Block 2*/
 }
}

You might find that bar is called only from foo. Since the only argument of bar has value
0, the else branch of if(arg==0) is unreachable.

Possible fix: If you do not intend to call bar elsewhere and know that the values passed to
bar will not change, you can remove the if-else statement in bar and retain only the
content of Block 1.

To trace the data flow, select the check and note the information on the Result Details
pane.

• If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction.

• If the Result Details pane shows the line number of probable cause for the check,
right-click on the Source pane. Select Go To Line.

 Review and Fix Unreachable Code Checks

18-93

• Otherwise, for each variable involved in the condition, find previous instances and
trace back to the root cause of check. For more information on common root causes,
see “Step 3: Look for Common Causes of Check” on page 18-95.

Depending on the variable, use the following navigation shortcuts to find previous
instances. You can perform the following steps in the Polyspace user interface only.

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the
Search pane with the current instance
highlighted.

2 On the Search pane, select the previous
instances.

• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

Right-click the variable.
If the option Show In
Variable Access View
appears, the variable is
a global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance
of the variable is shown.

2 On this pane, select the previous instances of the
variable.

Write operations on the variable are indicated with
 and read operations with .

18 Reviewing Checks

18-94

Variable How to Find Previous Instances of Variable
Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is
not available to Polyspace, selecting the option
takes you to the function declaration.

2 In the definition of func, identify each return
statement. The variable that the function returns is
your new variable to trace back.

You can also determine if variables in any operation are related from some previous
operation. See “Find Relations Between Variables in Code” on page 18-103.

Step 3: Look for Common Causes of Check
Look for common causes of the Unreachable code check.

• Look for the following in your if tests:

• You are testing the variables that you intend to test.

For example, you might have a local variable that shadows a global variable. You
might be testing the local variable when you intend to test the global one.

• You are using parentheses to impose the sequence in which you want operations in
the if test to execute.

For example, if((!a && b) || c) imposes a different sequence of operations
from if(!(a && b) || c). Unless you use parentheses, the operations obey
operator precedence rules. The rules can cause the operations to execute in a
sequence that you did not intend.

• You are using = and == operators in the right places.

Possible fix: Correct errors if any.

• Use Polyspace Bug Finder to check for common defects such as Invalid use of
= operator and Variable shadowing.

• To avoid errors due to incorrect operation sequence, check for violations of MISRA
C:2012 Rule 12.1.

 Review and Fix Unreachable Code Checks

18-95

http://en.cppreference.com/w/cpp/language/operator_precedence

• See if you are performing a test that you have performed previously.

The redundant test typically occurs on the argument of a function. The same test is
performed both in the calling and called function.

void foo(void) {
 if(x>0)
 bar(x);
 .
 .
}

void bar(int arg) {
 if(arg==0) {
 }
}

Possible fix: If you intend to call bar later, for example, in yet unwritten code, or reuse
bar in other programs, retain the test in bar. Otherwise, remove the test.

• See if your code is unreachable because it follows a break or return statement.

Possible fix: See if you placed the break or return statement at an unintended place.
• See if the section of unreachable code exists because you are following a coding

standard. If so, retain the section.

For example, the default block of a switch-case statement is present to capture
abnormal values of the switch variable. If such values do not occur, the block is
unreachable. However, you might violate a coding standard if you remove the block.

• See if the unreachable code is related to an orange check earlier in the code.
Following an orange check, Polyspace normally terminates execution paths that
contain an error. Because of this termination, code following an orange check can
appear gray.

For example, Polyspace places an orange check on the dereference of a pointer ptr if
you have not vetted ptr for NULL. However, following the dereference, it considers
that ptr is not NULL. If a test if(ptr==NULL) follows the dereference of ptr,
Polyspace marks the corresponding code block unreachable.

For more examples, see:

• “Gray Check Following Orange Check” on page 17-57

18 Reviewing Checks

18-96

An exception to this behavior is overflow. If you specify the appropriate Overflow
computation mode, Polyspace wraps the result of an overflow and does not
terminate the execution paths. See Overflow computation mode (-scalar-
overflows-behavior).

• “Left operand of left shift may be negative”

Possible fix: Investigate the orange check. In the above example, investigate why the
test if(ptr==NULL) occurs after the dereference and not before.

 Review and Fix Unreachable Code Checks

18-97

Review and Fix User Assertion Checks
Follow one or more of these steps until you determine a fix for the User assertion check.
There are multiple ways to fix this check. For a description of the check and code
examples, see User assertion.

Sometimes, especially for an orange check, you can determine that the check does not
represent a real error but a Polyspace assumption that is not true for your code. If you
can use an analysis option to relax the assumption, rerun the verification using that
option. Otherwise, you can add a comment and justification in your result or code.

For the general workflow that applies to all checks, see “Interpret Polyspace Code Prover
Results” on page 17-2.

How to use this check: Typically you use assert statements during debugging to check
if a condition is satisfied at the current point in your code. For instance, if you expect a
variable var to have values in a range [1,10] at a certain point in your code, you place
the following statement at that point:

assert(var >=1 && var <= 10);

Polyspace statically determines whether the condition is satisfied.

Therefore, you can judiciously insert assert statements that test for requirements from
your code.

• A red result for the User assertion check indicates that the requirement is definitely
not met.

• An orange result for the User assertion check indicates that the requirement is
possibly not met.

Step 1: Determine Root Cause of Check
Trace the data flow for each variable involved in the assert statement.

In the following example, trace the data flow for myArray.

int* getArray(int numberOfElements) {
 .
 .
 arrayPtr = (int*) malloc(numberOfElements);

18 Reviewing Checks

18-98

 .
 .
 return arrayPtr;
}
void func() {
 int* myArray = getArray(10);
 assert(myArray!=NULL);
 .
 .
}

In this example, it is possible that in getArray, the return value of malloc is not
checked for NULL.

Possible fix: If you expect a certain requirement, see if you have tests that enforce the
requirement. In this example, if you expect getArray to return a non-NULL value, in
getArray, test the return value of malloc for NULL.

To trace the data flow, select the check and note the information on the Result Details
pane.

• If the Result Details pane shows the sequence of instructions that lead to the check,
select each instruction.

• If the Result Details pane shows the line number of probable cause for the check,
right-click in the Source pane. Select Go To Line. Enter the line number.

• Otherwise, for each variable involved in the condition, find previous instances and
trace back to the root cause of the check. For more information on common root
causes, see “Step 3: Look for Common Causes of Check” on page 18-95.

Depending on the variable, use the following navigation shortcuts to find previous
instances. You can perform the following steps in the Polyspace user interface only.

 Review and Fix User Assertion Checks

18-99

Variable How to Find Previous Instances of Variable
Local Variable Use one of the following methods:

• Search for the variable.

1 Right-click the variable. Select Search For All
References.

All instances of the variable appear on the
Search pane with the current instance
highlighted.

2 On the Search pane, select the previous
instances.

• Browse the source code.

1 Double-click the variable on the Source pane.

All instances of the variable are highlighted.
2 Scroll up to find the previous instances.

Global Variable

Right-click the variable.
If the option Show In
Variable Access View
appears, the variable is
a global variable.

1 Select the option Show In Variable Access View.

On the Variable Access pane, the current instance
of the variable is shown.

2 On this pane, select the previous instances of the
variable.

Write operations on the variable are indicated with
 and read operations with .

Function return value

ret=func();

1 Find the function definition.

Right-click func on the Source pane. Select Go To
Definition, if the option exists. If the definition is
not available to Polyspace, selecting the option
takes you to the function declaration.

2 In the definition of func, identify each return
statement. The variable that the function returns is
your new variable to trace back.

18 Reviewing Checks

18-100

You can also determine if variables in any operation are related from some previous
operation. See “Find Relations Between Variables in Code” on page 18-103.

Step 2: Look for Common Causes of Check
1 If the check is orange and occurs in a function, see if the function is called multiple

times. Determine if the assertion fails only on certain calls. For those calls, navigate
to the caller body and see if you have tests that enforce your assertion requirement.

• To see the callers of a function, select the function name on the Source pane. All
callers appear on the Call Hierarchy pane. Select a caller name to navigate to it
in your source.

• To determine if a subset of calls cause the orange check, use the option
Sensitivity context (-context-sensitivity). For a tutorial, see
“Identify Function Call with Run-Time Error” on page 18-62.

2 If you have tests that enforce the assertion requirement, see if:

• The assertion statement is within the scope of the tests.
• You modify the test variables between the test and the assertion.

For instance, the test if(index < SIZE) enforces that index is less than SIZE.
However, the assertion assert(index < SIZE) can fail if:

• It occurs outside the if block.
• Before the assertion, you modify index in the if block.

Possible fix: Consider carefully whether you must meet your assertion requirements.
If you must meet those requirements, place tests that enforce your requirement.
After the tests, avoid modifying the test variables.

Step 3: Trace Check to Polyspace Assumption
See if you can trace the orange check to a Polyspace assumption that occurs earlier in the
code. If the assumption does not hold true in your case, add a comment or justification in
your result or code. See “Address Polyspace Results Through Bug Fixes or Comments” on
page 19-2.

For instance, after a function call, you assert a relation between two variables. Then:

 Review and Fix User Assertion Checks

18-101

1 Depending on the depth of the function call and the complexity of your code,
Polyspace can sometimes approximate the variable ranges. Because of the
approximation, the software cannot establish if the relation holds and produces an
orange User assertion check.

2 Run dynamic tests on the orange check to determine if the assertion fails.

For a tutorial, see “Test Orange Checks for Run-Time Errors” on page 17-90.
3 Try to reduce your code complexity and rerun the verification. Otherwise, add a

comment and a justification in your result or code describing why you did not change
your code.

For more information, see “Code Prover Analysis Assumptions”.

Note Before justifying an orange check, consider carefully whether you can improve your
coding design.

18 Reviewing Checks

18-102

Find Relations Between Variables in Code
This tutorial shows how to determine if the variables in an arbitrary operation in your
code are previously related.

For instance, consider this operation:

return(var1 - var2);

• In your IDE, you can place breakpoints to stop execution and determine the values of
var1 and var2 for a specific run.

• In Polyspace, after you analyze your code, the tooltips on var1 and var2 show their
range of values for all runs that the verification considers.

However, the range information is not enough to determine if the variables are related.
You must perform additional steps to determine the relation.

Insert Pragma to Determine Variable Relation
In this example, consider the operation highlighted. You cannot tell from a quick glance if
wheel_speed and wheel_speed_old are related. However, this information is crucial to
understand a possible bug in subsequent operations.

#define MAX_SPEED 120
#define TEST_TIME 10000

int wheel_speed;
int wheel_speed_old;

int out;

int update_speed(int new_speed) {
 if(new_speed < MAX_SPEED)
 return new_speed;
 else
 return MAX_SPEED;
}

void increase_speed(void)
{

 int temp, index=1;

 Find Relations Between Variables in Code

18-103

 while(index<TEST_TIME) {
 temp = wheel_speed - wheel_speed_old;

 if(index > 1) {
 if (temp < 0)
 out = 1;
 else
 out = 0;
 }

 wheel_speed_old = update_speed(wheel_speed);
 index++;
 }

}

To understand why you need the relation between wheel_speed and wheel_speed_old
and how to find the relation:

1 Constrain the range of the variable wheel_speed to 0..100 for the Polyspace
analysis. Use the analysis option Constraint setup (-data-range-
specifications).

2 Run analysis on this code and open the results. Select the gray Unreachable code
check.

if (temp < 0)
 out = 1;

The check indicates that the variable temp is nonnegative. temp comes from the
previous operation:

temp = wheel_speed - wheel_speed_old;
3 See the range of wheel_speed and wheel_speed_old. Place your cursor on these

variables. You see these ranges:

• wheel_speed: 0..100
• wheel_speed_old: Full range of an int variable.

It is not clear from these ranges why wheel_speed - wheel_speed_old is always
nonnegative. You have to find out if the variables are somehow related.

4 Insert a pragma before the line where you want the variable relation. Add the
following line just before if(temp < 0):

18 Reviewing Checks

18-104

#pragma Inspection_Point wheel_speed wheel_speed_old
5 Rerun the analysis and open the results. Place your cursor on wheel_speed_old in

the line that you added.

The tooltip confirms that wheel_speed and wheel_speed_old are related:

wheel_speed_old <= wheel_speed
6 To find how the two variables got related, search for all instances of

wheel_speed_old. On the Source pane, right-click wheel_speed_old and select
Search For All References.

Browse through the instances. In this case, you see that the line which relates
wheel_speed and wheel_speed_old is:

 wheel_speed_old = update_speed(wheel_speed);

This line ensures that after the first run of the while loop, wheel_speed_old is less
than or equal to wheel_speed_old. The branch if(index > 1) is entered from
the second run onwards. In this branch, the relation between wheel_speed and
wheel_speed_old is reflected through the gray Unreachable code check.

Tip Ignore the details of the relation shown in the tooltip. Use the tooltip to confirm if
certain variables are related. Then, search for instances of the variable to find how they
are related.

Further Exploration
You can use the pragma Inspection_Point to determine the relation between variables
at any point in the code. You can enter as many variables as you want in the #pragma
statement:

#pragma Inspection_Point var1 var2 ... varn

Try this technique on other examples. For instance, select Help > Examples >
Code_Prover_Example.psprj. Group the results by file. In the file
single_file_analysis.c, you see this code:

 if (output_v7 >= 0) {

 #pragma Inspection_Point output_v7 s8_ret

 Find Relations Between Variables in Code

18-105

 saved_values[output_v7] = s8_ret;
 return s8_ret;
 }

If you place your cursor on s8_ret in the last two statements, you find that the ranges of
s8_ret are different. Find out what changed between the two statements.

Hint: The tooltip in the #pragma statement indicates that the variable s8_ret is related
to the variable output_v7. Note the orange check that reduces the range of output_v7.

See Also

Related Examples
• “Interpret Polyspace Code Prover Results” on page 17-2

18 Reviewing Checks

18-106

Review Polyspace Results on AUTOSAR Code
Polyspace Code Prover checks the code implementation of AUTOSAR Software
Component-s for mismatch with specifications in the ARXML. For instance, if an RTE
function argument has a value outside the constrained range defined in the ARXML, the
analysis flags a possible issue.

This topic shows how to interpret Code Prover results that highlight violation of data
constraints in the ARXML. To try the steps, run Polyspace on the demo files in
matlabroot\help\toolbox\codeprover\examples\polyspace_autosar. Use the
following information to review the AUTOSAR-specific results. For help on running
analysis, see “Run Polyspace on AUTOSAR Code” on page 9-15.

 Review Polyspace Results on AUTOSAR Code

18-107

On the Results List pane, select the result Invalid result of AUTOSAR runnable
implementation or Invalid use of AUTOSAR runtime environment function.
Investigate the result further by using the information on various panes.

Check return value and arguments

Using the information on the Result Details pane, determine whether the return value or
an argument violates data constraints in the ARXML or can be NULL-valued. Look for
the ! icon that indicates a definite error or the ? icon that indicates a possible error.

For the return value and each argument, you see the actual possible values at run time
and the values allowed by the data type in the ARXML specification. Compare them and
spot which value is not allowed.

The result Invalid result of AUTOSAR runnable implementation determines if the
return value of the function implementing the runnable or the output arguments can
violate the data constraints. The result Invalid use of AUTOSAR runtime environment
function determines if the input arguments to an Rte_ function violates data constraints.

Check argument spec (if needed)

Sometimes, you might want to see the Application Data Type from which the variable
Base Software Type originates. Click the blue parameter spec link and see the ARXML
extract that describes this information about the parameter or return value data type:

• Application Data Type, Implementation Data Type and Base Software Type
• Data Constraint, Unit and Computation Method

Find root cause of result

Investigate how the variable acquires the values that violate the data constraints. To trace
back in your code, on the Source pane, right-click a variable and search for all its
instances or navigate to its definition. For more tips, see “Interpret Polyspace Code
Prover Results” on page 17-2.

Decide whether to fix your code or ARXML, or justify the result through comments. See
“Address Polyspace Results Through Bug Fixes or Comments” on page 19-2.

18 Reviewing Checks

18-108

See Also
Invalid result of AUTOSAR runnable implementation | Invalid use of
AUTOSAR runtime environment function

More About
• “Benefits of Polyspace for AUTOSAR” on page 9-6
• “Run Polyspace on AUTOSAR Code” on page 9-15

 See Also

18-109

Fix or Comment Polyspace Results

• “Address Polyspace Results Through Bug Fixes or Comments” on page 19-2
• “Annotate Code and Hide Known or Acceptable Results” on page 19-6
• “Short Names of Code Prover Run-Time Checks” on page 19-12
• “Annotate Code for Known or Acceptable Results (Deprecated)” on page 19-15
• “Define Custom Annotation Format” on page 19-20
• “Annotation Description Full XML Template” on page 19-30
• “Import Comments from Previous Polyspace Analysis” on page 19-37
• “Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results”

on page 19-40
• “Justify Coding Rule Violations Using Code Prover Checks” on page 19-43

19

Address Polyspace Results Through Bug Fixes or
Comments

Once you understand the root cause of a Polyspace finding, you can fix your code.
Otherwise, add comments to your Polyspace results to fix the code later or to justify the
result. You can use the comments to keep track of your review progress.

If you add comments to your results file, they carry over to the next analysis on the same
project. If you add comments to your code (annotate), they carry over to any subsequent
analysis of the code, whether in the same project or not. You can also hide results using
code annotations.

19 Fix or Comment Polyspace Results

19-2

Comment in Results File

You can comment either on the Results List or Result Details pane. To comment, select
a result, then set the Severity and Status fields, and optionally, enter notes with more
explanations. The status indicates your response to the Polyspace result. If you do not
plan to fix your code in response to a result, assign one of the following statuses:

• Justified
• No Action Planned
• Not a Defect

Based on the status, Polyspace considers that you have given due consideration and
justified that result (retained the code despite the result).

 Address Polyspace Results Through Bug Fixes or Comments

19-3

Comment or Annotate in Code

If you enter code comments or annotations in a specific syntax, the software can read
them and populate the Severity, Status and Comment fields in the next analysis of the
code.

You can either type the annotation directly or copy it from the user interface. In the user
interface, to copy annotations, right-click a result and select Add Pre-Justification To

19 Fix or Comment Polyspace Results

19-4

Clipboard. Open your source code in an editor and paste on the same line as the result.
If you follow this workflow, Polyspace assumes that you have set a status of No Action
Planned. The software hides the result from all places (except reports needed for
certification). The only exceptions are the safety-critical Code Prover run-time checks,
which are hidden from the results list but not the source code.

If you want to explicitly set a status, first fill the Status field for a result and then copy to
your code. Paste on the line containing the result.

If you want to directly type the annotation, see the annotation syntax in “Annotate Code
and Hide Known or Acceptable Results” on page 19-6.

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 19-6
• “Import Comments from Previous Polyspace Analysis” on page 19-37

 See Also

19-5

Annotate Code and Hide Known or Acceptable Results
If a Polyspace analysis of your code finds known or acceptable defects or coding rule
violations, you can suppress the defects or violations in subsequent analyses. Add code
annotations indicating that you have reviewed the issues and that you do not intend to fix
them.

You can add annotations through the Polyspace user interface or by typing them directly
in your code. For the general workflow, see “Address Polyspace Results Through Bug
Fixes or Comments” on page 19-2. This topic shows the annotation syntax.

Code Annotation Syntax
To add comments directly to your source file, use the Polyspace annotation syntax. The
syntax is not case sensitive, and has this format:

• Annotation for current line of code:

line of code; /* polyspace Family:Result_name */

• Annotation for current line of code and n following lines:

code; /* polyspace +n Family:Result_name */

• Annotation for block of code:

/* polyspace-begin Family:Result_name */
code;
/* polyspace-end Family:Result_name */

Annotations begin with the keyword polyspace and must include Family and
Result_name field values. You can optionally specify Status, Severity, and Comment
field values.

polyspace Family:Result_name [Status:Severity] "Comment"

If you do not specify a status, Polyspace considers the result justified, and assigns the
status No action planned to the result.

To replace the different annotation fields with their allowed values, use the values in this
table or see the examples on page 19-9.

19 Fix or Comment Polyspace Results

19-6

Field Allowed Value
Family Type of analysis result:

• DEFECT (Polyspace Bug Finder)
• RTE, for run-time checks (Polyspace

Code Prover)
• VARIABLE, for global variables

(Polyspace Code Prover)
• MISRA-C or MISRA2004
• MISRA-C3 or MISRA2012
• MISRA-AC-AGC
• JSF
• CUSTOM

To specify all analysis results, use the
asterisk character *:*.

Result_name For DEFECT, use short names of checkers.
See: “Short Names of Bug Finder Defect
Checkers” (Polyspace Bug Finder).

For RTE, use short names of run-time
checks. See: “Short Names of Code Prover
Run-Time Checks” on page 19-12.

For VARIABLE, the only allowed value is the
asterisk character " * ".

For coding rule violations, specify the rule
number or numbers.

To specify all parts of a result name
[MISRA2012:17.*] or all result names in
a family [DEFECT:*], use the asterisk
character.

 Annotate Code and Hide Known or Acceptable Results

19-7

Field Allowed Value
Status Text to indicate how you intend to address

the error in your code. This value populates
the Status column in the Results List
pane as:

• Unreviewed
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

Polyspace suppresses results annotated
with status Justified, No action
planned, or Not a defect in subsequent
analyses. If you specify a status that is not
an allowed value, Polyspace stores it as a
custom status.

19 Fix or Comment Polyspace Results

19-8

Field Allowed Value
Severity Text to indicate how critical you consider

the error in your code. This value populates
the Severity column in the Results List
pane as:

• Unset
• High
• Medium
• Low

If you specify a severity that is not an
allowed value, Polyspace appends it to the
status field and stores it as a custom status.
For example, [To
investigate:sporadic] is displayed in
the Status column of the Results List
pane as To investigate sporadic.

Comment Additional text, such as a keyword or an
explanation for the status and severity. This
value populates the Comment column in
the Results List pane.

Syntax Examples
Suppress a Single Defect

Enter an annotation on the same line as the defect and specify the Family (DEFECT) and
the Result_name (INT_OVFL). When you do not specify a status, Polyspace assigns the
status No action planned, and then suppresses the result in subsequent analyses.

int var = INT_MAX;
var++;/* polyspace DEFECT:INT_OVFL */

Suppress All MISRA C: 2012 Violations Over Multiple Lines

Enter an annotation with +n between polyspace and the Family:Result_name entries.
The annotation applies to the same line and the n following lines.

 Annotate Code and Hide Known or Acceptable Results

19-9

This annotation applies to lines 4–7. The line count includes code, comments, and blank
lines.

4. code ; // polyspace +3 MISRA2012:*
5. //comment
6.
7. code;
8. code;

Specify Multiple Families in the Same Annotation

Enter each family separated by a space.This annotation applies to all MISRA C:2012 rules
17 and to all run-time checks.

some code; /* polyspace MISRA2012:17.* RTE:* */

Specify Multiple Result Names in the Same Annotation

After you specify the Family (DEFECT), enter each Result_name separated by a comma.

 system("rm ~/.config"); /* polyspace DEFECT:UNSAFE_SYSTEM_CALL,RETURN_NOT_CHECKED */

Add Explanatory Comments to Annotation

After you specify a Family and a Result_name, you can add a Comment with additional
information for your justification. You can provide a comment for all families and result
names, or a comment for each family or result name.

//Single comment

code; /* polyspace DEFECT:BAD_FREE MISRA2004:* "OK Defect and MISRA" */
//Multiple comments incorrect syntax:

code; /* polyspace DEFECT:* "OK defect" MISRA2004:5.2 "OK MISRA" */

//Multiple comments correct syntax:
code; /* polyspace DEFECT:* "OK defect" polyspace MISRA2004:5.2 "OK MISRA" */

In annotations, Polyspace ignores all text following double quotes. To specify additional
Family:Result_name, [Status:Severity] or Comment entries, you must reenter the
keyword polyspace after text in double quotes.

19 Fix or Comment Polyspace Results

19-10

Set Status and Severity

You can specify allowed values on page 19-6 or enter custom values for status and
severity. A custom severity entry is appended to the status and stored as a custom Status
in the user interface.

//Set Status only
code; /* polyspace DEFECT:* [To fix] "some comment" */

//Set Status 'To fix' and Severity 'High'
code; /* polyspace VARIABLE:* [To fix: High] "some comment"*/

//Set custom status 'Assigned' and Severity 'Medium'
code; /* polyspace MISRA2012:12.* [Assigned: Medium] */

See Also
-xml-annotations-description

More About
• “Define Custom Annotation Format” on page 19-20
• “Short Names of Code Prover Run-Time Checks” on page 19-12

 See Also

19-11

Short Names of Code Prover Run-Time Checks

Checks
The following table lists the short names for individual run-time checks. You use these
short names when annotating your code to justify checks or creating custom software
quality objectives.

Check Acronym
Absolute address ABS_ADDR
AUTOSAR runnable not implemented AUTOSAR_NOIMPL
Correctness condition COR
Division by zero ZDV
Function not called FNC
Function not reachable FNR
Function returns a value FRV
Illegally dereferenced pointer IDP
Incorrect object oriented
programming

OOP

Invalid C++ specific operations CPP
Invalid floating point operation INVALID_FLOAT_OP
Invalid result of AUTOSAR runnable
implementation

AUTOSAR_IMPL

Invalid shift operations SHF
Invalid use of AUTOSAR runtime
environment function

AUTOSAR_USE

Invalid use of standard library
routine

STD_LIB

Non-initialized local variable NIVL
Non-initialized pointer NIP
Non-initialized variable NIV

19 Fix or Comment Polyspace Results

19-12

Check Acronym
Non-terminating call NTC
Non-terminating loop NTL
Null this-pointer calling method NNT
Out of bounds array index OBAI
Overflow OVFL
Return value not initialized IRV
Subnormal Float SUBNORMAL
Uncaught exception EXC
Unreachable Code UNR
User assertion ASRT

Code Complexity Metrics
You cannot add review comments to your code for code metrics. The following acronyms
are useful only for defining custom software quality objectives.

Code Metric Acronym
Comment Density COMF
Cyclomatic Complexity VG
Estimated Function Coupling FCO
Estimated Size of Local Variables -
Conservative

LOCAL_VARS_MAX

Estimated Size of Local Variables -
Optimistic

LOCAL_VARS_MIN

Language Scope VOCF
Number of Call Levels LEVEL
Number of Call Occurrences NCALLS
Number of Called Functions CALLS
Number of Calling Functions CALLING
Number of Direct Recursions AP_CG_DIRECT_CYCLE

 Short Names of Code Prover Run-Time Checks

19-13

Code Metric Acronym
Number of Executable Lines FXLN
Number of Files FILES
Number of Function Parameters PARAM
Number of Goto Statements GOTO
Number of Header Files INCLUDES
Number of Instructions STMT
Number of Lines TOTAL_LINES
Number of Lines Within Body FLIN
Number of Lines Without Comment LINES_WITHOUT_CMT
Number of Local Non-Static
Variables

LOCAL_VARS

Number of Local Static Variables LOCAL_STATIC_VARS
Number of Paths PATH
Number of Protected Shared
variables

PSHV

Number of Recursions AP_CG_CYCLE
Number of Return Statements RETURN
Number of Unprotected Shared
Variables

UNPSHV

19 Fix or Comment Polyspace Results

19-14

Annotate Code for Known or Acceptable Results
(Deprecated)

Note Starting R2017b, Polyspace uses a simpler annotation format. See “Annotate Code
and Hide Known or Acceptable Results” on page 19-6.

If Polyspace finds defects in your code that you cannot or will not fix, you can add
annotations to your code. These annotations are code comments that indicate known or
acceptable defects or coding rule violations. By using these annotations, you can:

• Avoid rereviewing defects or coding rule violations from previous analyses.
• Preserve review comments and classifications.

Note Source code annotations do not apply to code comments. You cannot annotate these
rules:

• MISRA C:2004 Rules 2.2 and 2.3
• MISRA C:2012 Rules 3.1 and 3.2
• MISRA-C++ Rule 2-7-1
• JSF++ Rules 127 and 133

Add Annotations from the Polyspace Interface
This method shows you how to convert review comments and classifications in the
Polyspace interface into code annotations.

1 On the Results List or Result Details pane, assign a Severity, Status, and
Comment to a result.

a Click a result.
b From the Severity and Status dropdown lists, select an option.
c In the Comment field, enter a comment or keyword that helps you easily

recognize the result.

 Annotate Code for Known or Acceptable Results (Deprecated)

19-15

2 On the Results List pane, right-click the commented result and select Add Pre-
Justification to Clipboard. The software copies the severity, status, and comment to
the clipboard.

3 Right-click the result again and select Open Editor. The software opens the source
file to the location of the defect.

4 Paste the contents of your clipboard on the line immediately before the line
containing the defect or coding rule violation.

You can see your review comments as a code comment in the Polyspace annotation
syntax, which Polyspace uses to repopulate review comments on your next analysis.

5 Save your source file and rerun the analysis.

On the Results List pane, the software populates the Severity, Status, and
Comment columns for the defect or rule violation that you annotated. These fields
are read only because they are populated from your code annotation. If you use a
specific keyword or status for your annotations, you can filter your results to hide or
show your annotated results. For more information on filtering, see “Filter and Group
Results” on page 20-2.

Add Annotations Manually
This method shows you how to enter comments directly into your source files by using the
Polyspace code annotation syntax. The syntax is not case-sensitive and applies to the first
uncommented line of C/C++ code following the annotation.

1 Open your source file in an editor and locate the line or section of code that you want
to annotate.

2 Add one of the following annotations:

• For a single line of code, add the following text directly before the line of code
that you want to annotate.

/* polyspace<Type:Kind1[,Kind2] : [Severity] : [Status] > [Notes] */
• For a section of code, use the following syntax.

/* polyspace:begin<Type:Kind1[,Kind2] : [Severity] : [Status] > [Notes] */

... Code section ...

/* polyspace:end<Type:Kind1[,Kind2] : [Severity] : [Status] > */

19 Fix or Comment Polyspace Results

19-16

If a macro expands to multiple lines, use the syntax for code sections even though
the macro itself covers one line. The single-line syntax applies only to results that
appear in the first line of the expanded macro.

3 Replace the words Type, Kind1, [Kind2], [Severity], [Status], and
[Additional text] with allowed values, indicated in the following table. The text
with square brackets [] is optional and you can delete it. See “Syntax Examples” on
page 19-18.

Word Allowed Values
Type The type of results:

• Defect (Polyspace Bug Finder)
• RTE, for run-time checks (Polyspace Code Prover)
• VARIABLE, for global variables (Polyspace Code Prover)
• MISRA-C, for MISRA C:2004
• MISRA-AC-AGC
• MISRA-C3, for MISRA C:2012
• MISRA-CPP
• JSF
• Custom, for custom coding rule violations.

Kind1,
[Kind2],...

For defects and run-time checks, use the short names of checkers. See:

• “Short Names of Bug Finder Defect Checkers” (Polyspace Bug
Finder)

• “Short Names of Code Prover Run-Time Checks” on page 19-12

For coding rule violations, specify the rule number or numbers.

For global variables, the only allowed value is ALL.

If you want the comment to apply to all possible defects or coding rules,
specify ALL.

 Annotate Code for Known or Acceptable Results (Deprecated)

19-17

Word Allowed Values
Severity Text that indicates how critical you consider the defect. Enter one of the

following:

• Unset
• High
• Medium
• Low

This text populates the Severity column on the Results List pane.
Status Text that indicates how you intend to correct the error in your code.

Enter one of the following or any other text:

• Unreviewed
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

This text populates the Status column on the Results List pane. The
status is also used in Polyspace Metrics to determine whether a result is
justified. To justify a result, use Justified, No action planned or
Not a defect.

Notes Additional comments, such as a keyword or an explanation for the
status and severity.

Syntax Examples

• A single defect:

/* polyspace<Defect:HARD_CODED_BUFFER_SIZE:Medium:To investigate> Known issue */
int table[100];

• A single run-time check:

/* polyspace<RTE: ZDV : High : To Fix > Denominator cannot be zero */
y=1/x;

19 Fix or Comment Polyspace Results

19-18

• A MISRA C:2012 rule violation:

/* polyspace<MISRA-C3: 13.1 : Low : Justified> Known issue */
int arr[2] = {x++,y};

• Unused global variable:

/* polyspace<VARIABLE: ALL : Low : Justified> Variable to use later*/
int var_unused;

• Multiple defects:

polyspace<Defect:USELESS_WRITE,DEAD_CODE:Low:No Action Planned> OK issue
• Multiple JSF rule violations:

polyspace<JSF:9,13:Low:Justified> Known issue

 Annotate Code for Known or Acceptable Results (Deprecated)

19-19

Define Custom Annotation Format
This example shows how to create and edit an XML file to define an annotation format
and map it to the Polyspace annotation syntax.

To get started, copy the following code to a text editor and save it on your machine as
annotations_description.xml.

19 Fix or Comment Polyspace Results

19-20

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="example XML">

 <Expressions Search_For_Keywords="myKeyword"
 Separator_Result_Name="," >
 <!-- Define annotation format in this
 section by adding <Expression/> elements -->

 <Expression Mode="SAME_LINE"
 Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 <Expression Mode="GOTO_INCREMENT"
 Regex="myKeyword\s+(\+\d+\s)(\w+(\s*,\s*\w+)*)"
 Increment_Position="1"
 Rule_Identifier_Position="2"
 />

 <Expression Mode="BEGIN"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_on"
 Rule_Identifier_Position="1"
 Case_Insensitive="true"
 />

 <Expression Mode="END"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_off"
 Rule_Identifier_Position="1"
 />
 <Expression Mode="END_ALL"
 Regex="myKeyword\sBlock_off_all"
 />

 <Expression Mode="SAME_LINE"

Regex="myKeywords\s+(\w+(\s*,\s*\w+)*)
(\s*\[(\w+\s*)*([:]\s*(\w+\s*)+)*\])*(\s*-*\s*)*([^-]*)(\s*-*)*"
Rule_Identifier_Position="1"

 Define Custom Annotation Format

19-21

Status_Position="4"
Severity_Position="6"
Comment_Position="8"
 />
<! -- Put the regular expression on a single line instead of two line
when you copy it to a text editor -->

 <!-- SAME_LINE example with more complex regular expression.
 Matches the following annotations:
 //myKeywords 50 [my_status:my_severity] -Additional comment-
 //myKeywords 50 [my_status]
 //myKeywords 50 [:my_severity]
 //myKeywords 50 -Additional comment-
 -->

 </Expressions>

 <Mapping>
 <!-- Map your annotation syntax to the Polyspace annotation
 syntax by adding <Result_Name_Mapping /> elements in this section -->

<Result_Name_Mapping Rule_Identifier="100" Family="RTE" Result_Name="ZDV"/>
<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
<Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>
<Result_Name_Mapping Rule_Identifier="ALL_MISRA" Family="MISRA-C3" Result_Name="*"/>
 </Mapping>
</Annotations>

The XML file consists of two parts:

• <Expressions>...</Expressions> where you define the format of your
annotation syntax.

• <Mapping>...</Mapping> where you map your syntax to the Polyspace annotation
syntax.

After you edit this file, Polyspace can interpret your custom code annotation when you
invoke the option -xml-annotations-description.

19 Fix or Comment Polyspace Results

19-22

Define Annotation Syntax Format
To define an annotation syntax in Polyspace, your syntax must follow a pattern that you
can represent with a regular expression. See “Regular Expressions” (MATLAB). It is
recommended that you include a keyword in the pattern of your annotation syntax to help
identify it. In this example, the keyword is myKeyword. Set the attribute
Search_For_Keywords equal to this keyword.

Once you know the pattern of your annotation, you can define it in the XML by adding an
<Expression/> element and specifying at least the attributes Mode, Regex, and
Rule_Identifier_Position. For instance, the first <Expression/> element in
annotations_description.xml defines an annotation with these attributes:

• Mode="SAME_LINE". The annotation applies to code on the same line.
• Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)". Polyspace uses the regular

expression to search for a string that begins with myKeyword, followed by a space \s
+. Polyspace then searches for a capturing group (\w+(\s*,\s*\w+)*) that includes
an alphanumeric rule identifier \w+ and, optionally, additional comma-separated rule
identifiers (\s*,\s*\w+)*.

• Rule_Identifier_Position="1". The integer value of this attribute corresponds
to the number of opening parentheses preceding the relevant capturing group in the
regular expression. In myKeyword\s+(\w+(\s*,\s*\w+)*), one opening
parenthesis precedes the capturing group of the rule identifier (\w+(\s*,\s*\w
+)*). If you want to match rule identifiers captured by (\s*,\s*\w+), then you set
Rule_Identifier_Position="2" because two opening parentheses precede this
capturing group.

The list of attributes and their values are listed in this table. The example column refers
to the format defined in annotations_description.xml.

Attribute Use Value Example
Mode Required SAME_LINE Applies only on the same line as the

annotation.

code; //myKeyword 100

 Define Custom Annotation Format

19-23

Attribute Use Value Example
GOTO_INCRE
MENT

Applies on the same line as the
annotation and the following n lines:

3. code; // myKeyword +3 ALL_MISRA
4. /*commments */
5.
6. code;
7. code;

The preceding annotation applies to
lines 3–6 only.

BEGIN Applies to the same line and all
following lines until a corresponding
expression with attribute
Mode="END" or "END_ALL", or until
the end of the file.

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...

END Stops the application of a rule
identifier declared by a
corresponding expression with
attribute Mode="BEGIN".

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...
 More code;
 //myKeyword 50 Block_off

Only rule identifier 50 is turned off.
Rule identifier 51 still applies.

19 Fix or Comment Polyspace Results

19-24

Attribute Use Value Example
END_ALL Stops all rule identifiers declared by

an expression with attribute
Mode="BEGIN".

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...
 More code;
 //myKeyword Block_off_all

Rule identifiers 50 and 51 are turned
off.

Regex Required Regular
expression
search string

See “Regular Expressions”
(MATLAB). Regex="myKeyword\s+
(\w+(\s*,\s*\w+)*)" matches
these expressions:

// myKeyword 50, 51
/* myKeyword ALL_MISRA, 100 */

 Define Custom Annotation Format

19-25

Attribute Use Value Example
Rule_Identifi
er_Position

Required,
except when
you set
Mode="END_AL
L"

Integer The integer value of this attribute
corresponds to the number of
opening parentheses in the regular
expression before the relevant search
expression.

<Expression Mode="GOTO_INCREMENT"
Regex="myKeyword\s+(\+\d+\s)
(\w+(\s*,\s*\w+)*)"
Increment_Position="1"
Rule_Identifier_Position="2"/>

Note Enter the regex expression on
a single line when you edit your XML
file.

The search expression for the rule
identifier \w+(\s*,\s*\w+)* is
after the second opening parenthesis
of the regular expression.

19 Fix or Comment Polyspace Results

19-26

Attribute Use Value Example
Increment_Pos
ition

Required only
when you set
Mode="GOTO_I
NCREMENT"

Integer The integer value of this attribute
corresponds to the number of
opening parentheses in the regular
expression before the relevant search
expression.

<Expression Mode="GOTO_INCREMENT"
Regex="myKeyword\s+(\+\d+\s)
(\w+(\s*,\s*\w+)*)"
Increment_Position="1"
Rule_Identifier_Position="2"/>

Note Enter the regex expression on
a single line when you edit your XML
file.

The search expression for the
increment \+\d+\s is after the first
opening parenthesis of the regular
expression.

Status_Positi
on

Optional Integer See Increment_Position example.
When you use this attribute, the
entry in your annotation is displayed
in the Status column on the Results
List pane of the user interface.

Severity_Posi
tion

Optional Integer See Increment_Position example.
When you use this attribute, the
entry in your annotation is displayed
in the Severity column on the
Results List pane of the user
interface.

 Define Custom Annotation Format

19-27

Attribute Use Value Example
Comment_Posit
ion

Optional Integer See Increment_Position example.
When you use this attribute, the
entry in your annotation is displayed
in the Comment column on the
Results List pane of the user
interface. Your comment is appended
to the string Justified by
annotation in source:

Case_Insensit
ive

Optional True or false When you set this attribute to "true",
the regular expression is case
insensitive, otherwise it is case
sensitive. If you do not declare this
attribute in your expression, the
regular expression is case sensitive.
For Case_Insensitive="true",
these annotations are equivalent:

//MYKEYWORD ALL_MISRA BLOCK_ON

//mykeyword all_misra block_on

Map Your Annotation to the Polyspace Annotation Syntax
After you define your annotation format, you can map the rule identifiers you are using to
their corresponding Polyspace annotation syntax. You can do this mapping by adding an
<Result_Name_Mapping/> element and specifying attributes Rule_Identifier,
Family, and Result_Name. For instance, if rule identifier 50 corresponds to MISRA C:
2012 rule 8.4, map it to the Polyspace syntax MISRA-C3:8.4 by using this element:

<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>

The list of attributes and their values are listed in this table. The example column refers
to the format defined in annotations_description.xml.

19 Fix or Comment Polyspace Results

19-28

Attribute Use Value Example
Rule_Identifier Required User defined See the mapping

section of
annotations_desc
ription.xml

Family Required Corresponds to
Polyspace results
family. For a list of
allowed values, see
allowed values on
page 19-12.

See the mapping
section of
annotations_desc
ription.xml

Result_Name Required Corresponds to
Polyspace result
names. For a list of
allowed values, see
allowed values on
page 19-12.

See the mapping
section of
annotations_desc
ription.xml

See Also
“Annotation Description Full XML Template” on page 19-30 | -xml-annotations-
description

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 19-6

 See Also

19-29

Annotation Description Full XML Template
This table lists all the elements, attributes, and values of the XML that you can use to
define an annotation format and map it to the Polyspace annotation syntax. For an
example of how to edit an XML to define annotation syntax, see “Define Custom
Annotation Format” on page 19-20.

Element Attribute Use Value
Annotations Group Required User defined string.

For example,
"Custom
Annotations"

Expressions Search_For_Keywo
rds

Required User defined string.
This string is a
keyword you include
in the pattern of your
annotation syntax to
help identify it. For
example,
"myKeyword"

Separator_Result
_Name

Required User defined string.
This string is a
separator when you
list multiple
Polyspace result
names in the same
annotation. For
example ","

Separator_Family
_And_Result_Name

Optional User defined string.
This string is a
separator when you
list multiple
Polyspace results
families in the same
annotation. For
example, " "

19 Fix or Comment Polyspace Results

19-30

Element Attribute Use Value
Separator_Family Optional User defined string.

This string is a
separator when you
list a Polyspace
results family and
results name in the
same annotation. For
example, ":"

Expression Mode Required SAME_LINE
GOTO_INCREMENT
BEGIN
END
END_ALL
NEXT_CODE_LINE

The annotation
applies to the next
line of code.
Comments and blank
lines are ignored.
GOTO_LABEL
LABEL
XML_START
XML_CONTENT

The annotation for
this expression must
be on a single line.
XML_END

Regex Required Regular expression
search string that
matches the pattern
of your annotation.

 Annotation Description Full XML Template

19-31

Element Attribute Use Value
Rule_Identifier_
Position

Required, except
when you set
Mode="END_ALL"
or "LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Increment_Positi
on

Required only when
you set
Mode="GOTO_INCRE
MENT"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Status_Position Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Severity_Positio
n

Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

19 Fix or Comment Polyspace Results

19-32

Element Attribute Use Value
Comment_Position Optional Integer. The integer

value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Label_Position Required only when
you set
Mode="GOTO_LABEL
" or "LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Case_Insensitive Optional True or false. When
you do not declare
this attribute, the
default value is false.

Is_Pragma Optional True or false. When
you do not declare
this attribute, the
default value is false.

Set this attribute to
true if you want to
declare your
annotation using a
pragma instead of a
comment.

 Annotation Description Full XML Template

19-33

Element Attribute Use Value
Applies_Also_On_
Same_Line

Optional True or false. When
you do not declare
this attribute, the
default value is true.

Use this attribute to
enable annotations
with the old
Polyspace syntax to
apply on the same
line of code.

Mapping None None None
Result_Name_Mapp
ing

Rule_Identifier Required User defined
Family Required Corresponds to

Polyspace results
family. For a list of
allowed values, see
allowed values on
page 19-12.

Result_Name Required Corresponds to
Polyspace result
names. For a list of
allowed values, see
allowed values on
page 19-12.

Example
This example code covers some of the less commonly used attributes for defining
annotations in XML.

19 Fix or Comment Polyspace Results

19-34

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="XML Template">

 <Expressions Separator_Result_Name=","
 Search_For_Keywords="myKeyword">

 <Expression Mode="GOTO_LABEL"
 Regex="(\A|\W)myKeyword\s+S\s+(\d+(\s*,\s*\d+)*)\s+([a-zA-Z_-]\w+)"
 Rule_Identifier_Position="2"
 Label_Position="4"

 />

 <Expression Mode="LABEL"
 Regex="(\A|\W)myKeyword\s+L:(\w+)"
 Label_Position="2"

 />
 <!-- Annotation applies starting current line until
 next declaration of label word "myLabel"
 Example:

 code; // myKeyword S 100 myLabel
 ...
 more code;
 // myKeyword L myLabel
 -->

 <Expression Mode="BEGIN"
 Regex="#\s*pragma\s+myKeyword_MESSAGES_ON\s+(\w+)"
 Rule_Identifier_Position="1"
 Is_Pragma="true"
 />
 <!-- Annotation declared with pragma instead of comment
 Example:#pragma myKeyword_MESSAGES_ON 100 -->

 <!-- Comment declaration with XML format-->

 <!-- XML_START must be declared before XML_CONTENT -->

 Annotation Description Full XML Template

19-35

 <Expression Mode="XML_START"
 Regex="<\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: <myKeyword_COMMENT> -->

 <Expression Mode="XML_CONTENT"
 Regex="<\s*(\d*)\s*>(((?![*]/)(?!<).)*)</\s*(\d*)\s*>"
 Rule_Identifier_Position="1"
 Comment_Position="2"

 />
 <!-- Example: <100>This is my comment</100>
 XML_CONTENT must be declare on a single line.

 <100>This is my comment
 </100>
 is incorrect.
 -->

 <Expression Mode="XML_END"
 Regex="</\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: </myKeyword_COMMENT> -->
 </Expressions>

 <Mapping>

 <Result_Name_Mapping Rule_Identifier="100" Family="MISRA-C" Result_Name="4.1"/>
 </Mapping>
</Annotations>

See Also
-xml-annotations-description

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 19-6

19 Fix or Comment Polyspace Results

19-36

Import Comments from Previous Polyspace Analysis
After you have reviewed analysis results, you can reuse your review comments for
subsequent analyses. If you add comments to your results file, they carry over to the next
analysis on the same project. If you add comments to your code (annotate), they carry
over to any subsequent analysis of the code, whether in the same project or not. You can
also hide results using code annotations. For more information on commenting, see
“Address Polyspace Results Through Bug Fixes or Comments” on page 19-2.

This topic shows how to import comments from one result file to another. By default,
Polyspace imports comments from the most recent analysis on the module

After you import comments, on the Results List pane, clicking the icon skips justified
checks. Using this icon, you can browse through unreviewed checks. You can also filter
the justified checks from display.

Import Comments from Another Analysis Result
You can import comments directly from another Polyspace result to the current result.

If a result is found in both a Bug Finder and Code Prover analysis, you can comment on
the Bug Finder result and import the comment to Code Prover. For instance, most coding
rule checkers are common to Bug Finder and Code Prover. You can add comments to
coding rule violations in Bug Finder and import the comments to the same violations in
Code Prover.

To import comments from another set of results:

1 Open the current analysis results.
2 Select Tools > Import Comments.
3 Navigate to the folder containing your previous results.
4 Select the other results file (with extension .psbf or .pscp) and then click Open.

The review comments from the previous results are imported into the current results.

 Import Comments from Previous Polyspace Analysis

19-37

View Imported Comments That Do Not Apply
You can directly import review information from another set of results into the current
results. However, it is possible that part of your review information are not imported to a
subsequent analysis because:

• You have changed your source code so that the result is no longer present.
• You have changed your source code so that the Code Prover result color has changed.
• You have already entered different review comments for the same result.

The Import Checks and Comments Report highlights differences between two analysis
results. When you import comments from a previous analysis, you can see this report. If
you have closed the report after an import, to review the report again:

1 Select Window > Show/Hide View > Import Comments Report.

The Import Checks and Comments Report opens, highlighting differences in the two
results.

2 Review the differences between the two results.

Your review information can differ between two results because of the following reasons:

• In Code Prover, if the check color changes, Polyspace imports the Comment field but
not the Status field. In addition, Polyspace imports the Severity and Justified fields
depending on the color change.

Color Change Severity Justified
Orange or red to green Not imported Imported
Gray to green Not imported Imported, if the Severity

was set to High, Medium
or Low.

Red to orange or vice
versa

Imported Imported

Green to red/orange/gray Not imported Not imported

19 Fix or Comment Polyspace Results

19-38

• If a result no longer appears in the code, Polyspace highlights only the change in the
Import Checks and Comments Report. It does not import review comments from the
previous result.

• If you have already entered different review comments for the same check, Polyspace
highlights only the change in the Import Checks and Comments Report. It does not
import review comments from the previous result.

Disable Automatic Comment Import from Last Analysis
By default, comments are imported automatically from the most recent analysis on the
project module. You can disable this default behavior.

1 Select Tools > Preferences, which opens the Polyspace Preferences dialog box.
2 Select the Project and Results Folder tab.
3 Under Import Comments, clear Automatically import comments from last

verification.
4 Click OK.

See Also
-import-comments

 See Also

19-39

Import Existing MISRA C: 2004 Justifications to MISRA C:
2012 Results

When you check your code for MISRA C: 2012 violations, Polyspace imports justifications
of MISRA C: 2004 violations from previous analyses.

The software maps MISRA C: 2004 Status, Severity, and Comment values that you
added through the user interface or code annotations to the corresponding MISRA C:
2012 results, if the results exist. For more information about mapping, consult addendum
one of the MISRA C: 2012 publication.

If you are transitioning from MISRA C: 2004 to MISRA C: 2012, you do not have to review
results that you have already justified.

19 Fix or Comment Polyspace Results

19-40

Mapping Multiple MISRA C: 2004 Annotations to the Same
MISRA C: 2012 Result
When you justify MISRA C: 2004 violations by using code block syntax or multiple line
annotation syntax, and multiple violations map to the same MISRA C: 2012 rule,
Polyspace does not import each result justification. Instead, the software imports only one
set of Status, Severity, and Comment values and applies these values to all the
instances of that particular MISRA C: 2012 rule violation.

For example, suppose that you analyze your code and find violations of MISRA C: 2004
rules 16.3 and 16.5. You can justify these results by using the annotation syntax where
you enter a different status and explanatory comment for each rule.

//polyspace-begin misra2004:16.3 [Status 1] "Explanatory comment 1"
//polyspace-begin misra2004:16.5 [Status 2] "Explanatory comment 2"

code block start;
/* This block of code contains violations of
MISRA C:2004 rules 16.3 and 16.5 */
code block end;

//polyspace-end misra2004:16.3
//polyspace-end misra2004:16.5

 Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results

19-41

The previous violations map to MISRA C: 2012 rule 8.2. When you check your annotated
code against MISRA C: 2012 rules, Polyspace imports only the first line of annotations
(for rule 16.3) and applies it to all rule 8.2 results. The second line of annotations for rule
16.5 is ignored. In the Results List pane, all violations of rule 8.2 have the Status
column set to Status 1 and the Comment column set to "Explanatory comment 1".

Note The Output Summary pane displays a warning message for every result where the
imported annotation conflicts with the original annotation. After you import your MISRA
C: 2004 annotations, check that a justified status has not been assigned to results you
intend to investigate or fix.

See Also
Check MISRA C:2004 (-misra2) | Check MISRA C:2012 (-misra3)

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 19-6

19 Fix or Comment Polyspace Results

19-42

Justify Coding Rule Violations Using Code Prover Checks
Coding rules are good practices that you observe for safe and secure code. Using the
Polyspace coding rule checkers, you find instances in your code that violate a coding rule
standard such as MISRA. If you run Code Prover, you also see results of checks that find
run-time errors or prove their absence. In some cases, the two kinds of results can be
used together for efficient review. For instance, you can use a green Code Prover check as
rationale for not fixing a coding rule violation (justification).

If you run MISRA checking in Code Prover, some of the checkers use Code Prover static
analysis under the hood to find MISRA violations. The MISRA checker in Code Prover is
more rigorous compared to Bug Finder because Code Prover keeps precise track of the
data and control flow in your code. For instance:

• MISRA C:2012 Rule 9.1: The rule states that the value of an object with automatic
storage duration shall not be read before it has been set. Code Prover uses the results
of a Non-initialized local variable check to determine the rule violations.

• MISRA C:2004 Rule 13.7: The rule states that the Boolean operations whose results
are invariant shall not be permitted. Code Prover uses the results of an Unreachable
code check to identify conditions that are always true or false.

In some other cases, the MISRA checkers do not suppress rule violations even though
corresponding green checks indicate that the violations have no consequence. You have
the choice to do one of these:

• Strictly conform to the standard and fix the rule violations.
• Manually justify the rule violations using the green checks as rationale.

Set a status such as No action planned to the result and enter the green check as
rationale in the result comments. You can later filter justified results using that status.

The following sections show examples of situations where you can justify MISRA
violations using green Code Prover checks.

Rules About Data Type Conversions
In some cases, implicit data type conversions are okay if the conversion does not cause an
overflow.

In the following example, the line temp = var1 - var2; violates MISRA C:2012 Rule
10.3. The rule states that the value of an expression shall not be assigned to an object of

 Justify Coding Rule Violations Using Code Prover Checks

19-43

a different essential type category. Here, the difference between two int variables is
assigned to a char variable. You can justify this particular rule violation by using the
results of a Code Prover Overflow check.

int func (int var1, int var2) {
 char temp;
 temp = var1 - var2;
 if (temp > 0)
 return -1;
 else
 return 1;
}

double read_meter1(void);
double read_meter2(void);

int main(char arg, char* argv[]) {
 int meter1 = (read_meter1()) * 10;
 int meter2 = (read_meter2()) * 999;
 int tol = 10;
 if((meter1 - meter2)> -tol && (meter1 - meter2) < tol)
 func(meter1, meter2);
 return 0;
}

Consider the rationale behind this rule. The use of implicit conversions between types can
lead to unintended results, including possible loss of value, sign, or precision. For a
conversion from int to char, a loss of sign or precision cannot happen. The only issue is
a potential loss of value if the difference between the two int variables overflows.

Run Code Prover on this code. On the Source pane, click the = in temp = var1 -
var2;. You see the expected violation of MISRA C:2012 Rule 10.3, but also a green
Overflow check.

19 Fix or Comment Polyspace Results

19-44

The green check indicates that the conversion from int to char does not overflow.

You can use the green overflow check as rationale to justify the rule violation.

Rules About Pointer Arithmetic
Pointer arithmetic on nonarray pointers are okay if the pointers stay within the allowed
buffer.

 Justify Coding Rule Violations Using Code Prover Checks

19-45

In the following example, the operation ptr++ violates MISRA C:2004 Rule 17.4. The rule
states that array indexing shall be the only allowed form of pointer arithmetic. Here, a
pointer that is not an array is incremented.

#define NUM_RECORDS 3
#define NUM_CHARACTERS 6

void readchar(char);

int main(int argc, char* argv[]) {
 char dbase[NUM_RECORDS][NUM_CHARACTERS] = { "r5cvx", "a2x5c", "g4x3c"};
 char *ptr = &dbase[0][0];
 for (int index = 0; index < NUM_RECORDS * NUM_CHARACTERS; index++) {
 readchar(*ptr);
 ptr++;
 }
 return 0;
}

Consider the rationale behind this rule. After an increment, a pointer can go outside the
bounds of an allowed buffer (such as an array) or even point to an arbitrary location.
Pointer arithmetic is fine as long as the pointer points within an allowed buffer. You can
justify this particular rule violation by using the results of a Code Prover Illegally
dereferenced pointer check.

Run Code Prover on this code. On the Source pane, click the ++ in ptr++. You see the
expected violation of MISRA C:2004 Rule 17.4.

19 Fix or Comment Polyspace Results

19-46

Click the * on the operation readchar(*ptr). You see a green Illegally dereferenced
pointer check. The green check indicates that the pointer points within allowed bounds
when dereferenced.

 Justify Coding Rule Violations Using Code Prover Checks

19-47

You can use the green check to justify the rule violation.

See Also

Related Examples
• “Address Polyspace Results Through Bug Fixes or Comments” on page 19-2

19 Fix or Comment Polyspace Results

19-48

Manage Results

• “Filter and Group Results” on page 20-2
• “Prioritize Check Review” on page 20-11

20

Filter and Group Results
When you open the results of a Polyspace analysis, you see a flat list of defects (Bug
Finder), run-time checks (Code Prover), coding rule violations or other results. To
organize your review, you can narrow down the list or group results by file or result type.

20 Manage Results

20-2

Some of the ways you can use filtering are:

 Filter and Group Results

20-3

• You can display certain types of defects or run-time checks only.

For instance, in Bug Finder, you can display only high-impact defects. See
“Classification of Defects by Impact” (Polyspace Bug Finder).

• You can display only new results found since the last analysis.
• You can display only the results that have not justified.

For information on justification, see “Address Polyspace Results Through Bug Fixes or
Comments” on page 19-2.

Filter Results
Filter Using Results List

You can filter using the columns on the Results List pane. Click the icon on the
column headers to see the available filters. For information on the columns, see:

• “Results List” (Polyspace Bug Finder)
• “Results List” on page 17-29

20 Manage Results

20-4

To see only results found since the last analysis, click the New button.

If you do not want to filter by the exact contents of a column, you can use a custom filter
instead. For instance, you want to filter out subfolders of a specific folder. Instead of
filtering out each subfolder in the Folder column, select Custom from the filter
dropdown. Specify the root folder name for the doesn’t contain filter.

You can use wildcard characters for the custom filter. The wildcard ? represents 0 or 1
character and * represents 0 or more characters.

If you apply filters in this way, they carry over to the next analysis. You can also name and
save a subset of filters for use in multiple projects. To apply the named set of filters, pick
this filter set from the All results list. To create a new entry in this list, select Tools >
Preferences and create your own set of filters on the Review Scope tab.

Filter Using Dashboard

 Filter and Group Results

20-5

20 Manage Results

20-6

You can click graphs on the Dashboard pane to filter results. For instance:

• To see only high-impact defects in Bug Finder, click the corresponding section of the
Defect distribution by impact chart.

• To see only red checks in Code Prover, click the corresponding section of the Check
distribution chart.

To see all results again, click the link View all results in this scope.

Filter Using Orange Sources

An orange source can cause multiple orange checks in Code Prover. You can display all
orange checks from the same source and review them together.

For instance, in this code, the unknown value input can cause an overflow and a division
by zero. The variable input is an orange source that causes two orange checks.

void func (int input) {
int val1;
double val2;
val1 = input++;
val2 = 1.0/input;
}

To begin, select Window > Show/Hide View > Orange Sources. You see the list of
orange sources. Select an orange source to see all orange checks coming from this
source.

 Filter and Group Results

20-7

See Filters Used

On the Results List header, you see the number of results displayed in the format
Showing x/y, for instance Showing 100/250. Click the dropdown beside this number to
see the filters that are currently active. You can also clear the active filters from this
dropdown (all except the named set of filters that you picked from the All results
dropdown).

You see this information about the filters:

• Review Scope: If you pick a named set of filters from the All results dropdown, you
see this filter set.

• New results only: If you use the New button to see only new results, you see this
filter enabled.

• Filtered results: You see the number of results filtered in the Polyspace user
interface (by any means: results list, dashboard or orange sources).

• Hidden results: You see the number of results hidden using code annotations. To
unhide these results, clear Hide results justified in code.

For information on hiding results through code annotations, see “Address Polyspace
Results Through Bug Fixes or Comments” on page 19-2.

20 Manage Results

20-8

• Columns with active filters: You see the columns in the Results List pane (or
columns corresponding to graphs in the Dashboard pane) that you used to filter
results.

Group Results

On the Results List pane, from the list, select an option, for instance, grouping by
file. Alternatively, you can click a column header to sort the column contents
alphabetically.

The available options for grouping are:

• None: Shows results without grouping.
• Family: Shows results grouped by result type.

The results are organized by type: checks (Code Prover), defects (Bug Finder), global
variables (Code Prover), coding rule violations, code metrics. Within each type, they
are grouped further.

• The defects (Bug Finder) are organized by the defect groups. For more information
on the groups, see “Defects” (Polyspace Bug Finder).

 Filter and Group Results

20-9

• The checks (Code Prover) are grouped by color. Within each color, the checks are
organized by check group. For more information on the groups, see “Run-Time
Checks”.

• The global variables (Code Prover) are grouped by their usage. For more
information, see “Global Variables”.

• The coding rule violations are grouped by type of coding rule. For more
information, see “Coding Rules”.

• The code metrics are grouped by scope of metric. For more information, see “Code
Metrics”.

• File: Show results grouped by file.

Within each file, the results are grouped by function. The results that are not
associated with a particular function are grouped under File Scope.

In Code Prover, the file or function name shows the worst check color in the file or
function. The severity of a check color decreases in the order: red, gray, orange,
green.

• Class (for C++ code only): Shows results grouped by class.

Within each class, the results are grouped by method. The results that are not
associated with a particular class are grouped under Global Scope.

See Also

More About
• “Prioritize Check Review” on page 20-11

20 Manage Results

20-10

Prioritize Check Review
This example shows how to prioritize your check review. Try the following approach. You
can also develop your own procedure for organizing your orange check review.

Tip For easier review, run Polyspace Bug Finder on your source code first. Once you
address the defects that Polyspace Bug Finder finds, run Polyspace Code Prover on your
code.

1 Before beginning your check review, do the following:

• See the Code covered by verification graph on the Dashboard pane. See if the
Files, Functions and Code operations columns display a value closer to 100%.
Otherwise, identify why Polyspace could not cover the code.

For more information, see “Reasons for Unchecked Code” on page 23-86. If a
substantial number of functions or code operations were not covered, after
identifying and fixing the cause, run verification again.

• See if you have used the right configuration. Select the link View configuration
for results on the Dashboard pane.

Sometimes, especially if you are switching between multiple configurations, you
can accidentally use the wrong configuration for the verification.

2 From the drop-down list in the left of the Results List pane toolbar, select Critical
checks.

This action retains only red, gray and critical orange checks.
3

Click the forward arrow to go to the first unreviewed check. Review this check.

For more information, see “Interpret Polyspace Code Prover Results” on page 17-2.

Continue to click the forward arrow until you have reviewed through all of the
checks.

4 Before reviewing orange checks, review red and gray checks.
5 Prioritize your orange check review by:

• Files and functions: For easier review, begin your orange check review from files
and functions with fewer orange checks.

 Prioritize Check Review

20-11

To view the percentage of non-orange checks per file and function, on the Results
List pane, from the list, select File. Right-click a column header and select
%.

• Check type: Review orange checks in the following order. Checks are more
difficult to review as you go down this order.

Review Order Checks
First • Out of bounds array index

• Non-initialized local
variable

• Division by zero
• Invalid shift operations

Second • Overflow
• Illegally dereferenced

pointer
Third Remaining checks

• Orange check sources: Review all orange checks caused by a single variable or
function. Orange checks often arise from variables whose values cannot be
determined from the code or functions that are not defined.

To review the top sources, view the Top 5 orange sources graph on the
Dashboard tab or the Orange Sources tab. You can also select an orange source
on either tab to see only the orange checks caused by the source. For more
information, see “Filter Using Orange Sources” on page 20-7.

• Result details: Review all results that originate from the same cause. Sometimes,
the Detail column on the Results List pane shows additional information about a
result. For instance, if multiple issues trigger the same coding rule violation, this
column shows the issue. Click the column header so that results that originate
from the same type of issue are grouped together. Review the results in one go.

6 To ensure that you have addressed all red and critical orange checks, run verification
again and view your results.

7 If you do not have red or unjustified critical orange checks, from the drop-down list in
the left of the Results List pane toolbar, select All results.

20 Manage Results

20-12

Depending on the quality level you want, you can choose whether to review the
noncritical orange checks or not. For more information, see “Managing Orange
Checks” on page 17-66.

8 To see what percentage of checks you have justified:

a If you want the percentage broken down by color and type, on the Results List
pane, from the list, select Family. If you want the percentage broken down
by file and function, select File.

b View the entries in the Justified column.

See Also

Related Examples
• “Filter and Group Results” on page 20-2

 See Also

20-13

Generate Reports

• “Generate Reports” on page 21-2
• “Export Polyspace Analysis Results” on page 21-6
• “Export Global Variable List” on page 21-10
• “Visualize Code Prover Analysis Results in MATLAB” on page 21-15
• “Customize Existing Code Prover Report Template” on page 21-19
• “Sample Report Template Customizations” on page 21-25

21

Generate Reports
This example shows how to generate reports from Polyspace Bug Finder analysis results.

To generate reports, you can do one of the following:

• Run a Polyspace Bug Finder analysis and create a report from the analysis results. See
the workflow described here.

• Specify that a report will be automatically generated after analysis. For more
information on the options, see “Reporting”.

• Export your results to a text file and generate graphs and statistics. See “Export
Polyspace Analysis Results” on page 21-6.

Depending on the template you use, the report contains information about certain types
of results from the Results List pane. You can see the following information about a
result:

• ID: Unique number for a result for the current analysis

To identify the result in your source code, you can use the ID in the Results List pane
of the Polyspace user interface or in your IDE if you are using a Polyspace plugin.

• Check: Defect names, MISRA C:2012 coding rule number, and so on.
• File and function
• Status, Severity, Comment: Information that you enter about a result.

The report does not contain the line or column number for a result. Use the report for
archiving, gathering statistics and checking whether results have been reviewed and
addressed (for certification purposes or otherwise). To review a result in your source
code, use the Polyspace user interface or your IDE if you are using a Polyspace plugin.

Generate Reports from User Interface
You can generate a report from your analysis results. Using a customizable template, the
report presents your results in a concise manner for managerial review or other purposes.

1 Open your results file.
2 Select Reporting > Run Report.

The Run Report dialog box opens.

21 Generate Reports

21-2

3 Select the following options:

• In the Select Reports section, select the types of reports that you want to
generate. Press the Ctrl key to select multiple types. For example, you can select
BugFinder and CodeMetrics.

• Select the Output folder in which to save the report.
• Select an Output format for the report.
• If the display language (Windows) or locale (Linux) of your operating system is set

to another language, you see an option to generate English reports. Select this
option if you want an English report, otherwise the report is in another language.

• If you want to filter results from your report, use filters on the Results List pane
to display only the results that you want to report. Then, when generating reports,
select Only include currently displayed results.

For more information on filtering, see “Filter and Group Results” on page 20-2.

 Generate Reports

21-3

4 Click Run Report.

The software creates the specified report and opens it.

Generate Reports from Command Line
You can script the generation of reports using the polyspace-report-generator
command.

Use the following options with the command:

• -template path: Path to report template file. For more information, see Bug
Finder and Code Prover report (-report-template).

The predefined report templates are in matlabroot\toolbox\polyspace
\psrptgen\templates\Developer.rpt. Here, matlabroot is the MATLAB
installation folder such as C:\Program Files\MATLAB\R2015a.

• -format type: Output format of report. The allowed types areHTML, PDF and WORD.
• -output-name filename: Name of report.
• -results-dir folder_paths: Path to folder containing your analysis results.

To generate a single report for multiple analyses, specify folder_paths as follows:

"folder1, folder2, ..., folderN"

where folder1, folder2, ... are paths to the folders that contain analysis
results. For example,

"C:\Recent_project\Results,C:\Old_project\Results"

If you do not specify a folder path, the software uses analysis results from the current
folder.

• -set-language-english: Use this option to generate English reports if the default
report is in another language. The display language (Windows) or locale (Linux) of
your operating system determines the default language in the report.

See Also
Generate report | Bug Finder and Code Prover report (-report-template)
| Output format (-report-output-format)

21 Generate Reports

21-4

More About
• “Customize Existing Code Prover Report Template” on page 21-19
• “Export Polyspace Analysis Results” on page 21-6

 See Also

21-5

Export Polyspace Analysis Results
You can export your analysis results to a tab delimited text file or a MATLAB table
(MATLAB). Using the text file or table, you can:

• Generate graphs or statistics about your results that you cannot readily obtain from
the user interface by using MATLAB or Microsoft Excel®. For instance, for each Code
Prover check type (Division by zero, Overflow), you can calculate how many checks
are red, orange, or green.

• Integrate the analysis results with other checks you perform on your code.

Export Results to Text File
You can export results from the user interface or command line.

21 Generate Reports

21-6

User Interface Command Line
1 Open your analysis results.
2 Export all results or only a subset of

the results.

• To export all results, select
Reporting > Export > Export All
Results.

• If you want to filter results from
your report, use filters on the
Results List pane to display only
the results that you want to report.
Then, when exporting results, select
Reporting > Export > Export
Currently Displayed Results.

For more information on filtering,
see “Filter and Group Results” on
page 20-2.

3 Select a location to save the text file
and click OK.

Use appropriate options with the
polyspace-report-generator
command.

The available options are:

• -generate-results-list-file:
Specifies that a text file must be
generated.

• -results-dir folder_paths: Path
to folder containing your analysis
results. If you do not specify a folder
path, the software uses analysis results
from the current folder.

To generate text files for multiple
analyses, specify folder_paths as
follows:

"folder1, folder2, ..., folderN"

folder1, folder2, ... are paths to
the folders that contain analysis results.
For example:

"C:\My_project
\Module_1\results, C:
\My_project\Module_2\Results"

To merge the text files, use the join
function.

• -set-language-english: Use this
option to generate English reports if the
default report is in another language.
The display language (Windows) or
locale (Linux) of your operating system
determines the default language in the
report.

 Export Polyspace Analysis Results

21-7

The exported text file uses the character encoding on your operating system. If special
characters from your comments are not exported correctly in the text file, change the
character encoding on your operating system before exporting.

Export Results to MATLAB Table
Instead of a text file, you can read your Polyspace analysis results into a MATLAB table.
See:

• “Visualize Bug Finder Analysis Results in MATLAB” (Polyspace Bug Finder)
• “Visualize Code Prover Analysis Results in MATLAB” on page 21-15

View Exported Results
The text file or the table contains the result information available on the Results List
pane in the user interface (except for line and column information). See:

• “Results List” (Polyspace Bug Finder)
• “Results List” on page 17-29

Some differences in presentation between the Results List pane and the text file are
listed below.

• The text file has a New column that shows whether the result is new compared to the
last analysis on the same code.

• The text file or the table also contains a Key column. The entry in this column is
unique to a result across multiple analyses. When you merge multiple analysis results
that might contain common files, use this entry to eliminate copies of a result. For
instance, if you run coding-rule checking on multiple modules and merge the results,
header files and coding rule violations in them appear in multiple module results. To
eliminate copies of a coding rule violation, use the entry in the Key column.

You cannot identify the location of a Bug Finder result in your source code via the text
file. However, you can still parse the file and generate graphs or statistics about your
results.

21 Generate Reports

21-8

See Also

Related Examples
• “Visualize Code Prover Analysis Results in MATLAB” on page 21-15
• “Export Global Variable List” on page 21-10

 See Also

21-9

Export Global Variable List
You can export the list of global variables in your code to a tab delimited text file or a
MATLAB table (MATLAB). The text file or the table contains the same information as the
Variable Access pane in the Polyspace user interface.

Using the text file, you can:

• Generate graphs or statistics about global variables. For instance, you can see the
percentage of shared global variables that are not protected against concurrent
access.

• Use the range information to create external constraints for global variables. For
instance, you can report that your code is free of certain run-time errors only for the
extracted range of global variables.

You can also use the range to specify external constraints on subsequent verifications
or verification of other modules. See “Specify External Constraints” on page 12-2.

Export Variable List to Text File
You can export results from the user interface or command line.

21 Generate Reports

21-10

User Interface Command Line
1 Open your verification results.
2 Select Reporting > Export > Export

Variable Access.
3 Select a location to save the text file

and click OK.

Use appropriate options with the
polyspace-report-generator
command.

The available options are:

• -generate-variable-access-file:
Specifies that a text file must be
generated.

• -results-dir folder_paths: Path
to folder containing your verification
results. If you do not specify a folder
path, the software uses verification
results from the current folder.

To generate text files for multiple
verifications, specify folder_paths as
follows:

"folder1, folder2, ..., folderN"

folder1, folder2, ... are paths to
the folders that contain verification
results. For example:

"C:\My_project
\Module_1\results, C:
\My_project\Module_2\Results"

• -set-language-english: Use this
option to generate English reports if the
default report is in another language.
The display language (Windows) or
locale (Linux) of your operating system
determines the default language in the
report.

 Export Global Variable List

21-11

Export Variable List to MATLAB Table
Instead of a text file, you can read your Polyspace analysis results into a MATLAB table.
See polyspace.CodeProverResults.variableAccess.

View Exported Variable List
The text file or the table contains the result information available on the Variable Access
pane in the user interface.

For instance, suppose the Variable Access pane shows a variable SHR with this
information.

If you export this information to the tab-delimited text file and open the file in Excel, you
see the same information. Some of the information is shown below.

21 Generate Reports

21-12

Vari
able
s

Data
Type

Acce
ss

Valu
es

#Re
ads

#Wr
ites

Writ
ten
by
task

Rea
d by
task

Prot
ecti
on

Line Col File Func
tion

Exte
nsio
n

SHR int32 Aggr
egat
e

0 or
22

1 2 serv
er1
serv
er2

treg
ulate

Criti
cal
secti
on

30 11 tasks
1.c

 c

SHR Writ
e

0 30 11 tasks
1.c

init
glob
als()

c

SHR Writ
e

22 81 8 tasks
1.c

Tser
ver()

c

SHR Read 0 or
22

 53 14 tasks
1.c

initr
egul
ate()

c

See also “Variable Access” on page 17-47.

Some differences in presentation between the Variable Access pane and the text file (or
MATLAB table) are listed below.

• The Access column in the text file indicates whether the row shows information about
the variable (Aggregate) or information about operations on the variable (Write or
Read).

• The Function column in the text file shows the functions where the variable is read or
written (and on the Variable Access pane).

• There are no rows corresponding to read and write operations from tasks (and
on the Variable Access pane). This information is available in the Written by task
and Read by task columns in the text file (Tasks_Write and Tasks_Read columns
in the MATLAB table).

• The colors on the Variable Access pane are represented through the columns
Unreachable and Protected:

 Export Global Variable List

21-13

• If a shared variable is accessed in multiple tasks without a common protection, it is
colored orange on the Variable Access pane. In the text file, the Protected
column shows Unprotected.

• If a shared variable is accessed in multiple tasks but with a common protection, it
is colored green on the Variable Access pane. In the text file, the Protected
column shows Protected.

• If a shared variable is not accessed at all, it is colored gray on the Variable Access
pane. In the text file, the Unreachable column shows Is unreachable.

• The Potential column in the text file shows read or write operations via pointers (

or on the Variable Access pane). For operations via pointers, the column shows
Potential access.

See Also

Related Examples
• “Export Polyspace Analysis Results” on page 21-6
• “Variable Access” on page 17-47

21 Generate Reports

21-14

Visualize Code Prover Analysis Results in MATLAB
After analysis, you can read your results to a MATLAB table (MATLAB). Using the table,
you can generate graphs or statistics about your results. If you have MATLAB Report
Generator, you can include these tables and graphs in a PDF or HTML report.

Export Results to MATLAB Table
To read existing Polyspace analysis results into a MATLAB table, use a
polyspace.CodeProverResults object associated with the results.

For instance, if the folder C:\MyResults contains results of a Polyspace analysis, enter
the following:

resObj = polyspace.CodeProverResults('C:\MyResults');
resSummary = getSummary(resObj);
resTable = getResults(resObj);

resSummary and resTable are two MATLAB tables containing summary and details of
the Polyspace results.

Alternatively, you can run a Polyspace analysis on C/C++ source files using a
polyspace.Project object. After analysis, the Results property of the object contains
the results. See “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-2.

Generate Graphs from Results and Include in Report
You can visualize the analysis results in the MATLAB table in a convenient format. If you
have MATLAB Report Generator, you can create a PDF or HTML report that contains your
visualizations.

This example creates a pie chart showing the distribution of red, gray and orange run-
time checks by check type, and includes the chart in a report.

%% This example shows how to create a pie chart from your results and append
% it to a report.

%% Generate Pie Chart from Polyspace Results

% Copy a demo result set to a temporary folder.
resPath = fullfile(matlabroot,'polyspace','examples','cxx', ...

 Visualize Code Prover Analysis Results in MATLAB

21-15

 'Code_Prover_Example','Module_1','CP_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

% Read results into a table.
resObj = polyspace.CodeProverResults(userResPath);
resTable = getResults(resObj);

% Keep results that are run-time checks and eliminate green checks.
matches = (resTable.Family == 'Run-time Check') &...
 (resTable.Color ~= 'Green');
checkTable = resTable(matches, :);

% Create a pie chart showing distribution of checks.
checkList = removecats(checkTable.Check);
pieChecks = pie(checkList);
labels = get(pieChecks(2:2:end),'String');
set(pieChecks(2:2:end),'String','');
legend(labels,'Location','bestoutside')

% Save the pie chart.
print('file','-dpng');

%% Append Pie Chart to Report
% Requires MATLAB Report Generator

% Create a report object.
import mlreportgen.dom.*;
report = Document('PolyspaceReport','html');

% Add a heading and paragraph to the report.
append(report, Heading(1,'Code Prover Run-Time Errors Graph'));
paragraphText = ['The following graph shows the distribution of ' ...
 'run-time errors in your code.'];
append(report, Paragraph(paragraphText));

% Add the image to the report.
chartObj = Image('file.png');
append(report, chartObj);

% Add another heading and paragraph to the report.
append(report, Heading(1,'Code Prover Run-Time Errors Details'));
paragraphText = ['The following table shows the run-time errors ' ...

21 Generate Reports

21-16

 'in your code.'];
append(report, Paragraph(paragraphText));

% Add the table of run-time errors to the report.
reducedInfoTable = checkTable(:,{'File','Function','Check','Color',...
 'Status','Severity','Comment'});
reducedInfoTable = sortrows(reducedInfoTable,[1 2]);
tableObj = MATLABTable(reducedInfoTable);
tableObj.Style = {Border('solid','black'),ColSep('solid','black'),...
 RowSep('solid','black')};
append(report, tableObj);

% Close and view the report in a browser.
close(report);
rptview(report.OutputPath);

The key functions used in the example are:

• polyspace.CodeProverResults: Read Code Prover results into table (MATLAB).
• pie: Create pie chart from a categorical array (MATLAB). You can alternatively use

the function histogram or heatmap.

To create histograms, replace pie with histogram in the script and remove the pie
chart legends.

• mlreportgen.dom.Document: Create a report object that specifies the report format
and where to store the report.

• mlreportgen.dom.Document.append: Append contents to the existing report.

When you execute the script, you see a distribution of checks by check type. The script
also creates an HTML report that contains the graph and table of Polyspace checks.

 Visualize Code Prover Analysis Results in MATLAB

21-17

See Also

Related Examples
• “Export Polyspace Analysis Results” on page 21-6

21 Generate Reports

21-18

Customize Existing Code Prover Report Template
In this example, you learn how to customize an existing report template to suit your
requirements. A report template defines the content and formatting of reports generated
from analysis results. If an existing report template does not suit your requirements, you
can change certain aspects of the template.

For more information on the existing templates, see Bug Finder and Code Prover
report (-report-template).

Prerequisites
Before you customize a report template:

• See whether an existing report template meets your requirements. Identify the
template that produces reports in a format close to what you need. You can adapt this
template.

To test a template, generate a report from sample verification results using the
template. See “Generate Reports” on page 21-2.

• Make sure you have MATLAB Report Generator installed on your system.

In this example, you modify the Developer template that is available in Polyspace Code
Prover.

View Components of Template
A report template can be broken into components in MATLAB Report Generator. Each
component represents some of the information that is included in a report generated
using the template. For example, the component Title Page represents the information in
the title page of the report.

In this example, you view the components of the Developer template.

1 Open the Report Explorer interface of Simulink Report Generator. At the MATLAB
command prompt, enter:

report
2 Open the Developer template in the Report Explorer interface.

 Customize Existing Code Prover Report Template

21-19

The Developer template is in matlabroot/toolbox/polyspace/psrptgen/
templates where matlabroot is the MATLAB installation folder. Use the
matlabroot command to find the installation folder location.

Your template opens in the Report Explorer. On the left pane, you can see the components
of the template. You can click each component and view the component properties on the
right pane.

Some components of the Developer template and their purpose are described below.

Component Purpose
Title Page Inserts title page in the beginning of report
Chapter/
Subsection

Groups portions of report into sections with titles

Code Verification
Summary

Inserts summary table of Polyspace analysis results

Logical If Executes child components only if a condition is satisfied
Run-time Checks
Summary Ordered
by File

Inserts a table with Polyspace Code Prover checks grouped by file

To understand how the template works, compare the components in the template with a
report generated using the template.

For more information on all the components, see the MATLAB Report Generator
documentation. For information on Polyspace-specific components, see “Generate
Reports”.

Note Some of the component properties are set using internal expressions. Although you
can view the expressions, do not change them. For instance, the conditions specified in

21 Generate Reports

21-20

the Logical If components in the Developer template are specified using internal
expressions.

Change Components of Template
In the Report Explorer interface, you can:

• Change properties of existing components of your template.
• Add new components to your template or remove existing components.

In this example, you add a component to the Developer template that filters
Unreachable code checks from a report generated using the template.

1 Open the Developer template in the Report Explorer interface and save it elsewhere
with a different name, for instance, Developer_without_UNR.

2 Add a new global component that filters Unreachable code checks from the
Developer_without_UNR template. The component is global because it applies to
the full report and not one chapter of the report.

To perform this action:

a Drag the component Report Customization (Filtering) from the middle
pane and drop it above the Title Page component. The positioning of the
component ensures that the filters apply to the full report and not one chapter of
the report.

 Customize Existing Code Prover Report Template

21-21

b Select the Report Customization (Filtering) component. On the right pane,
you can set the properties of this component. By default, the properties are set
such that all results are included in the report.

To exclude Unreachable code checks, under the Advanced Filters group, enter
^(?!Unreachable code).* in the Check types to include field.

21 Generate Reports

21-22

You can enter MATLAB regular expressions in this field using the Polyspace
result names. See “Regular Expressions” (MATLAB) and “Polyspace Code Prover
Results”.

You can toggle between activating and deactivating this component. Right-click
the component and select Activate/Deactivate Component.

3 Change an existing chapter-specific component so that it does not override the global
filter you applied in the previous step. If you prevent the overriding, the chapter-
specific component follows the filtering specifications in the global component.

To perform this action:

a On the left pane, select the Run-time Checks Details Ordered by Color/
File component. This component produces tables in the report with details of
run-time checks found in Polyspace Code Prover.

The right pane shows the properties of this component.
b Clear the Override Global Report filter box.

4 In the Polyspace user interface, create a report using both the Developer and
Developer_without_UNR template from results containing Unreachable code
checks. Compare the two reports.

For instance:

a Open Help > Examples > Code_Prover_Example.psprj.

The demo result contains Unreachable code checks.
b Create a pdf report using the Developer template.

In the report, open Chapter 5. Polyspace Run-Time Checks Results. You can
see gray Unreachable code checks. Close the report.

 Customize Existing Code Prover Report Template

21-23

c Create a pdf report using the Developer_without_UNR template. In the Run
Report window, use the Browse button to add the Developer_without_UNR
template to the existing template list.

In the report, open Chapter 6. Polyspace Run-Time Checks Results. You do
not see gray Unreachable code checks.

Note After you add the template to the existing list of templates, before
generating the report, make sure to select the newly added template.

Further Exploration
Modify the Developer template such that the file initialisations.c is excluded from
a report generated using the template. Generate a report from Code_Prover_Example
results using your modified template and verify that the file initialisations.c is
excluded from the report.

Hint: The regular expression you must use is ^(?!initialisations.c).*

For more examples, see “Sample Report Template Customizations” on page 21-25.

See Also
Bug Finder and Code Prover report (-report-template) | Generate report
| Output format (-report-output-format)

Related Examples
• “Generate Reports” on page 21-2
• “Sample Report Template Customizations” on page 21-25

21 Generate Reports

21-24

Sample Report Template Customizations
A report template defines the content and formatting of reports generated from analysis
results. If an existing template does not suit your requirements, you can change certain
aspects of the template.

This topic shows some customizations you can do to a Polyspace report template, with
brief steps. For a more detailed tutorial, see “Customize Existing Code Prover Report
Template” on page 21-19.

To customize a template:

1 Open MATLAB Report Generator. At the MATLAB command prompt, enter:

report
2 Open an existing template.

The templates are located in matlabroot/toolbox/polyspace/psrptgen/
templates. matlabroot is the MATLAB installation folder.

3 Add, remove, or modify components of the template.

For a full list of Polyspace-specific components, see “Generate Reports”.

Add List of Recursive Functions
Suppose that you want to report all recursive functions detected in your source code.

Start from the CodeMetrics template. In the chapter on code metrics, add the
component Recursive Functions.

 Sample Report Template Customizations

21-25

When you generate a report by using the modified template, you see a table with the list
of recursive functions.

Show Red Run-Time Checks Only
Suppose that you want to report an overview of all run-time checks and details for red
checks only.

Start from the Developer template. Remove all chapters, except the ones containing
these components:

• Code Verification Summary
• Run-time Checks Summary Ordered by File
• Run-time Checks Details Ordered by Color/File. Modify this component so

that it shows red checks only.

Select the component. On the right pane, in the group Categories To Include, clear
all boxes other than Red Checks.

• Appendix components: Configuration Parameters and Acronym Definitions.

21 Generate Reports

21-26

When you generate a report by using the modified template, you see an overview of
checks, a chapter with details for red checks only, and the appendix.

Show Non-Justified Run-Time Checks Only
Suppose that you want to report only the checks that you have not justified. You justify a
check when you assign one of these statuses:

• Justified
• No action planned
• Not a defect

Add the component Report Customization (Filtering) above the first chapter.
Modify the component so that the following chapters show non-justified checks only.

Select the component. On the right pane, in the group Advanced Filters, from the
Justification Status list, select Un-justified.

When you generate a report by using the modified template, you see only the non-justified
run-time checks.

Add Chapter for Functional Design Errors
Suppose that you implement functional design testing using assert statements in your
code. For instance, to test if the output of a function out is within a range [MIN,MAX],
your code uses the statement:

assert(MIN <= out && out <= MAX);

 Sample Report Template Customizations

21-27

Polyspace runs the check User assertion to determine if the assert condition fails.
Suppose that you want to report these checks in a separate chapter because they are
different from the other run-time error checks.

Start from the Developer template. Make a copy of the chapter containing the
component Run-time Checks Details Ordered by Color/File.

Rename each of the two chapter titles so that you can distinguish between them. In each
chapter, modify the component Run-time Checks Details Ordered by Color/File as
follows:

• In one chapter, exclude User assertion checks. Select the component. On the right
pane, in the group Advanced Filters, for Check types to include, enter:

^(?!User assertion).*

• In the other chapter, include User assertion checks. Select the component. On the
right pane, in the group Advanced Filters, for Check types to include, enter:

User assertion

Clear the boxes for grey checks, because the User assertion checks cannot be grey.

When you generate a report by using the modified template, you see two copies of the
chapter on run-time checks. The first chapter contains all checks other than User
assertion checks and the second chapter contains User assertion checks only.

See Also

Related Examples
• “Customize Existing Code Prover Report Template” on page 21-19

21 Generate Reports

21-28

Software Quality with Polyspace
Metrics

• “Code Quality Metrics” on page 22-2
• “Generate Code Quality Metrics” on page 22-11
• “View Code Quality Metrics” on page 22-14
• “Compare Metrics Against Software Quality Objectives” on page 22-18
• “View Trends in Code Quality Metrics” on page 22-25
• “Web Browser Requirements for Polyspace Metrics” on page 22-28
• “Elements in Custom Software Quality Objectives File” on page 22-29

22

Code Quality Metrics
Polyspace Metrics is a web dashboard that generates code quality metrics from your
verification results. Using this dashboard, you can:

• Provide your management a high-level overview of your code quality.
• Compare your code quality against predefined standards.
• Establish a process where you review in detail only those results that fail to meet

standards.
• Track improvements or regression in code quality over time.

For each project or run, you can view the code quality metrics spread over four tabs, at
project, file, and function level.

• The Summary tab provides a high-level overview of the verification results.
• The Code Metrics tab provides the details of the code complexity metrics in your

results.

See “Code Metrics”.
• The Coding rules tab provides the details of the coding rule violations in your results.

See “Coding Rules”.
• The Run-Time Checks tab provides details of run-time checks in your results.

See “Run-Time Checks”.

If you turn on Software Quality Objectives, each tab also specifies how your project or run
compares against those objectives. See “Compare Metrics Against Software Quality
Objectives” on page 22-18.

Summary Tab
The Summary tab summarizes the verification results for a project or run.

To see the results embedded in your source code, download the results from Polyspace
Metrics to the user interface. For more information, see “Review Metrics for Particular
Project or Run” on page 22-16.

22 Software Quality with Polyspace Metrics

22-2

Column Name Description
Verification Status Verification level completed. See

Verification level (-to).
Code Metrics Files Number of files in project.

Lines of code Number of lines of code, broken down by file.
Coding Rules Confirmed

Defects
Number of coding rule violations to which you
assign a Severity of High, Medium or Low in
the Polyspace user interface.

See “Address Polyspace Results Through Bug
Fixes or Comments” on page 19-2.

Violations Total number of coding rule violations.
Run-Time Errors Confirmed

Defects
Number of run-time checks to which you
assign a Severity of High, Medium or Low in
the Polyspace user interface.

See “Address Polyspace Results Through Bug
Fixes or Comments” on page 19-2.

Run-Time
Reliability

A measure of your code quality, expressed as a
percentage.

The percentage is calculated as number of
green and other justified checks divided by the
total number of checks.

To justify a check, in the Polyspace user
interface, you must assign an appropriate
Status. See “Address Polyspace Results
Through Bug Fixes or Comments” on page 19-
2.

Software Quality
Objectives

Overall Status A status of PASS or FAIL based on whether
your code satisfies the software quality
objectives you specified.

For more information, see “Compare Metrics
Against Software Quality Objectives” on page
22-18.

 Code Quality Metrics

22-3

Column Name Description
Level The software quality objectives that you

specify. You can either use a predefined set of
objectives or specify your own objectives.

See:

• “Software Quality Objectives” on page 17-
77

• “Customize Software Quality Objectives”
on page 22-20

Review Progress A measure of your review progress, expressed
as a percentage.

The percentage is calculated as number of
reviewed non-green checks and coding rule
violations divided by the total number of non-
green checks and rule violations.

To review a check, in the Polyspace user
interface, you must assign a Status. See
“Address Polyspace Results Through Bug Fixes
or Comments” on page 19-2.

Justified Code
Metrics

Percentage of code metrics threshold
violations that you have justified.

To justify a threshold violation, in the
Polyspace user interface, you must assign an
appropriate Status. See “Address Polyspace
Results Through Bug Fixes or Comments” on
page 19-2.

Justified Coding
Rules

Percentage of coding rule violations that you
have justified.

To justify a rule violation, in the Polyspace
user interface, you must assign an appropriate
Status. See “Address Polyspace Results
Through Bug Fixes or Comments” on page 19-
2.

22 Software Quality with Polyspace Metrics

22-4

Column Name Description
Justified Run-
Time Errors

Percentage of run-time checks that you have
justified.

To justify a check, in the Polyspace user
interface, you must assign an appropriate
Status. See “Address Polyspace Results
Through Bug Fixes or Comments” on page 19-
2.

Code Metrics Tab
The Code Metrics tab lists the code complexity metrics for your project or run.

Some metrics are calculated at the project level, while others are calculated at file or
function level. For metrics calculated at the function level, the entry displayed for a file is
either an aggregate or a maximum over the functions in the file.

For more information, see “Code Metrics”.

Coding Rules Tab
The Coding Rules tab lists the coding rule violations in your project or run. For more
information on the coding rules, see “Coding Rules”.

You can group the information in the columns by Files or Coding Rules.

Column Name Description
Coding Rules Confirmed Defects Number of coding rule violations to which you

assign a Severity of High, Medium, or Low in
the Polyspace user interface.

See “Address Polyspace Results Through Bug
Fixes or Comments” on page 19-2.

 Code Quality Metrics

22-5

Column Name Description
Justified Number of coding rule violations that you have

justified.

To justify a rule violation, in the Polyspace user
interface, assign an appropriate Status. See
“Address Polyspace Results Through Bug Fixes
or Comments” on page 19-2.

Violations Total number of coding rule violations.
Software Quality
Objectives

Quality Status A status of PASS or FAIL based on whether
your code satisfies the software quality
objectives you specified.

See “Compare Metrics Against Software
Quality Objectives” on page 22-18.

Level The software quality objectives that you
specify. You can either use a predefined set of
objectives, or specify your own objectives.

See:

• “Software Quality Objectives” on page 17-
77

• “Customize Software Quality Objectives” on
page 22-20

Review Progress A measure of your review progress, expressed
as a percentage.

The percentage is calculated as the number of
reviewed coding rule violations divided by the
total number of violations.

To mark a check as reviewed, in the Polyspace
user interface, assign a Status to the check.
See “Address Polyspace Results Through Bug
Fixes or Comments” on page 19-2.

22 Software Quality with Polyspace Metrics

22-6

Run-Time Checks Tab
The Run-Time Checks tab lists the run-time checks in your project or run. For more
information on the checks, see “Run-Time Checks”.

You can group the information in the columns by Files or Run-Time Categories.

Column Name Description
Confirmed Defects Number of run-time checks to which you assign

a Severity of High, Medium, or Low in the
Polyspace user interface.

See “Address Polyspace Results Through Bug
Fixes or Comments” on page 19-2.

Run-Time Selectivity Percentage, calculated as the number of non-
orange checks divided by the total number of
checks.

Green Code Checks Number of green checks.

See “Code Prover Result and Source Code
Colors” on page 17-10.

Systematic Run-
Time Errors
(Red Checks)

Justified Percentage of red checks that you have
justified.

To justify a check, in the Polyspace user
interface, assign an appropriate Status. See
“Address Polyspace Results Through Bug Fixes
or Comments” on page 19-2.

Checks Number of red checks.

See “Code Prover Result and Source Code
Colors” on page 17-10.

 Code Quality Metrics

22-7

Column Name Description
Unreachable
Branches (Gray
Checks)

Justified Percentage of gray checks that you have
justified.

To justify a check, in the Polyspace user
interface, assign an appropriate Status. See
“Address Polyspace Results Through Bug Fixes
or Comments” on page 19-2.

Checks Number of gray checks.

See “Code Prover Result and Source Code
Colors” on page 17-10.

Other Run-Time
Errors (Orange
Checks)

Justified Percentage of orange checks that you have
justified.

To justify a check, in the Polyspace user
interface, assign an appropriate Status. See
“Address Polyspace Results Through Bug Fixes
or Comments” on page 19-2.

Checks Number of orange checks.

See “Code Prover Result and Source Code
Colors” on page 17-10.

Path-Related
Issues

Number of orange checks that indicate a run-
time error only on certain execution paths.

See “Critical Orange Checks” on page 17-71.
Bounded-Input
Issues

Number of orange checks that indicate a run-
time error only for certain inputs. You have
specified external constraints on the inputs.

See “Critical Orange Checks” on page 17-71.
Unbounded-Input
Issues

Number of orange checks that indicate a run-
time error only for certain inputs. You have not
specified any external constraints on the
inputs.

See “Critical Orange Checks” on page 17-71.

22 Software Quality with Polyspace Metrics

22-8

Column Name Description
Non-terminating
constructs

Justified Percentage of non-terminating constructs that
you have justified.

To justify a check, in the Polyspace user
interface, assign an appropriate Status. See
“Address Polyspace Results Through Bug Fixes
or Comments” on page 19-2.

Checks Number of non-terminating constructs such as
Non-terminating call or Non-
terminating loop.

Software Quality
Objectives

Quality Status A status of PASS or FAIL based on whether
your code satisfies the software quality
objectives you specified.

See “Compare Metrics Against Software
Quality Objectives” on page 22-18.

Level The software quality objectives that you
specify. You can either use a predefined set of
objectives or specify your own objectives.

See:

• “Software Quality Objectives” on page 17-
77

• “Customize Software Quality Objectives” on
page 22-20

Review Progress A measure of your review progress, expressed
as a percentage.

The percentage is calculated as the number of
reviewed checks divided by the total number of
checks.

To mark a check as reviewed, in the Polyspace
user interface, assign a Status to the check.
See “Address Polyspace Results Through Bug
Fixes or Comments” on page 19-2.

 Code Quality Metrics

22-9

See Also

Related Examples
• “Generate Code Quality Metrics” on page 22-11
• “View Code Quality Metrics” on page 22-14
• “Compare Metrics Against Software Quality Objectives” on page 22-18
• “View Trends in Code Quality Metrics” on page 22-25

22 Software Quality with Polyspace Metrics

22-10

Generate Code Quality Metrics
After verification, you can upload the results to the Polyspace Metrics web interface. The
web interface displays a summary of your verification results. You can share this summary
with others even if they do not have Polyspace installed locally. You can also compare the
results against previous verifications on the same project or measure them against
predefined software quality objectives.

For more information, see “Code Quality Metrics” on page 22-2.

Before you generate code quality metrics, set up Polyspace Metrics. See “Set Up
Polyspace Metrics”.

Upload Results to Polyspace Metrics After Remote Verification
If you perform verification on a remote cluster, you can specify that the results must be
uploaded automatically to the Polyspace Metrics interface after verification.

To specify post-verification uploads using the Polyspace user interface, in your project
configuration, select Run Settings. Along with Run Code Prover analysis on a remote
cluster, select Upload results to Polyspace Metrics.

After verification, the results are automatically uploaded to the web interface. If you
upload results from multiple modules in a project, the results have the same project name
and version number. To see or change the project name and version number, right-click a
project in the Project Browser pane and select Project Properties.

Command Line

To specify automatic uploads at the command line, use the option Upload results to
Polyspace metrics (-add-to-results-repository).

Upload Local Verification Results to Polyspace Metrics
If you perform a local verification on your desktop, you can upload your results to the
Polyspace Metrics web interface. Even for remote verification, if you do not select Upload

 Generate Code Quality Metrics

22-11

results to Polyspace Metrics, after verification, the results are downloaded to your
computer. You can upload them later.

To upload results from the Polyspace user interface, select a result in the Project
Browser pane or open a result. Select Metrics > Upload to Metrics. Change the
default project name and version number if needed.

Passwords

When you upload results to Polyspace Metrics, you are prompted to enter a password.
Leave the field blank if you do not want to specify one.

If you specify a password, you have to enter it every time you open your project in
Polyspace Metrics. The session lasts for 30 minutes even if you close and reopen your web
browser. After 30 minutes, enter your password again.

You can also specify a password later. On the Polyspace Metrics web interface, right-click
your project and select Change/Set Password.

Note The password for a Polyspace Metrics project is encrypted. The web data transfer
is not encrypted. The password feature minimizes unintentional data corruption, but it
does not provide data security. However, data transfers between a Polyspace Code Prover
local host and the remote verification MJS host are always encrypted. To use a secure web
data transfer with HTTPS, see “Configure Web Server for HTTPS”.

Command Line

Use the command polyspace-results-repository. For a quick review of the
command options, use the -h flag. At the command line, enter:

matlabroot\polyspace\bin\polyspace-results-repository -h

Here, matlabroot is the MATLAB installation folder, for instance, C:\Program Files
\MATLAB\R2017b.

22 Software Quality with Polyspace Metrics

22-12

See Also
polyspace-results-repository

Related Examples
• “View Code Quality Metrics” on page 22-14
• “Compare Metrics Against Software Quality Objectives” on page 22-18
• “View Trends in Code Quality Metrics” on page 22-25

 See Also

22-13

View Code Quality Metrics
Before you can view software quality metrics, upload your results to the Polyspace
Metrics repository. You can upload the results of a local verification or remote verification.
For more information, see “Generate Code Quality Metrics” on page 22-11.

Open Metrics Interface
You can open the metrics interface in one of the following ways:

• If you have a local installation of Polyspace, select Metrics > Open Metrics.
• If you do not have a local installation, enter the following URL in a web browser:

protocol:// ServerName: PortNumber

• protocol is either http (default) or https.

To use HTTPS, set up the configuration file and the Metrics configuration
preferences. For more information, see “Configure Web Server for HTTPS”.

• ServerName is the name or IP address of your Polyspace Metrics server.
• PortNumber is the web server port number (default 8080)

View All Projects and Runs
On the Polyspace Metrics interface, you can view either all projects or all runs.

• On the Projects tab, view all projects.

On this tab, you can do the following:

Goal Action
See number of project runs. Hover your cursor over the project

name.
Group projects together. Right-click a project. Select Create

Project Category. Drag projects to
your new category.

22 Software Quality with Polyspace Metrics

22-14

Goal Action
Filter projects from display. In the field below the Project column

header, enter the name of the project
you want.

Delete project from the Metrics
repository.

Right-click the project. Select Delete
Project from Repository.

Assign password to project. Right-click the project. Select
Change/Set Password.

See code quality metrics for all runs of
project.

Click the project name. For more
information, see “Review Metrics for
Particular Project or Run” on page 22-
16.

Tip If a new verification has been carried out for a project since your last visit, then
on the Projects tab, the icon appears before the project name.

• If a project has multiple runs, on the Runs tab, view the individual runs. To identify
different runs of the same project, use the Project and Version column.

On this tab, you can do the following:

Goal Action
Delete run from repository. Right-click the run. Select Delete Run

from Repository.
Assign password to run. Right-click the run. Select Change/Set

Password.
See runs between two specific dates. Select the starting date in the From

field and the end date in the To field.
See only the last n runs. In the field Maximum number of runs,

enter n.
See code quality metrics for a run. Right-click the run. Select Go to

Metrics Page. For more information,
see “Review Metrics for Particular
Project or Run” on page 22-16.

 View Code Quality Metrics

22-15

Goal Action
Download results of run to Polyspace
user interface.

Click the run name.

Review Metrics for Particular Project or Run
If you select a project on the Projects tab or Go to Metrics Page for a run on the Runs
tab, you can view the code quality metrics for the project or run. A summary of the
metrics appears on the Summary tab.

If you want to compare the code quality metrics against standards you have previously
defined, before reviewing your results, you can turn on quality objectives. For more
information, see “Compare Metrics Against Software Quality Objectives” on page 22-18.

Otherwise, review the absolute values of code quality metrics on the Summary tab.

1 Select an entry on the Summary tab to open another tab with further details.

• If you select an entry under the group Code Metrics, you can see your code
complexity metrics on the Code Metrics tab.

• If you select an entry under the group Coding Rules, you can see your coding
rule violations on the Coding Rules tab.

• If you select an entry under the group Run-Time Errors, you can see your run-
time checks on the Run-Time Checks tab.

For example, in the following metrics, there are three red checks. Select the entry in
the Red column to view the checks on the Run-time Checks tab.

For details on the columns, see “Code Quality Metrics” on page 22-2.
2 On the Code Metrics, Coding Rules or Run-Time Errors tabs, select an entry to

download the result to the Polyspace user interface.

Note If you download results using Internet Explorer® 11, it may take a minute or
two to open the Java® plug-in and load the Polyspace interface.

22 Software Quality with Polyspace Metrics

22-16

The results appear on the Results List pane in the Polyspace user interface. The
filter Show > Web checks on this pane indicate that you have downloaded the
results from Polyspace Metrics.

3 In the Polyspace user interface, review the particular result, investigate the root
cause in your source code, and assign review comments and justifications.

4 To upload your comments and justifications to the Polyspace Metrics repository,
select Metrics > Upload to Metrics.

Tip To upload automatically your comments and justifications to the Polyspace
Metrics repository when you save them:

a Select Tools > Preferences.
b On the Server Configuration tab, select Save justifications in the Polyspace

Metrics repository.

5
After your review is over, in the Polyspace Metrics interface, click to view
updated metrics.

See Also

Related Examples
• “View Trends in Code Quality Metrics” on page 22-25

 See Also

22-17

Compare Metrics Against Software Quality Objectives
After generating and viewing metrics from your verification results, you can review the
results in greater detail. You can download each result into the Polyspace user interface,
investigate it in your source code and add review comments to them. For more
information, see “View Code Quality Metrics” on page 22-14.

To focus your review, you can:

1 Define quality objectives that you or developers in your organization must meet.
2 Apply the quality objectives to your verification results.
3 Review only those results that fail to meet those objectives.

Apply Predefined Objectives to Metrics
By default, the software quality objectives are turned off. To apply quality objectives:

1 Open the Polyspace Metrics interface. View the metrics for a project or a run on the
Summary tab.

For more information, see “View Code Quality Metrics” on page 22-14.
2 From the Quality Objectives list in the upper left, select ON.

• A new group of Software Quality Objectives columns appears.
• In the Overall Status column, is the last used quality objective level to generate a

status of PASS or FAIL for your results.
• In the Level column, you can see the quality objective level.

To change your quality objective level, in this column, select a cell. From the drop-
down list, select a quality level. For more information, see “Software Quality
Objectives” on page 17-77.

3 For files with an Overall Status of FAIL, to see what causes the failure, view the
entries in the other Software Quality Objectives columns. The entries that cause
the failure are marked red.

If the icon appears next to the status, it means that Polyspace does not have
sufficient information to compute the status. For instance, if you specify the level
SQO-1, but do not check for coding rule violations in your project, Polyspace cannot
determine whether your project satisfies all the objectives specified in SQO-1.

22 Software Quality with Polyspace Metrics

22-18

4 View further details for the entries which are marked red on the Summary tab. For
example, if an entry on the Code Metrics over Threshold column is marked red,
select it. You can see values of the code complexity metrics on the Code Metrics tab.

5 Review each code complexity metric, coding rule violation, or run-time error that
caused your project to fail quality objectives. Fix your code or justify the errors or
violations.

Tab Action
Code Metrics Note the entries that are red. Select

each entry to download the code metric
threshold violation to the Polyspace
user interface. Review the violations
and fix or justify it. If you justify a
violation, you can upload your
justifications to the Polyspace Metrics
web dashboard. After justification, a

red entry appears green with an
icon next to it.

Coding Rules In the Justified column, note the
entries that are red. Select each entry
to download the coding rule violation to
the Polyspace user interface. Review
the violation and fix or justify it. If you
justify a violation, you can upload your
justifications to the Polyspace Metrics
web dashboard. After justification, a
red entry appears green in the
Justified column.

 Compare Metrics Against Software Quality Objectives

22-19

Tab Action
Run-Time Checks In the Justified columns, note the

entries that are red. Select each entry
to download the checks to the
Polyspace user interface. Review the
checks and fix or justify them. If you
justify a check, you can upload your
justifications to the Polyspace Metrics
web dashboard. After justification, a
red entry appears green in the
Justified column.

For more information on the review process, see “Review Metrics for Particular
Project or Run” on page 22-16.

6
After your review, in the Polyspace Metrics interface, click to view the updated
metrics. See if your project has an Overall Status of PASS because of your
justifications.

If you change your code, to update the metrics, rerun your verification and upload
the results to the Polyspace Metrics repository. If you have justifications in your
previous results, import them to the new results before uploading the new results to
the repository. To begin, select Tools > Import Comments.

Tip You can apply a quality objective to all files in a project or run. If you want to turn off
quality objectives or apply different objectives for some files in your project, you can place
them in a separate module.

To create a new module, press Ctrl and select the rows containing the files that you want
to group. Right-click the selection. and select Add to Module. In the Level column for
this module, select your quality objective from the drop-down list. The software applies
this objective to all files in the module and determines an Overall Status of PASS or
FAIL to the module.

Customize Software Quality Objectives
Instead of using a predefined objective, you can define your own quality objectives and
apply them to your project or module.

22 Software Quality with Polyspace Metrics

22-20

1 Save the following content in an XML file. Name the file Custom-SQO-
Definitions.xml.

<?xml version="1.0" encoding="UTF-8"?>
<MetricsDefinitions>

 <SQO ID="Custom-SQO-Level" ApplicableProduct="Code Prover"
 ApplicableProject="My_Project">
 <comf>20</comf>
 <path>80</path>
 <goto>0</goto>
 <vg>10</vg>
 <calling>5</calling>
 <calls>7</calls>
 <param>5</param>
 <stmt>50</stmt>
 <level>4</level>
 <return>1</return>
 <vocf>4</vocf>
 <ap_cg_cycle>0</ap_cg_cycle>
 <ap_cg_direct_cycle>0</ap_cg_direct_cycle>
 <Num_Unjustified_Violations>Custom_MISRA_Rules_Set
</Num_Unjustified_Violations>
 <Num_Unjustified_Red>0</Num_Unjustified_Red>
 <Num_Unjustified_NT_Constructs>0
</Num_Unjustified_NT_Constructs>
 <Num_Unjustified_Gray>0</Num_Unjustified_Gray>
 <Percentage_Proven_Or_Justified>
Custom_Runtime_Checks_Set</Percentage_Proven_Or_Justified>
 </SQO>

 <CodingRulesSet ID="Custom_MISRA_Rules_Set">
 <Rule Name="MISRA_C_5_2">0</Rule>
 <Rule Name="MISRA_C_17_6">0</Rule>
 </CodingRulesSet>

 <RuntimeChecksSet ID="Custom_Runtime_Checks_Set">
 <Check Name="OBAI">80</Check>
 <Check Name="IDP">60</Check>
 </RuntimeChecksSet>

</MetricsDefinitions>
2 Save this XML file in the folder where remote analysis data is stored, for example, C:

\Users\JohnDoe\AppData\Roaming\Polyspace_RLDatas.

 Compare Metrics Against Software Quality Objectives

22-21

If you want to change the folder location, select Metrics > Metrics and Remote
Server Settings.

3 Modify the content of this file to specify the project name and your own quality
thresholds. For more information, see “Elements in Custom Software Quality
Objectives File” on page 22-29.

a To make the quality level Custom-SQO-Level applicable to a certain project,
replace the value of the ApplicableProject attribute with the project name.

If you want the quality objectives to apply to all projects, use
ApplicableProject="".

b For specifying coding rules, begin the rule name with the appropriate string
followed by the rule number. Use _ instead of a decimal point in the rule number.

Rule String Rule numbers
MISRA C: 2004 MISRA_C_ “MISRA C:2004 and

MISRA AC AGC
Coding Rules” on page
15-3

MISRA C: 2012 MISRA_C3_ “MISRA C:2012
Directives and Rules”

MISRA C++ MISRA_Cpp_ “MISRA C++ Coding
Rules” on page 15-86

JSF C++ JSF_Cpp_ “JSF C++ Coding
Rules” on page 15-124

Custom coding rules Custom_ “Custom Coding
Rules” (Polyspace Bug
Finder)

c For specifying checks, use the appropriate check acronym. For more information,
see “Short Names of Code Prover Run-Time Checks” on page 19-12.

4 After you have made your modifications, in the Polyspace Metrics interface, open the
metrics for your project. From the Quality Objectives list in the upper left, select
ON.

5 On the Summary tab, select an entry in the Level column. For the project name that
you specified, your new quality objective Custom-SQO-Level appears in the drop-
down list.

22 Software Quality with Polyspace Metrics

22-22

6 Select your new quality objective.

The software compares the thresholds you had specified against your results and
updates the Overall Status column with PASS or FAIL.

7 To define another set of custom quality objectives, add the following content to the
Custom-SQO-Definitions.xml file:

<SQO ID="Custom-SQO-Level_2" ParentID="Custom-SQO-Level"
 ApplicableProduct="Code Prover"
 ApplicableProject="My_Project">
 ...
</SQO>

Here:

• ID represents the name of the new set.

You cannot have the same values of ID and ApplicableProject for two
different sets of quality objectives. For example, if you use an ID value of
Custom-SQO-Level for two different sets, and an ApplicableProject value of
My_Project for one set and My_Project or "" for the other, you see the
following error:

The SQO level 'Custom-SQO-Level' is multiply defined.
• ParentID specifies another level from which the current level inherits its quality

objectives. In the preceding example, the level Custom-SQO-Level_2 inherits its
quality objectives from the level Custom-SQO-Level.

If you do not want to inherit quality objectives from another level, omit this
attribute.

• ... represents the additional quality thresholds that you specify for the level
Custom-SQO-Level_2.

The quality thresholds that you specify override the thresholds that Custom-SQO-
Level_2 inherits from Custom-SQO-Level. For instance, if you specify
<goto>1</goto>, this overrides the threshold specification <goto>0</goto> of
Custom-SQO-Level.

 Compare Metrics Against Software Quality Objectives

22-23

See Also

Related Examples
• “View Trends in Code Quality Metrics” on page 22-25

22 Software Quality with Polyspace Metrics

22-24

View Trends in Code Quality Metrics
Using the Polyspace Metrics interface, you can track improvements or regression in code
quality metrics over various runs on the same source code.

To view trends in metrics, upload the various versions of your results to the Polyspace
Metrics repository.

1 Open the Polyspace Metrics interface.

For more information, see “Open Metrics Interface” on page 22-14.
2 On the Projects tab, select the project for which you want to view trends.

The code quality metrics for all versions of the project appear on the Summary,
Code Metrics, Coding Rules, and Run-Time Checks tabs. For example, the figure
shows the Summary tab displaying three versions of a project.

In addition, you can see a graphical view of the trends on each tab. For example, the
figure shows the trend in Run-Time Findings over three versions of a project.

3 To compare two versions of the same project:

a In the From and To lists on the upper left of the web dashboard, select the two
versions that you want to compare.

 View Trends in Code Quality Metrics

22-25

b Select the Compare box.

On each tab, new columns appear and existing columns display improvement or
regression in a metric. For example, in the figure below, you see a new All Metrics
Trend column that appears on the Summary tab. This column describes how the
metrics in the Run-Time Errors group compare over two versions of a project. The
number of red checks decreased by 3 and the number of gray checks increased by 2.
Because the decrease in red checks is an improvement and the increase in gray
checks is a regression, you see:

• A in the Red column
• A in the Gray column
• A mixed in the All Metrics Trend column.

4 To see only the new findings in a version compared to a previous version:

a In the From and To lists on the upper left of the web dashboard, select the two
versions that you want to compare.

b Select the New Findings Only box.

The existing columns display only the new findings. In addition, you also see two new
columns:

22 Software Quality with Polyspace Metrics

22-26

• The Newly Confirmed column shows those new findings to which you assign a
Severity of High, Medium, or Low in the Polyspace user interface.

• The Newly Fixed column shows those findings to which you had assigned a
Severity of High, Medium or Low in the previous run. However, the assignment
does not exist in the current run, either because a red or orange check turned
green, or because you changed the Severity to Unset.

See Also

Related Examples
• “Code Quality Metrics” on page 22-2

 See Also

22-27

Web Browser Requirements for Polyspace Metrics
Polyspace Metrics supports the following web browsers:

• Internet Explorer version 7.0, or later
• Firefox® version 3.6, or later
• Google® Chrome version 12.0, or later
• Safari for Mac version 6.1.4 and 7.0.4

To use Polyspace Metrics, install Java, version 1.4 or later on your computer.

For the Firefox web browser, manually install the required Java plug-in. For example, if
your computer uses the Linux operating system:

1 Create a Firefox folder for plug-ins:
mkdir ~/.mozilla/plugins

2 Go to this folder:
cd ~/.mozilla/plugins

3 Create a symbolic link to the Java plug-in, which is available in the Java Runtime
Environment folder of your MATLAB installation:
ln -s MATLAB_Install/sys/java/jre/glnxa64/jre/lib/amd64/libnpjp2.so

22 Software Quality with Polyspace Metrics

22-28

Elements in Custom Software Quality Objectives File
The following tables list the XML elements that can be added to the custom SQO file. The
content of each element specifies a threshold against which the software compares
verification results. For each element, the table lists the metric to which the threshold
applies. Here, HIS refers to the Hersteller Initiative Software.

For information on custom SQOs, see “Customize Software Quality Objectives” on page
22-20.

HIS Metrics
Element Metric
comf Comment Density
path Number of Paths
goto Number of Goto Statements
vg Cyclomatic Complexity
calling Number of Calling Functions
calls Number of Called Functions
param Number of Function Parameters
stmt Number of Instructions
level Number of Call Levels
return Number of Return Statements
vocf Language Scope
ap_cg_cycle Number of Recursions
ap_cg_direct_cycle Number of Direct Recursions
Num_Unjustified_Violations Number of unjustified violations of MISRA C

rules specified by entries under the element
CodingRulesSet

Num_Unjustified_Red Number of unjustified red checks
Num_Unjustified_NT_Constructs Number of unjustified Non-terminating

call and Non-terminating loop checks

 Elements in Custom Software Quality Objectives File

22-29

Element Metric
Num_Unjustified_Gray Number of unjustified gray Unreachable

code checks
Percentage_Proven_Or_Justified Percentage of justified orange checks,

calculated as the number of green and justified
orange checks divided by the total number of
green and orange checks.

Non-HIS Metrics
Element Description of metric
fco Estimated Function Coupling
flin Number of Lines Within Body
fxln Number of Executable Lines
ncalls Number of Call Occurrences
pshv Number of Protected Shared Variables
unpshv Number of Unprotected Shared Variables

22 Software Quality with Polyspace Metrics

22-30

Troubleshoot Verification Problems

• “View Error Information When Analysis Stops” on page 23-3
• “Troubleshoot Compilation and Linking Errors” on page 23-7
• “Reduce Verification Time” on page 23-12
• “Understand Verification Results” on page 23-17
• “Contact Technical Support” on page 23-21
• “Polyspace Cannot Find the Server” on page 23-23
• “Job Manager Cannot Write to Database” on page 23-24
• “Compiler Not Supported for Project Creation from Build Systems” on page 23-26
• “Slow Build Process When Polyspace Traces the Build” on page 23-36
• “Check if Polyspace Supports Build Scripts” on page 23-37
• “Troubleshooting Project Creation from MinGW Build” on page 23-39
• “Troubleshooting Project Creation from Visual Studio Build” on page 23-40
• “Could Not Find Include File” on page 23-42
• “Conflicting Universal Unique Identifiers (UUIDs)” on page 23-44
• “Data Type Not Recognized” on page 23-46
• “Undefined Identifier Error” on page 23-48
• “Unknown Function Prototype Error” on page 23-52
• “Error Related to #error Directive” on page 23-54
• “Large Object Error” on page 23-56
• “Errors Related to Generic Compiler” on page 23-59
• “Errors Related to Keil or IAR Compiler” on page 23-61
• “Errors Related to Diab Compiler” on page 23-62
• “Errors Related to TASKING Compiler” on page 23-65
• “Errors from In-Class Initialization (C++)” on page 23-67
• “Errors from Double Declarations of Standard Template Library Functions (C++)”

on page 23-68

23

• “Errors Related to GNU Compiler” on page 23-69
• “Errors Related to Visual Compilers” on page 23-70
• “Conflicting Declarations in Different Translation Units” on page 23-72
• “Errors from Conflicts with Polyspace Header Files” on page 23-78
• “C++ Standard Template Library Stubbing Errors” on page 23-80
• “Lib C Stubbing Errors” on page 23-81
• “Errors from Assertion or Memory Allocation Functions” on page 23-83
• “Eclipse Java Version Incompatible with Polyspace Plug-in” on page 23-84
• “Reasons for Unchecked Code” on page 23-86
• “Source Files or Functions Not Displayed in Results List” on page 23-91
• “Coding Rule Violations Not Displayed” on page 23-95
• “Incorrect Behavior of Standard Library Math Functions” on page 23-97
• “Insufficient Memory During Report Generation” on page 23-98
• “Errors with Temporary Files” on page 23-99
• “Error from Special Characters” on page 23-101
• “Error from Disk Defragmentation and Antivirus Software” on page 23-102
• “License Error –4,0” on page 23-103

23 Troubleshoot Verification Problems

23-2

View Error Information When Analysis Stops
If the analysis stops, you can view error information on the screen, either in the user
interface or at the command-line terminal. Alternatively, you can view error information in
a log file generated during analysis. Based on the error information, you can either fix
your source code, add missing files or change analysis options to get past the error.

For information on why Polyspace fails to compile your code despite successful
compilation with your compiler, see “Troubleshoot Compilation and Linking Errors” on
page 23-7.

View Error Information in User Interface
1 View the errors on the Output Summary tab.

The messages on this tab appear with the following icons.

Icon Meaning
Error that blocks analysis.

For instance, the analysis cannot find a variable declaration
or definition and therefore cannot determine the variable
type.
Warning about an issue that does not block analysis by itself,
but could be related to a blocking error.

For instance, the analysis cannot find an include file that is
#include-d in your code. The issue does not block the
analysis by itself, but if the include file contains the
definition of a variable that you use in your source code, you
can face an error later.
Additional information about the analysis.

2 To diagnose and fix each error, you can do the following:

• To see further details about the error, select the error message. The details appear
in a Detail window below the Output Summary tab.

• To open the source code at the line containing the error, double-click the message.

 View Error Information When Analysis Stops

23-3

3 If you enable the Compilation Assistant, to fix an error, you can perform certain
actions on the Output Summary tab.

The following figure shows an error due to a missing include file turbo.h. You can
add the missing file by clicking the Add button on the Output Summary tab.

To turn on the Compilation Assistant, select Tools > Preferences. On the Project
and Results Folder tab, select Use Compilation Assistant.

The Compilation Assistant is disabled if you specify the option Verify files
independently (-unit-by-unit) or Command/script to apply to
preprocessed files (-post-preprocessing-command).

Tip To search the error messages for a specific term, on the Search pane, enter your
search term. From the drop down list on this pane, select Output Summary or Run Log.
If the Search pane is not open by default, select Windows > Show/Hide View >
Search.

View Error Information in Log File
You can view errors directly in the log file. The log file is in your results folder. To open
the log file:

1 Right-click the result folder name on the Project Browser pane. From the context
menu, select Open Folder with File Manager.

23 Troubleshoot Verification Problems

23-4

2 Open the log file, Polyspace_R20##n_ProjectName_date-time.log
3 To view the errors, scroll through the log file, starting at the end and working

backward.

The following example shows sample log file information. The error has occurred
because the C++ option -class-analyzer custom=arg was used, but the analysis
cannot find arg in the source code.

--
User Program Error: Argument of option -class-analyzer not found.
| Class or typedef MyClass does not exist.
Please correct the program and restart the verifier.

 View Error Information When Analysis Stops

23-5

--- ---
--- Verifier has encountered an internal error. ---
--- Please contact your technical support. ---
--- ---

Failure at: Sep 24, 2009 17:16:26
User time for polyspace-code-prover-nodesktop: 25.6real, 25.6u + 0s
 (0gc)
Error: Exiting because of previous error

*** End of Polyspace Verifier analysis

23 Troubleshoot Verification Problems

23-6

Troubleshoot Compilation and Linking Errors
Run Polyspace verification on code that builds successfully with your compiler. Once your
code builds successfully, set up a Polyspace project in one of these ways:

• Trace your build system.

The software creates a project from your build scripts. It sets appropriate Polyspace
analysis options to emulate your build options.

• If you cannot trace your build system, create a Polyspace project manually.

Add your sources and includes to the project. Change the default analysis options, if
required.

For more information, see “Configure and Run Analysis”.

The following issue occurs more often if you manually set up your project.

Issue
Before verification and detection of run-time errors, Polyspace compiles your code and
detects compilation and linking errors. Even if your code builds successfully with your
compiler, you still get compilation errors with Polyspace.

Compilation Phase

 Troubleshoot Compilation and Linking Errors

23-7

Compilation Failure

Possible Cause: Deviations from ANSI C99 Standard
The Polyspace compiler strictly follows the ANSI C99 Standard (ISO/IEC 9899:1999). If
your compiler allows deviation from the Standard, the Polyspace compilation that uses
default options cannot emulate your compiler. For instance, your compiler can allow
certain non-ANSI keywords that Polyspace does not recognize by default.

To guarantee absence of certain run-time errors, the default Polyspace compilation
strictly follows the standard. Specific compilers allow specific deviations from this
standard and follow internal algorithms to compile your code. Without explicit knowledge
of your compiler behavior, Polyspace cannot accommodate those deviations.
Accommodating these deviations through some arbitrary internal algorithms can
compromise the final analysis results, if the Polyspace algorithm does not match your
compiler’s algorithm.

Check the error message that caused the compilation failure and see if you can identify
some deviation from the standard. The error message shows the line number that caused
the compilation failure. If you run verification from the user interface, you can click the
error message and navigate to the corresponding line of code.

Solution

Change analysis options to emulate your compiler more closely.

If you turn on the Compilation Assistant and run verification in the user interface, for
most compilation errors, you receive suggestions in the Output Summary pane that you
can apply in one click. See “View Error Information When Analysis Stops” on page 23-3.

Otherwise, you can manually adjust your analysis options. To get past compilation issues,
use these options.

23 Troubleshoot Verification Problems

23-8

Option Purpose
“Target and
Compiler” options

Using these predefined options, you can specify your compiler
behavior directly and work around known deviations from the
standard.

Often, setting Compiler (-compiler) appropriately is enough
to emulate your compiler.

• Preprocessor
definitions (-
D)

• Command/script
to apply to
preprocessed
files (-post-
preprocessing-
command)

Using these options, you can sometimes work around unknown
deviations from the standard.

For instance, you can use these options to replace unrecognized
keywords from your preprocessed code with closely matching
recognized keywords, or remove them completely. Because you
do not change your source code, the options allow you to work
around compilation errors while keeping your source code intact.

For specific types of compilation errors, see the Compilation and Linking section of
“Troubleshooting in Polyspace Code Prover”.

If you cannot solve your compilation error, contact MathWorks Technical Support and
provide your compiler name for better support. See “Contact Technical Support” on page
23-21.

Possible Cause: Linking Errors
Even if a single compilation unit compiles successfully, you get a linking error because of
mismatch between two compilation units. For instance, you define the same function in
two .c files with different argument or return types.

Common compilation toolchains do not store information about function prototypes
during the linking process. Therefore, despite these types of linking errors, the build does
not fail. To guarantee absence of certain run-time errors, Polyspace does not continue
analysis when such linking errors occur.

Solution

Fix the linking errors that Polyspace detects. Even if your build process allows these
errors, you can have unexpected results during run time. For instance, if two function

 Troubleshoot Compilation and Linking Errors

23-9

definitions with the same name but conflicting prototypes exist in your code, when you
call the function, the result can be unexpected.

When a linking error occurs, the error message shows the location in your file where
Polyspace compilation fails. Previous warning messages show the location of the conflicts
that lead to the linking error. Using the line numbers in those messages (or by clicking
the messages if you run analysis from the user interface), you can navigate to the location
of the conflicts in your code.

For instance, in these messages, compilation fails because of conflicting function return
types. The failure occurs on line 5 in file2.c when the function is called. The previous
warning messages for line 1 in file1.c and line 1 in file2.c show the locations where
the conflicts occur.

For specific types of linking errors, see the Compilation and Linking section of
“Troubleshooting in Polyspace Code Prover”.

Possible Cause: Conflicts with Polyspace Function Stubs
Polyspace uses its own implementation of standard library functions for more efficient
verification. If your compiler redeclares and redefines a standard library function, you can
get a warning or error when you invoke the function.

The error implies that Polyspace found the redeclaration but cannot find the body of your
redefined library function. The verification continues to use the Polyspace implementation

23 Troubleshoot Verification Problems

23-10

of the function but provides a warning. If your redefined function has a different signature
from the normal signature of the function, the verification stops with an error.

Warnings and errors of this type often refer to the file __polyspace__stdstubs.c. This
file contains prototypes for the Polyspace implementation of standard library functions.
The file is located in matlabroot\polyspace\verifier\cxx\polyspace_stubs\.
matlabroot is the product installation folder.

Solution

If you know the location of the file that contains the body of your redefined standard
library function, add the file to your verification. For more information, see “Errors from
Conflicts with Polyspace Header Files” on page 23-78.

If you do not have the function body available:

• If you see a warning of this type, you can ignore the warning. The verification results
are based on Polyspace implementations of standard library functions. If your compiler
redefinition closely matches the standard library function specifications, the
verification results are still applicable for code compiled with your compiler.

• If you see an error:

1 Define the macro _polyspace_no_function_name in your project. For
instance, if an error occurs because of a conflict with the definition of the
sprintf function, define the macro _polyspace_no_sprintf. For information
on how to define macros, see Preprocessor definitions (-D).

The macro disables the use of Polyspace implementations of the standard library
function. The software stubs the standard library function like any other
undefined function. You do not have an error because of signature mismatch with
the Polyspace implementations.

2 Contact MathWorks Technical Support and provide information about your
compiler.

For some standard library functions, such as assert, and memory allocation functions
such as malloc and calloc, Polyspace continues to use its own implementations, even if
you redefine the function and provide the function body. For more information, see
“Errors from Assertion or Memory Allocation Functions” on page 23-83.

 Troubleshoot Compilation and Linking Errors

23-11

Reduce Verification Time
In this section...
“Issue” on page 23-12
“Possible Cause: Temporary Folder on Network Drive” on page 23-12
“Possible Cause: Large and Complex Application” on page 23-13
“Possible Cause: Too Many Entry Points for Multitasking Applications” on page 23-15

Issue
The verification is stuck at a certain point for a long time. Sometimes, after the period of
inactivity exceeds an internal threshold, the verification stops or you get an error
message:

The analysis has been stopped by timeout.

If you have a multicore system with more than four processors, try increasing the number
of processors by using the option -max-processes. By default, the verification uses up
to four processors. If you have fewer than four processors, the verification uses the
maximum available number. You must have at least 4 GB of RAM per processor for
analysis. For instance, if your machine has 16 GB of RAM, do not use this option to specify
more than four processors.

If the verification still takes too long, to improve the speed and make the verification
faster, try one of the solutions below.

Possible Cause: Temporary Folder on Network Drive
Polyspace produces some temporary files during analysis. If the folder used to store these
files is on a network drive, the analysis can slow down.

Solution: Change Temporary Folder

Change your temporary folder to a path on a local drive.

To learn how Polyspace determines the temporary folder location, see “Storage of
Temporary Files” on page 3-15.

23 Troubleshoot Verification Problems

23-12

Possible Cause: Large and Complex Application
The verification time depends on the size and complexity of your code.

If the application contains greater than 100,000 lines of code, the verification can
sometimes take a long time. Even for smaller applications, the verification can take long if
it involves complexities such as structures with many levels of nesting or several levels of
aliasing through pointers.

However, if verification with the default options takes unreasonably long or stops
altogether, there are multiple strategies to reduce the verification time. Each strategy
involves reducing the complexity of verification in some way.

Solution: Use Polyspace Bug Finder First

Use Polyspace Bug Finder first to find defects in your code. Some defects that Polyspace
Bug Finder finds can translate to a red error in Polyspace Code Prover. Once you fix these
defects, use Polyspace Code Prover for a more rigorous verification.

Solution: Modularize Application

You can divide the application into multiple modules. Verify each module independently of
the other modules. You can review the complete results for one module, while the
verification of the other modules are still running.

• You can let the software modularize your application. The software divides your source
files into multiple modules such that the interdependence between the modules is as
little as possible. To begin, select Tools > Run Modularize.

• If you are running verification in the user interface, you can create multiple modules
in your project and copy source files into those modules. To begin, right click a project
and select Create new module.

• You can perform a file-by-file verification. Each file constitutes a module by itself. See
Verify files independently (-unit-by-unit).

When you divide your complete application into modules, each module has some
information missing. For instance, one module can contain a call to a function that is
defined in another module. The software makes certain assumptions about the undefined
functions. If the assumptions are broader than an actual representation of the function,
you see an increase in orange checks from overapproximation. For instance, an error
management function might return an int value that is either 0 or 1. However, when
Polyspace cannot find the function definition, it assumes that the function returns all

 Reduce Verification Time

23-13

possible values allowed for an int variable. You can narrow down the assumptions by
specifying external constraints.

When modularizing an application manually, you can follow your own modularization
approach. For instance, you can copy only the critical files that you are concerned about
into one module, and verify them. You can represent the remaining files through external
constraints, provided you are confident that the constraints represent the missing code
faithfully. For instance, the constraints on an undefined function represent the function
faithfully if they represent the function return value and also reproduce other relevant
side effects of the function.

For more information, see “Constrain Stubbed Functions” on page 12-15.

Solution: Choose Lower Precision Level or Verification Level

If your verification takes too long, use a lower precision level or a lower verification level.
Fix the red errors found at that level and rerun verification.

• The precision level determines the algorithm used for verification. Higher precision
leads to greater number of proven results but also requires more verification time. For
more information, see Precision level (-O).

• The verification level determines the number of times Polyspace runs on your source
code. For more information, see Verification level (-to).

The verification results from lower precision can contain more orange checks. An orange
check indicates that the analysis considers an operation suspect but cannot prove the
presence or absence of a run-time error. You have to review an orange check thoroughly
to determine if you can retain the operation. By increasing the number of orange checks,
you are effectively increasing the time you spend reviewing the verification results.
Therefore, use these strategies only if the verification is taking too long.

Solution: Reduce Code Complexity

Both for better readability of your code and for shorter verification time, you can reduce
the complexity of your code. Polyspace calculates code complexity metrics from your
application, and allows you to limit those metrics below predefined values.

For more information, see:

• “Code Metrics”: List of code complexity metrics and their recommended upper limits
• “Compute Code Complexity Metrics” on page 14-14: How to set limits on code

complexity metrics

23 Troubleshoot Verification Problems

23-14

Solution: Enable Approximations

Depending on your situation, you can choose scaling options to enable certain
approximations. Often, warning messages indicate that you must use those options to
reduce verification.

Situation Option
Your code contains structures that are
many levels deep.

Depth of verification inside
structures (-k-limiting)

Your code contains more than one task and
you read a shared variable a large number
of times through pointers.

-lightweight-thread-model

Possible Cause: Too Many Entry Points for Multitasking
Applications
If your code is intended for multitasking and you provide many Tasks, verification can
take a long time. The following warning can appear:

Warning: Important use of shared variables have been detected,
| verification carry on but to avoid scaling issues
| it roughly approximates shared variables values.
| You may consider adding -force-refined-shared-variables-analysis
 option to improve results

If you receive this warning, it means that Polyspace is switching to a less precise analysis
mode to complete the verification in a reasonable amount of time. In this less precise
mode, the verification can consider some shared variables as full-range and cause orange
checks from overapproximation.

Solution

Instead of using the option -force-refined-shared-variables-analysis to retain
the precise analysis, you can reduce the number of entry points that you specify. If you
know that some of your entry point functions do not execute concurrently, you do not have
to specify them as separate entry points. You can call those functions sequentially in a
wrapper function, and then specify the wrapper function as your entry point.

For instance, if you know that the entry point functions task1, task2, and task3 do not
execute concurrently:

 Reduce Verification Time

23-15

1 Define a wrapper function task that calls task1, task2, and task3 in all possible
sequences.

void task() {
 volatile int random = 0;
 if (random) {
 task1();
 task2();
 task3();
 } else if (random) {
 task1();
 task3();
 task2();
 } else if (random) {
 task2();
 task1();
 task3();
 } else if (random) {
 task2();
 task3();
 task1();
 } else if (random) {
 task3();
 task1();
 task2();
 } else {
 task3();
 task2();
 task1();
 }
}

2 Instead of task1, task2, and task3, specify task for the option Tasks (-entry-
points).

For an example of using a wrapper function as an entry point, see “Configuring Polyspace
Multitasking Analysis Manually” on page 13-14.

23 Troubleshoot Verification Problems

23-16

Understand Verification Results

Issue
After verification, Polyspace Code Prover highlights operations in your code with specific
colors depending on whether the operation can cause a run-time error. See “Code Prover
Result and Source Code Colors” on page 17-10.

It is not immediately clear why the verification highlights a specific operation in red
(definite run-time error) or orange (potential run-time error). Even if you understand the
cause of an error, it is not immediately clear where to fix it.

Possible Cause: Relation to Prior Code Operations
Often a run-time error in a specific operation is related to prior operations in your code.

For instance, an operation overflows because of a large operand value but the operand
acquires that value in previous operations.

Solution

To investigate how a prior operation triggers a run-time error in the current operation, do
the following:

• View the message associated with the verification result on the current operation.

The message appears in the Result Details pane or in tooltips on the operation in the
Source pane. The message shows you how to investigate the result further.

For instance, the message below shows that the right operand can be zero. To
determine how the operand variable acquires the value zero, you have to browse
through previous operations that write to the variable.

 Understand Verification Results

23-17

• Browse prior operations in your code that are related to the current operation.

The Polyspace user interface provides features for easy navigation between specific
points in your code. For instance, you can navigate from a function name to the
function definition.

Identify a suitable place in your code where you can implement the fix.

For specific information on how to review each check type, see “Code Prover Run-Time
Checks” on page 17-17.

Possible Cause: Software Assumptions
If you do not provide your complete application or the external information required for
verification, the software has to make certain assumptions about the missing code or
external information.

For instance, if you do not provide a main function, the software generates a main that
calls only the uncalled functions. If func1 calls func2, the generated main does not call
func2 again. The verification checks for run-time errors in func2 only from the call
context in func1.

23 Troubleshoot Verification Problems

23-18

The assumptions are such that they apply to most applications. However, in a few cases,
the default assumptions might not describe your run-time environment accurately. If the
assumptions are not what you expect, the verification results can be unexpected.

Solution

See if you can trace your verification result to a software assumption. For a partial list of
assumptions, see “Code Prover Analysis Assumptions”. An additional list of assumptions is
provided in codeprover_limitations.pdf in matlabroot\polyspace\verifier
\code_prover.

Often, you can change the default assumptions using certain options.

• “Target and Compiler”: See if you must set an option to emulate your compiler
behavior.

For instance, if you want quotients of division operations to be rounded down instead
of rounded up, use the option Division round down (-div-round-down).

• “Inputs and Stubbing”: See if you have to externally constrain some variables.

For instance, if you want to constrain a global variable within a specific range, use the
option Constraint setup (-data-range-specifications).

• “Multitasking”: See if you forgot to specify some tasks or protection mechanisms.

For instance, if you want to specify that a function represents a nonpreemptable
interrupt, use the option Interrupts (-interrupts).

• “Code Prover Verification”: If you are verifying a module without a main, see if the
generated main initializes your global variables and calls your functions in the right
order.

For instance, if you want the generated main to call all your functions, use the option
Functions to call (-main-generator-calls) with argument all.

• “Verification Assumptions”: See if the global verification assumptions are appropriate
for your run-time environment.

For instance, if you want the verification to consider that unknown pointers can be
NULL-valued, use the option Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe).

• “Check Behavior”: See if the run-time check specifications are appropriate for your
run-time environment.

 Understand Verification Results

23-19

For instance, if you want the Illegally dereferenced pointer check to allow
pointer arithmetic across fields of a structure, use the option Enable pointer
arithmetic across fields (-allow-ptr-arith-on-struct).

If you still cannot understand your result, contact MathWorks Technical Support for help
with interpreting your result. If you cannot share your actual verification results, provide
only certain essential information about your result. See “Contact Technical Support” on
page 23-21.

23 Troubleshoot Verification Problems

23-20

Contact Technical Support
To contact MathWorks Technical Support, use this page. You will need a MathWorks
Account login and password. For faster turnaround with an issue in Polyspace, besides
the required system information, provide appropriate code that reproduces the issue or
the verification log file.

Provide System Information
When you enter a support request, provide the following system information:

• Hardware configuration
• Operating system
• Polyspace and MATLAB license numbers
• Specific version numbers for Polyspace products
• Installed Bug Report patches

To obtain your configuration information, do one of the following:

• In the Polyspace user interface, select Help > About.
• At the command line, run the following command, replacing matlabroot with your

MATLAB installation folder:

• UNIX — matlabroot/polyspace/bin/polyspace-code-prover-nodesktop
-ver

• Windows — matlabroot\polyspace\bin\polyspace-code-prover-
nodesktop -ver

Provide Information About the Issue
If you face compilation issues with your project, see “Troubleshooting in Polyspace Code
Prover”. If you are still having issues, contact technical support with the following
information:

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.txt. It contains the error message, the
options used for the analysis and other relevant information.

 Contact Technical Support

23-21

https://www.mathworks.com/support/contact_us/?s_tid=sp_ban_cs

• The source files related to the compilation error, if possible.

If you cannot provide the source files:

• Try to provide a screenshot of the source code section that causes the compilation
issue.

• Try to reproduce the issue with a different code. Provide that code to technical
support.

If you are having trouble understanding a result, see the results review guidelines in
“Run-Time Checks”. If you are still having trouble understanding the result, contact
technical support with the following information:

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.txt. It contains the options used for
the analysis and other relevant information.

• The source files related to the result if possible.

If you cannot provide the source files:

• Try provide a screenshot of the relevant source code from the Source pane on the
Polyspace user interface.

• Try to reproduce the problem with a different code. Provide that code to technical
support.

23 Troubleshoot Verification Problems

23-22

Polyspace Cannot Find the Server

Message
Error: Cannot instantiate Polyspace cluster
| Check the -scheduler option validity or your default cluster profile
| Could not contact an MJS lookup service using the host computer_name.
 The hostname, computer_name, could not be resolved.

Possible Cause
Polyspace uses information provided in Preferences to locate the server. If this
information is incorrect, the software cannot locate the server.

Solution
Provide correct server information.

1 Select Tools > Preferences.
2 Select the Server Configuration tab. Provide your server information.

For more information, see “Set Up Server for Metrics and Remote Analysis”.

 Polyspace Cannot Find the Server

23-23

Job Manager Cannot Write to Database

Message
Unable to write data to the job manager database

Possible Cause
If the job scheduler cannot send data to the localhost, Polyspace returns this error. The
most likely reasons for the MJS being unable to connect to the client computer are:

• Firewalls do not allow traffic from the MJS to the client.
• The MJS cannot resolve the short hostname of the client computer.

Workaround
Add localhost IP to configuration.

1 Select Tools > Preferences.
2 Select the Server Configuration tab.
3 In the Localhost IP address field, enter the IP address of your local computer.

To retrieve your IP address:

• Windows

a Open Control Panel > Network and Sharing Center.
b Select your active network.
c In the Status window, click Details. Your IP address is listed under IPv4

address.
• Linux — Run the ifconfig command and find the inet addr corresponding to

your network connection.
• Mac — Open System Preferences > Network.

23 Troubleshoot Verification Problems

23-24

See Also

Related Examples
• “Set Up Server for Metrics and Remote Analysis”
• “Connection Problems Between the Client and MJS” (Parallel Computing Toolbox)

 See Also

23-25

Compiler Not Supported for Project Creation from Build
Systems

Issue
Your compiler is not supported for automatic project creation from build commands.

Cause
For automatic project creation from your build system, your compiler configuration must
be available to Polyspace. Polyspace provides a compiler configuration file only for certain
compilers.

For information on which compilers are supported, see “Requirements for Project
Creation from Build Systems” on page 11-8.

Solution
To enable automatic project creation for an unsupported compiler, you can write your own
compiler configuration file.

1 Copy one of the existing configuration files from matlabroot\polyspace
\configure\compiler_configuration\. Select the configuration that most
closely corresponds to your compiler using the mapping between the configuration
files and compiler names on page 23-34.

2 Save the file as my_compiler.xml. my_compiler can be a name that helps you
identify the file.

To edit the file, save it outside the installation folder. After you have finished editing,
you must copy the file back to matlabroot\polyspace\configure
\compiler_configuration\.

3 Edit the contents of the file to represent your compiler. Replace the entries between
the XML elements with appropriate content.

4 After saving the edited XML file to matlabroot\polyspace\configure
\compiler_configuration\, create a project automatically using your build
command.

23 Troubleshoot Verification Problems

23-26

If you see errors, for instance, compilation errors, contact MathWorks Technical
Support. After tracing your build command, the software compiles certain files using
the compiler specifications detected from your configuration file and build command.
Compilation errors might indicate issues in the configuration file.

Tip To quickly see if your compiler configuration file works, run the automatic
project setup on a sample build that does not take much time to complete. After you
have set up a project with your compiler configuration file, you can use this file for
larger builds.

Elements of Compiler Configuration File

The following table lists the XML elements in the compiler configuration file file with a
description of what the content within the element represents.

 Compiler Not Supported for Project Creation from Build Systems

23-27

XML Element Content Description Content
Example for
GNU C
Compiler

<compiler_names><name> ...

</name><compiler_names>

Name of the compiler
executable. This executable
transforms your .c files into
object files. You can add
several binary names, each in
a separate <name>...</
name> element. The software
checks for each of the
provided names and uses the
compiler name for which it
finds a match.

You must not specify the linker
binary inside the
<name>...</name>
elements.

If the name that you specify is
present in an existing compiler
configuration file, an error
occurs. To avoid the error, use
the additional option -
compiler-config
my_compiler.xml when
tracing the build so that the
software explicitly uses your
compiler configuration file.

• gcc
• gpp

23 Troubleshoot Verification Problems

23-28

XML Element Content Description Content
Example for
GNU C
Compiler

<include_options><opt> ...

</opt></include_options>

The option that you use with
your compiler to specify
include folders.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-I

<system_include_options>

<opt> ... </opt>

</system_include_options>

The option that you use with
your compiler to specify
system headers.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-isystem

<preinclude_options><opt> ...

</opt></preinclude_options>

The option that you use with
your compiler to force
inclusion of a file in the
compiled object.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-include

 Compiler Not Supported for Project Creation from Build Systems

23-29

XML Element Content Description Content
Example for
GNU C
Compiler

<define_options><opt> ...

</opt></define_options>

The option that you use with
your compiler to predefine a
macro.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-D

<undefine_options><opt> ...

</opt></undefine_options>

The option that you use with
your compiler to undo any
previous definition of a macro.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-U

23 Troubleshoot Verification Problems

23-30

XML Element Content Description Content
Example for
GNU C
Compiler

<semantic_options><opt> ...

</opt></semantic_options>

The options that you use to
modify the compiler behavior.
These options specify the
language settings to which the
code must conform.

You can use the isPrefix
attribute to specify multiple
options that have the same
prefix and the numArgs
attribute to specify options
with multiple arguments. For
instance:

• Instead of

<opt>-m32</opt>
<opt>-m64</opt>

You can write <opt
isPrefix="true">-m</
opt>.

• Instead of

<opt>-std=c90</opt>
<opt>-std=c99</opt>

You can write <opt
numArgs="1">-std</
opt>. If your makefile uses
-std c90 instead of -
std=c90, this notation also
supports that usage.

• -ansi
• -std =C90
• -std =c+

+11
• -fun

signed -
char

 Compiler Not Supported for Project Creation from Build Systems

23-31

XML Element Content Description Content
Example for
GNU C
Compiler

<dialect> ... </dialect> The Polyspace dialect that
corresponds to or closely
matches your compiler dialect.
The content of this element
directly translates to the
option Dialect in your
Polyspace project or options
file.

For the complete list of
dialects, on the Configuration
pane, select Target &
Compiler.

gnu4.7

<preprocess_options_list>

<opt> ... </opt>

</preprocess_options_list>

The options that specify how
your compiler generates a
preprocessed file.

You can use the macro $
(OUTPUT_FILE) if your
compiler does not allow
sending the preprocessed file
to the standard output. Instead
it defines the preprocessed file
internally.

-E

For an example
of the $
(OUTPUT_FILE)
macro, see the
existing
compiler
configuration file
cl2000.xml.

23 Troubleshoot Verification Problems

23-32

XML Element Content Description Content
Example for
GNU C
Compiler

<preprocessed_output_file> ... </
preprocessed_output_file>

The name of file where the
preprocessed output is stored.

You can use the following
macros when the name of the
preprocessed output file is
adapted from the source file:

• $(SOURCE_FILE): Source
file name

• $(SOURCE_FILE_EXT):
Source file extension

• $
(SOURCE_FILE_NO_EXT):
Source file name without
extension

For instance, use $
(SOURCE_FILE_NO_EXT).pr
e when the preprocessor file
name has the same name as
the source file, but with
extension .pre.

For an example
of this element,
see the existing
compiler
configuration file
xc8.xml.

<src_extensions><ext> ...

</ext></src_extensions>

The file extensions for source
files.

• c
• cpp
• c++

<obj_extensions><ext> ...

</ext></obj_extensions>

The file extensions for object
files.

<precompiled_header_extensions> ...

</precompiled_header_extensions>

The file extensions for
precompiled headers (if
available).

 Compiler Not Supported for Project Creation from Build Systems

23-33

XML Element Content Description Content
Example for
GNU C
Compiler

<polyspace_c_extra_options_list>

<opt> ... </opt>

</polyspace_c_extra_options_list>

Additional options that will be
added to your project
configuration

To avoid
compilation
errors due to
non-ANSI
extension
keywords, enter
-D keyword.
For more
information, see
Preprocessor
definitions
(-D).

<polyspace_cpp_extra_options_list>

<opt> ... </opt>

</polyspace_cpp_extra_options_list>

Additional options that will be
added to your C++ project
configuration

To avoid
compilation
errors due to
non-ANSI
extension
keywords, enter
-D keyword.
For more
information, see
Preprocessor
definitions
(-D).

Mapping Between Existing Configuration Files and Compiler Names

Select the configuration file in matlabroot\polyspace\configure
\compiler_configuration\ that most closely resembles the configuration of your
compiler. Use the following table to map compilers to their configuration files.

Vendor Compiler Name XML File
Microsoft Visual C++ cl.xml
Texas Instruments TM320 and its derivatives cl2000.xml

23 Troubleshoot Verification Problems

23-34

Vendor Compiler Name XML File
Not applicable Clang clang.xml
Cosmic cx6808 cx6808.xml
Wind River Diab diab.xml
Not applicable gcc gcc.xml
Green Hills Software Green Hills ghs_arm.xml

ghs_arm64.xml
ghs_i386.xml
ghs_ppc.xml
ghs_rh850.xml
ghs_tricore.xml

IAR IAR Embedded Workbench iar.xml
iar-arm.xml
iar-avr.xml
iar-msp430.xml
iar-rh850.xml
iar-rl78.xml

Altium TASKING® tasking.xml
tasking-166.xml
tasking-850.xml
tasking-arm.xml

Not applicable Tiny C tcc.xml
NXP CodeWarrior ti_arm.xml

ti_c28x.xml
ti_c6000.xml
ti_msp430.xml

Microchip xc8 (PIC) xc8.xml

 Compiler Not Supported for Project Creation from Build Systems

23-35

Slow Build Process When Polyspace Traces the Build

Issue
In some cases, your build process can run slower when Polyspace traces the build.

Cause
Polyspace caches information in files stored in the system temporary folder, such as C:
\Users\User_Name\AppData\Local\Temp, in Windows. Your build can take a long
time to perform read/write operations to this folder. Therefore, the overall build process is
slow.

Solution
You can work around the slow build process by changing the location where Polyspace
stores cache information. For instance, you can use a cache path local to the drive from
which you run build tracing. To create and use a local folder ps_cache for storing cache
information, use the advanced option -cache-path ./ps_cache.

• If you trace your build from the Polyspace user interface, enter this flag in the field
Add advanced configure options. For more information, see polyspace-
configure.

• If you trace your build from the DOS, UNIX or MATLAB command line, use this flag
with the polyspace-configure command or polyspaceConfigure function.

23 Troubleshoot Verification Problems

23-36

Check if Polyspace Supports Build Scripts

Issue
This topic is relevant only if you are creating a Polyspace project in Windows from your
build scripts.

When Polyspace traces your build script in a Windows console application other than
cmd.exe, the command fails. However, the build command by itself executes to
completion.

For instance, your build script executes to completion from the Cygwin shell. However,
when Polyspace traces the build, the build script throws an error.

Possible Cause
When you launch a Windows console application, your environment variables are
appropriately set. Alternate console applications such as the Cygwin shell can set your
environment differently from cmd.exe.

Polyspace attempts to trace your build script with the assumption that the script runs to
completion in cmd.exe. Therefore, even if your script runs to completion in the alternate
console application, when Polyspace traces the build, the script can fail.

Solution
Make sure that your build script executes to completion in the cmd.exe interface. If the
build executes successfully, create a wrapper .bat file around your script and trace this
file.

For instance, before you trace a build command that executes to completion in the
Cygwin shell, do one of the following:

• Launch the Cygwin shell from cmd.exe and then run your build script. For instance, if
you use a script build.sh to build your code, enter the following command at the
DOS command line:

cmd.exe /C "C:\cygwin64\bin\bash.exe" -c build.sh
• Find the full path to your build script and then run this script from cmd.exe.

 Check if Polyspace Supports Build Scripts

23-37

For instance, enter the following command at the DOS command line:

cmd.exe /C path_to_script

path_to_script is the full path to your build script. For instance, C:\my_scripts
\build.sh.

If the steps do not execute to completion, Polyspace cannot trace your build.

If the steps complete successfully, trace the build command after launching it from
cmd.exe. For instance, on the command-line, do the following to create a Polyspace
options file.

1 Enter your build commands in a .bat file.

rem @echo off
cmd.exe /C "C:\cygwin64\bin\bash.exe" -c build.sh

Name the file, for instance, launching.bat.
2 Trace the build commands in the .bat file and create a Polyspace options file.

"C:\Program Files\MATLAB\R2017b\polyspace\bin\polyspace-configure.exe"
 -output-options-file myOptions.txt launching.bat

You can now run polyspace-code-prover-nodesktop on the options file.

23 Troubleshoot Verification Problems

23-38

Troubleshooting Project Creation from MinGW Build

Issue
You create a project from a MinGW build, but get an error when running an analysis on
the project. The error message comes from using one of these keywords: __declspec,
__cdecl, __fastcall, __thiscall or __stdcall.

Cause
When you create a project from a MinGW build, the project uses a GNU compiler.
Polyspace does not recognize these keywords for the GNU compilers.

Solution
Replace these keywords with equivalent keywords just for the purposes of analysis.

Before analysis, for the option Preprocessor definitions (-D), enter:

• __declspec(x)=__attribute__((x))
• __cdecl=__attribute__((__cdecl__))
• __fastcall=__attribute__((__fastcall__))
• __thiscall=__attribute__((__thiscall__))
• __stdcall=__attribute__((__stdcall__))

 Troubleshooting Project Creation from MinGW Build

23-39

Troubleshooting Project Creation from Visual Studio
Build

In this section...
“Cannot Create Project from Visual Studio Build” on page 23-40
“Compilation Error After Creating Project from Visual Studio Build” on page 23-40

Cannot Create Project from Visual Studio Build
If you are trying to import a Visual Studio 2010 or Visual Studio 2012 project and
polyspace-configure does not work properly, do the following:

1 Stop the MSBuild.exe process.
2 Set the environment variable MSBUILDDISABLENODEREUSE to 1.
3 Specify MSBuild.exe with the/nodereuse:false option.
4 Restart the Polyspace configuration tool:

polyspace-configure.exe -lang cpp <MSVS path>/msbuild sample.sln

Compilation Error After Creating Project from Visual Studio
Build
Issue

After you automatically set up your project from a Visual Studio 2010 build, you face
compilation errors.

Possible Cause

By default, Polyspace assigns the latest version of the compiler, visual12.0 to your
project. This assignment can cause compilation errors. For more information on the
option to specify compilers, see Compiler (-compiler).

Solution

To avoid the errors, do one of the following:

23 Troubleshoot Verification Problems

23-40

• After automatic project setup:

1 Open the project in the user interface. On the Configuration pane, select Target
& Compiler.

2 Check the setting for Compiler. If it is set to visual12.0, change it to
visual10.

Note If you are creating an options file from your Visual Studio 2010 build, check the
-compiler argument. If it is set to visual12.0, change it to visual10.

• Before automatic project setup:

1 Open the file cl.xml in matlabroot\polyspace\configure
\compiler_configuration\ where matlabroot is your MATLAB installation
folder such as C:\Program Files\R2015a.

2 Change the line

<dialect>visual12.0</dialect>

to

<dialect>visual10</dialect>
3 Create your project or options file. The compiler is already assigned to visual10.

 Troubleshooting Project Creation from Visual Studio Build

23-41

Could Not Find Include File

Issue
You see a warning like this when creating a Polyspace project from AUTOSAR XML and
source files:

Could not find include file "MemMap.h"

If you use variables or functions declared in the missing include file, you can also see
errors later.

Cause
By default, Polyspace searches only in the source folder for #include-d files. If an
include file is not present directly in the source folder, Polyspace cannot find it. For
instance, the missing include file can be in a subfolder of the source folder.

Solution
If you want to expand the search path for include files, explicitly add new folders.

• In the Polyspace user interface, use the field Specify additional include folders.

See “Run Polyspace on AUTOSAR Code” on page 9-15.
• At the command-line, use the option -I.

See polyspace-autosar.

This method has the restriction that the include folder must be a subfolder of the source
folder. To add include folders that are not in the source folder hierarchy, use the advanced
option:

See Also
polyspace-autosar

23 Troubleshoot Verification Problems

23-42

Related Examples
• “Run Polyspace on AUTOSAR Code” on page 9-15
• “Troubleshoot Polyspace Analysis of AUTOSAR Code” on page 9-22

 See Also

23-43

Conflicting Universal Unique Identifiers (UUIDs)

Issue
You see one or both of these errors when creating a Polyspace project from AUTOSAR
XML and source files:

• Elements "/pkg/swc002/bhv/twosec" and "/pkg/swc002/bhv/step" in
file $file{C:/AUTOSAR/arxml/mSwc002_component.arxml}{332}
have the same UUID "5bdd54d5-50ae-4ad3-bdea-e0b0ab2bcab6".
Each of these elements should have its own unique UUID.

• 'Element "/AUTOSAR" has both UUID
"ECUS:6b411924-70da-40a5-85f5-65d5630ea0cb"
and "ECUS:48ea040a-c40d-4ee0-ae61-8a6ccc9cb18d".
You should specify only one UUID.

Solution
Investigate why multiple elements have the same UUID, or the same element has two
different UUID-s. Fix the issue if possible.

If you do not own the AUTOSAR XML with the conflicting UUID-s or do not want to fix the
issue because it represents work in progress, use the options -Eno-autosar-
xmlReaderSameUuidForDifferentElements and -Eno-autosar-
xmlReaderTooManyUuids. The analysis ignores the issue of conflicting UUID-s and
continues with a warning. For conflicting UUID-s, the analysis stores the last element
read.

The subsequent analyses continue to use the warning mode. To revert back to the error
mode, use the option -Eautosar-xmlReaderSameUuidForDifferentElements and -
Eautosar-xmlReaderTooManyUuids.

See Also
polyspace-autosar

Related Examples
• “Run Polyspace on AUTOSAR Code” on page 9-15

23 Troubleshoot Verification Problems

23-44

• “Troubleshoot Polyspace Analysis of AUTOSAR Code” on page 9-22

 See Also

23-45

Data Type Not Recognized

Issue
You see an error when creating a Polyspace project from AUTOSAR XML and source files.
The error suggests that a data type used in your source code is not recognized.

Cause
When creating a Polyspace project, the software parses your AUTOSAR XML
specifications and imports the data types that are required by the Software Component-s
in the scope of verification. If you use a data type that is not in the Software Component
specification, the analysis does not recognize this data type.

You can find the data types imported using the file autosar_model_key_elements.txt
in the AUTOSAR subfolder of your project folder. The file has data types in entries like this
(within the meta-class ValueType):

meta-class=ValueType(
 count=2;
 model-elements(
 (selection=indirect; name=pkg.types.app.Array_2_n320to320; is-application=true)
 (selection=indirect; name=pkg.types.app.Boolean; is-application=true)
)
)

The text selection=indirect indicates that the data types are automatically imported.

Solution
You can force import of data types that are not defined for Software Component-s that you
are verifying. Use the option -autosar-datatype. See polyspace-autosar.

The file autosar_model_key_elements.txt shows data types that are explicitly
imported using entries like this:

(selection=name; name=tst003.typ.app.Boolean; is-application=true)

The text selection=name indicates that the data type tst003.typ.app.Boolean is
explicitly imported for the analysis.

23 Troubleshoot Verification Problems

23-46

See Also
polyspace-autosar

Related Examples
• “Run Polyspace on AUTOSAR Code” on page 9-15
• “Troubleshoot Polyspace Analysis of AUTOSAR Code” on page 9-22

 See Also

23-47

Undefined Identifier Error

Issue
Polyspace verification fails during the compilation phase with a message about undefined
identifiers.

The message indicates that Polyspace cannot find a variable definition. Therefore, it
cannot identify the variable type.

Possible Cause: Missing Files
The source code you provided does not contain the variable definition. For instance, the
variable is defined in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your
Polyspace project, you see a previous warning:

Warning: could not find include file "my_include.h"

Solution

If the variable definition occurs in an include file, add the folder that contains the include
file.

• In the user interface, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
on page 3-2.

• At the command line, use the flag -I with the polyspace-code-prover-nodesktop
command.

For more information, see -I.

Possible Cause: Unrecognized Keyword
The variable represents a keyword that your compiler recognizes but is not part of the
ANSI C standard. Therefore, Polyspace does not recognize it.

For instance, some compilers interpret __SP as a reference to the stack pointer.

23 Troubleshoot Verification Problems

23-48

Solution

If the variable represents a keyword that Polyspace does not recognize, replace or remove
the keyword from your source code or preprocessed code.

If you remove or replace the keyword from the preprocessed code, you can avoid the
compilation error while keeping your source code intact. You can do one of the following:

• Replace or remove each individual unknown keyword using an analysis option.
Replace the compiler-specific keyword with an equivalent keyword from the ANSI C
Standard.

For information on the analysis option, see Preprocessor definitions (-D).
• Declare the unknown keywords in a separate header file using #define directives.

Specify that header file using an analysis option.

For information on the analysis option, see Include (-include). For a sample
header file, see “Gather Compilation Options Efficiently” on page 11-22.

Possible Cause: Declaration Embedded in #ifdef Statements
The variable is declared in a branch of an #ifdef macro_name preprocessor directive.
For instance, the declaration of a variable max_power occurs as follows:

#ifdef _WIN32
 #define max_power 31
#endif

Your compilation toolchain might consider the macro macro_name as implicitly defined
and execute the #ifdef branch. However, the Polyspace compilation might not consider
the macro as defined. Therefore, the #ifdef branch is not executed and the variable
max_power is not declared.

Solution

To work around the compilation error, do one of the following:

• Use Target & Compiler options to directly specify your compiler. For instance, to
emulate a Visual C++ compiler, set the Compiler to visual12.0. See “Target and
Compiler”.

• Define the macro explicitly using the option Preprocessor definitions (-D).

 Undefined Identifier Error

23-49

Note If you create a Polyspace by tracing your build commands, most Target &
Compiler options are automatically set.

Possible Cause: Project Created from Non-Debug Build
This can be a possible cause only if the undefined identifier occurs in an assert
statement (or an equivalent Visual C++ macro such as ASSERT or VERIFY).

Typically, you come across this error in the following way. You create a Polyspace project
from a build system in non-debug mode. When you run an analysis on the project, you
face a compilation error from an undefined identifier in an assert statement. You find
that the identifier my_identifier is defined in a #ifndef NDEBUG statement, for
instance as follows:

#ifndef NDEBUG
int my_identifier;
#endif

The C standard states that when the NDEBUG macro is defined, all assert statements must
be disabled.

Most IDEs define the NDEBUG macro in their build systems. When you build your source
code in your IDE in non-debug mode, code in a #ifndef NDEBUG statement is removed
during preprocessing. For instance, in the preceding example, my_identifier is not
defined. If my_identifier occurs only in assert statements, it is not used either,
because NDEBUG disables assert statements. You do not have compilation errors from
undefined identifiers and your build system executes successfully.

Polyspace does not disable assert statements even if NDEBUG macro is defined because
the software uses assert statements internally to enhance verification.

When you create a Polyspace project from your build system, if your build system defines
the NDEBUG macro, it is also defined for your Polyspace project. Polyspace removes code
in a #ifndef NDEBUG statement during preprocessing, but does not disable assert
statements. If assert statements in your code rely on the code in a #ifndef NDEBUG
statement, compilation errors can occur.

In the preceding example:

• The definition of my_identifier is removed during preprocessing.

23 Troubleshoot Verification Problems

23-50

• assert statements are not disabled. When my_identifier is used in an assert
statement, you get an error because of undefined identifier my_identifier.

Solution

To work around this issue, create a Polyspace project from your build system in debug
mode. When you execute your build system in debug mode, NDEBUG is not defined. When
you create a Polyspace project from this build, NDEBUG is not defined for your Polyspace
project.

Depending on your project settings, use the option that enables building in debug mode.
For instance, if your build system is gcc-based, you can define the DEBUG macro and
undefine NDEBUG:

gcc -DDEBUG=1 -UNDEBUG *.c

Alternatively, you can disable the assert statements in your preprocessed code using the
option Disabled preprocessor definitions (-U). However, Polyspace will not be
able to emulate the assert statements.

 Undefined Identifier Error

23-51

Unknown Function Prototype Error

Issue
During the compilation phase, the software displays a warning or error message about
unknown function prototype.

the prototype for function 'myfunc' is unknown

The message indicates that Polyspace cannot find a function prototype. Therefore, it
cannot identify the data types of the function argument and return value, and has to infer
them from the calls to the function.

To determine the data types for such functions, Polyspace follows the C99 Standard
(ISO/IEC 9899:1999, Chapter 6.5.2.2: Function calls).

• The return type is assumed to be int.
• The number and type of arguments are determined by the first call to the function. For

instance, if the function takes one double argument in the first call, for subsequent
calls, the software assumes that it takes one double argument. If you pass an int
argument in a subsequent call, a conversion from int to double takes place.

During the linking phase, if a mismatch occurs between the number or type of arguments
or the return type in different compilation units, the verification stops. For more
information, see “Conflicting Declarations in Different Translation Units” on page 23-72.

Cause
The source code you provided does not contain the function prototype. For instance, the
function is declared in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your
Polyspace project, you see a previous warning:

Warning: could not find include file "my_include.h"

Solution
Search for the function declaration in your source repository.

23 Troubleshoot Verification Problems

23-52

If you find the function declaration in an include file, add the folder that contains the
include file.

• In the user interface, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
on page 3-2.

• At the command line, use the flag -I with the polyspace-code-prover-nodesktop
command.

For more information, see -I.

 Unknown Function Prototype Error

23-53

Error Related to #error Directive

Issue
The analysis stops with a message containing a #error directive. For instance, the
following message appears: #error directive: !Unsupported platform;
stopping!.

Cause
You typically use the #error directive in your code to trigger a fatal error in case certain
macros are not defined. Your compiler implicitly defines the macros, therefore the error is
not triggered when you compile your code. However, the default Polyspace compilation
does not consider the macros as defined, therefore, the error occurs.

For instance, in the following example, the #error directive is reached only if the macros
__BORLANDC__, __VISUALC32__ or __GNUC__ are not defined. If you use a GNU C
compiler, for instance, the compiler considers the macro __GNUC__ as defined and the
error does not occur. However, if you use the default Polyspace compilation, it does not
consider the macros as defined.

#if defined(__BORLANDC__) || defined(__VISUALC32__)
#define MYINT int
#elif defined(__GNUC__)
#define MYINT long
#else
#error !Unsupported platform; stopping!
#endif

Solution
For successful compilation, do one of the following:

• Specify a compiler such as visual12.0 or gnu4.9. Specifying a compiler defines
some of the compilation flags for the analysis.

For more information, see Compiler (-compiler).
• If the available compiler options do not match your compiler, explicitly define one of

the compilation flags __BORLANDC__, __VISUALC32__, or __GNUC__.

23 Troubleshoot Verification Problems

23-54

For more information, see Preprocessor definitions (-D).

 Error Related to #error Directive

23-55

Large Object Error

Issue
The analysis stops during compilation with a message indicating that an object is too
large.

Cause
The error happens when the software detects an object such as an array, union, structure,
or class, that is too big for the pointer size of the selected target.

For instance, you get the message, Limitation: struct or union is too large
in the following example. You specify a pointer size of 16 bits. The maximum object size
allocated to a pointer, and therefore the maximum allowed size for an object, can be 216-1
bytes. However, you declare a structure as follows:

• struct S
{
 char tab[65536];
}s;

• struct S
{
 char tab[65534];
 int val;
}s;

Solution
1 Check the pointer size that you specified through your target processor type. For

more information, see Target processor type (-target).

For instance, in the following, the pointer size for a custom target My_target is 16
bits.

23 Troubleshoot Verification Problems

23-56

2 Change your code or specify a different pointer size.

For instance, you can:

• Declare an array of smaller size in the structure.

If you are using a predefined target processor type, the pointer size is likely to be
the same as the pointer size on your target architecture. Therefore, your
declaration might cause errors on your target architecture.

• Change the pointer size of the target processor type that you specified, if possible.

Otherwise, specify another target processor type with larger pointer size or define
your own target processor type. For more information on defining your own
processor type, see Generic target options.

 Large Object Error

23-57

Note Polyspace imposes an internal limit of 128 MB on the size of data
structures. Even if your target processor type specification allows data structures
of larger size, this internal limit constrains the data structure sizes.

23 Troubleshoot Verification Problems

23-58

Errors Related to Generic Compiler
If you use a generic compiler, you can encounter this issue. For more information, see
Compiler (-compiler).

Issue
The analysis stops with an error message related to a non-ANSI C keyword, for instance,
data or attributes such as __attribute__((weak)).

Depending on the location of the keyword, the error message can vary. For instance, this
line causes the error message: expected a ";".

data int tab[10];

Cause
The generic Polyspace compiler supports only ANSI C keywords. If you use a language
extension, the generic compiler does not recognize it and treats the keyword as a regular
identifier.

Solution
Specify your compiler by using the option Compiler (-compiler).

If your compiler is not directly supported or is not based on a supported compiler, you can
use the generic compiler. To work around the compilation errors:

• If the keyword is related to memory modelling, remove it from the preprocessed code.
For instance, to remove the data keyword, enter data= for the option Preprocessor
definitions (-D).

• If the keyword is related to an attribute, remove attributes from the preprocessed
code. Enter __attribute__(x)= for the option Preprocessor definitions (-
D).

If your code has this line:

void __attribute__ ((weak)) func(void);

And you remove attributes, the analysis reads the line as:

 Errors Related to Generic Compiler

23-59

void func(void);

When you use these workarounds, your source code is not altered.

23 Troubleshoot Verification Problems

23-60

Errors Related to Keil or IAR Compiler
If you use the compiler, Keil or IAR, you can encounter this issue. For more information,
see Compiler (-compiler).

Missing Identifiers
Issue

The analysis stops with the error message, expected an identifier, as if an
identifier is missing. However, in your source code, you can see the identifier.

Cause

If you select Keil or IAR as your compiler, the software removes certain keywords during
preprocessing. If you use these keywords as identifiers such as variable names, a
compilation error occurs.

For a list of keywords that are removed, see “Supported Keil or IAR Language
Extensions” on page 11-13.

Solution

Specify that Polyspace must not remove the keywords during preprocessing. Define the
macros __PST_KEIL_NO_KEYWORDS__ or __PST_IAR_NO_KEYWORDS__.

For more information, see Preprocessor definitions (-D).

 Errors Related to Keil or IAR Compiler

23-61

Errors Related to Diab Compiler
If you choose diab for the option Compiler (-compiler), you can encounter this
issue.

Issue
During Polyspace analysis, you see an error related to a keyword specific to the Diab
compiler. For instance, you see an error related to the restrict keyword.

Cause
You typically use a compiler flag to enable the keyword. The Polyspace analysis does not
enable these keywords by default. You have to make Polyspace aware of your compiler
flags.

The Polyspace analysis does not enable these keywords by default to prevent compilation
errors. Another user might not enable the keyword and instead use the keyword name as
a regular identifier. If Polyspace treats the identifier as a keyword, a compilation error
will occur.

Solution
Use the command-line option -compiler-parameter in your Polyspace analysis as
follows. You use this command-line option to make Polyspace aware of your compiler
flags. In the user interface, you can enter the command-line option in the field Other. You
can enter the option multiple times.

The argument of -compiler-parameter depends on the keyword that causes the error.
Once you enable the keyword, do not use the keyword name as a regular identifier. For
instance, once you enable the keyword pixel, do not use pixel as a variable name. The
statement int pixel = 1 causes a compilation error.

• restrict keyword:

You typically use the compiler flag -Xlibc-new or -Xc-new. For your Polyspace
analysis, use

-compiler-parameter -Xc-new

23 Troubleshoot Verification Problems

23-62

The following code will not compile with Polyspace unless you specify the compiler
flag.

int sscanf(const char *restrict, const char *restrict, ...);
• PowerPC AltiVec vector extensions such as the vector type qualifier:

You typically use the compiler flag -tPPCALLAV:. For your Polyspace analysis, use

-compiler-parameter -tPPCALLAV:

The following code will not compile with Polyspace unless you specify the compiler
flag.

vector unsigned char vbyte;
vector bool vbool;
vector pixel vpx;

int main(int argc, char** argv)
{
 return 0;
}

• Extended keywords such as pascal, inline, packed, interrupt, extended, __X,
__Y, vector, pixel, bool and others:

You typically use the compiler flag -Xkeywords=. For your Polyspace analysis, use

-compiler-parameter -Xkeywords=0xFFFFFFFF

The following code will not compile with Polyspace unless you specify the compiler
flag.

packed(4) struct s2_t {
 char b;
 int i;
} s2;

packed(4,2) struct s3_t {
 char b;
} s3;

int pascal foo = 4;

int main(int argc, char** argv) {
 foo++;

 Errors Related to Diab Compiler

23-63

 return 0;
}

23 Troubleshoot Verification Problems

23-64

Errors Related to TASKING Compiler
If you choose tasking for the option Compiler (-compiler), you can encounter this
issue.

Issue
During Polyspace analysis, you see an error related to a Special Function Register data
type.

Cause
When compiling with the TASKING compiler, you typically use the following compiler
flags to specify where Special Function Register (SFR) data types are declared:

• --cpu=xxx: The compiler implicitly #includes the file sfr/regxxx.sfr in your
source files. Once #include-ed, you can use Special Function Registers (SFR-s)
declared in that .sfr file.

• --alternative-sfr-file: The compiler uses an alternative SFR file instead of the
regular SFR file. You can use Special Function Registers (SFR-s) declared in that
alternative SFR file.

If you specify the TASKING compiler for your Polyspace analysis, the analysis makes the
following assumptions about these compiler flags:

• --cpu=xxx: The analysis chooses a specific value of xxx. If you use a different value
with your TASKING compiler, you can encounter an error during Polyspace analysis.

The xxx value that the Polyspace analysis uses depends on your choice of Target
processor type (-target):

• tricore: tc1793b
• c166: xc167ci
• rh850: r7f701603
• arm: ARMv7M

• --alternative-sfr-file: The analysis assumes that you do not use an alternative
SFR file. If you use one, you can encounter an error.

 Errors Related to TASKING Compiler

23-65

Solution
Use the command-line option -compiler-parameter in your Polyspace analysis as
follows. You use this command-line option to make Polyspace aware of your compiler
flags. In the user interface, you can enter the command-line option in the field Other. You
can enter the option multiple times.

• --cpu=xxx: For your Polyspace analysis, use

-compiler-parameter --cpu=xxx

Here, xxx is the value that you use when compiling with your compiler.
• --alternative-sfr-file: For your Polyspace analysis, use

-compiler-parameter --alternative-sfr-file

If you still encounter an error because Polyspace is not able to locate your .asfr file,
explicitly #include your .asfr file in the preprocessed code using the option
Include (-include).

Typically, the path to the file is Tasking_C166_INSTALL_DIR\include\sfr
\regCPUNAME.asfr. For instance, if your TASKING compiler is installed in C:
\Program Files\Tasking\C166-VX_v4.0r1\ and you use the CPU-related flag -
Cxc2287m_104f or --cpu=xc2287m_104f, the path is C:\Program Files
\Tasking\C166-VX_v4.0r1\include\sfr\regxc2287m.asfr.

You can also encounter the same issue with alternative sfr files when you trace your
build command. For more information, see “Requirements for Project Creation from
Build Systems” on page 11-8.

23 Troubleshoot Verification Problems

23-66

Errors from In-Class Initialization (C++)
When a data member of a class is declared static in the class definition, it is a static
member of the class. You must initialize static data members outside the class because
they exist even when no instance of the class has been created.

class Test
{
public:

 static int m_number = 0;
};

Error message:
Error: a member with an in-class initializer must be const

Corrected code:

in file Test.h in file Test.cpp
class Test
{
public:
static int m_number;
};

int Test::m_number = 0;

 Errors from In-Class Initialization (C++)

23-67

Errors from Double Declarations of Standard Template
Library Functions (C++)

Consider the following code.

#include <list>

void f(const std::list<int*>::const_iterator it) {}
void f(const std::list<int*>::iterator it) {}
void g(const std::list<int*>::const_reverse_iterator it) {}
void g(const std::list<int*>::reverse_iterator it) {}

The declared functions belong to list container classes with different iterators.
However, the software generates the following compilation errors:

error: function "f" has already been defined
error: function "g" has already been defined

You would also see the same error if, instead of list, the specified container was
vector, set, map, or deque.

To avoid the double declaration errors, do one of the following:

• Deactivate automatic stubbing of standard template library functions. For more
information, see No STL stubs (-no-stl-stubs).

• Define the following Polyspace preprocessing directives:

• __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_VECTOR_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_SET_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_MAP_CONST_ITERATOR_DIFFER_ITERATOR__
• __PST_STL_DEQUE_CONST_ITERATOR_DIFFER_ITERATOR__

For example, for the given code, run analysis at the command line with the following
flag. The flag defines the appropriate directive for the list container.

-D __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__

For more information on defining preprocessor directives, see Preprocessor
definitions (-D).

23 Troubleshoot Verification Problems

23-68

Errors Related to GNU Compiler
If you choose gnu for the option Compiler (-compiler), you can encounter this issue.

Issue
The Polyspace analysis stops with a compilation error.

Cause
You are using certain advanced compiler-specific extensions that Polyspace does not
support. See “Limitations”.

Solution
For easier portability of your code, avoid using the extensions.

If you want to use the extensions and still analyze your code, wrap the unsupported
extensions in a preprocessor directive. For instance:

#ifdef POLYSPACE
 // Supported syntax
#else
 // Unsupported syntax
#endif

For regular compilation, do not define the macro POLYSPACE. For Polyspace analysis,
enter POLYSPACE for the option Preprocessor definitions (-D).

If the compilation error is related to assembly language code, see “Assembly Code”.

 Errors Related to GNU Compiler

23-69

Errors Related to Visual Compilers
The following messages appear if the compiler is based on a Visual compiler. For more
information, see Compiler (-compiler).

Import Folder
When a Visual application uses #import directives, the Visual C++ compiler generates a
header file with extension .tlh that contains some definitions. To avoid compilation
errors during Polyspace analysis, you must specify the folder containing those files.

Original code:

#include "stdafx.h"
#include <comdef.h>
#import <MsXml.tlb>
MSXML::_xml_error e ;
MSXML::DOMDocument* doc ;
int _tmain(int argc, _TCHAR* argv[])
{
 return 0;
}

Error message:

"../sources/ImportDir.cpp", line 7: catastrophic error: could not
open source file "./MsXml.tlh"
 #import <MsXml.tlb>

The Visual C++ compiler generates these files in its “build-in” folder (usually Debug or
Release). In order to provide those files:

• Build your Visual C++ application.
• Specify your build folder for the Polyspace analysis.

pragma Pack
Using a different value with the compile flag (#pragma pack) can lead to a linking error
message.

Original code:

23 Troubleshoot Verification Problems

23-70

test1.cpp type.h test2.cpp
#pragma pack(4)

#include "type.h"

struct A
{
 char c ;
 int i ;
} ;

#pragma pack(2)

#include "type.h"

Error message:
Pre-linking C++ sources ...
"../sources/type.h", line 2: error: declaration of class "A" had
a different meaning during compilation of "test1.cpp"
(class types do not match)
 struct A
 ^
 detected during compilation of secondary translation unit
"test2.cpp"

To continue the analysis, use the option Ignore pragma pack directives (-
ignore-pragma-pack).

C++/CLI
Polyspace does not support Microsoft C++/CLI, a set of language extensions for .NET
programming.

You can get errors such as:

error: name must be a namespace name
| using namespace System;

Or:

error: expected a declaration
| public ref class Form1 : public System::Windows::Forms::Form

 Errors Related to Visual Compilers

23-71

Conflicting Declarations in Different Translation Units

Issue
The analysis shows an error or warning similar to one of these error messages:

• Declaration of [...] is incompatible with a
declaration in another translation unit ([...])

• Declaration of [...] had a different meaning during compilation of [...] ([...])

The error indicates that the same variable or function or data type is declared differently
in different translation units. The conflicting declarations violate the One Definition Rule
(cf. C++Standard, ISO/IEC 14882:2003, Section 3.2). When conflicting declarations
occur, Polyspace does not choose a declaration and continue analysis.

Common compilation toolchains often do not store data type information during the
linking process. The conflicting declarations do not cause errors with your compiler.
Polyspace Bug Finder follows stricter standards for linking to detect violations of system-
wide coding rules.

Common compilation toolchains often do not store data type information during the
linking process. The conflicting declarations do not cause errors with your compiler.
Polyspace Code Prover follows stricter standards for linking to guarantee the absence of
certain run-time errors.

To identify the root cause of the error:

1 From the error message, identify the two source files with the conflicting
declarations.

For instance, an error message looks like this message:

C:\field.h, line 1: declaration of class "a_struct" had
 a different meaning during compilation of "file1.cpp"
| struct a_struct {
|
| Detected during compilation of secondary translation unit "file2.cpp"

The message shows that the structure a_struct has a conflicting declaration in
file1.cpp and file2.cpp.

2 Try to identify the conflicting declarations in the source files.

23 Troubleshoot Verification Problems

23-72

Otherwise, open the translation units containing these files. Sometimes, the
translation units or preprocessed files show the conflicting declarations more clearly
than the source files because the preprocessor directives, such as #include and
#define statements, are replaced appropriately and the macros are expanded.

a Rerun the analysis with the flag -keep-relaunch-files so that all translation
units are saved. In the user interface, enter the flag for the option Other.

The translation units or preprocessed files are stored in a zipped file ci.zip in a
subfolder .relaunch of the results folder.

b Unzip the contents of ci.zip.

The preprocessed files have the same name as the source files. For instance, the
preprocessed file with file1.cpp is named file1.ci.

When you open the preprocessed files at the line numbers stated in the error
message, you can spot the conflicting declarations.

Possible Cause: Variable Declaration and Definition Mismatch
A variable declaration does not match its definition. For instance:

• The declaration and definition use different data types.
• The variable is declared as signed, but defined as unsigned.
• The declaration and definition uses different type qualifiers.
• The variable is declared as an array, but defined as a non-array variable.
• For an array variable, the declaration and definition use different array sizes.

In this example, the code shows a linking error because of a mismatch in type qualifiers.
The declaration in file1.c does not use type qualifiers, but the definition in file2.c
uses the volatile qualifier.

file1.c file2.c
extern int x;

void main(void)
{/* Variable x used */}

 volatile int x;

In these cases, you can typically spot the difference by looking at the source files. You do
not need to see the preprocessed files.

 Conflicting Declarations in Different Translation Units

23-73

Solution

Make sure that the variable declaration matches its definition.

Possible Cause: Function Declaration and Definition Mismatch
A function declaration does not match its definition. For instance:

• The declaration and definition use different data types for arguments or return values.
• The declaration and definition use a different number of arguments.
• A variable-argument or varargs function is declared in one function, but it is called in

another function without a previous declaration.

In this case, the error message states that the required prototype for the function is
missing.

In this example, the code shows a linking error because of a mismatch in the return type.
The declaration in file1.c has return type int, but the definition in file2.c has
return type float.

file1.c file2.c
int input(void);

void main() {
 int val = input();
}

float input(void) {
 float x = 1.0;
 return x;
}

In these cases, you can typically find the difference by looking at the source files. You do
not need to see the preprocessed files.

Solution

Make sure that the function declaration matches its definition.

Even if your build process allows these errors, you can have unexpected results during
run time. If a function declaration and definition with conflicting prototypes exist in your
code, when you call the function, the result can be unexpected.

For a variable-argument or varargs function, declare the function before you call it. If you
do not want to change your source code, you can work around this linking error.

23 Troubleshoot Verification Problems

23-74

1 Add the function declaration in a separate file.
2 Only for the purposes of verification, #include this file in every source file by using

the option Include (-include).

Possible Cause: Macro-dependent Definitions
A variable definition is dependent on a macro being defined earlier. One source file
defines the macro while another does not, causing conflicts in variable definitions.

In this example, file1.cpp and file2.cpp include a header file field.h. The header
file defines a structure a_struct that is dependent on a macro definition. Only one of the
two files, file2.cpp, defines the macro DEBUG. The definition of a_struct in the
translation unit with file1.cpp differs from the definition in the unit with file2.cpp.

file1.cpp file2.cpp
#include "field.h"

int main()
{
 a_struct s;
 init_a_struct(&s);
 return 0;
}

#define DEBUG

#include <string.h>
#include "field.h"

void init_a_struct(a_struct* s)
{
 memset(s, 0, sizeof(*s));
}

field.h:

struct a_struct {
 int n;
#ifdef DEBUG
 int debug;
#endif
};

When you open the preprocessed files file1.ci and file2.ci, you see the conflicting
declarations.

 Conflicting Declarations in Different Translation Units

23-75

file1.ci file2.ci
struct a_struct {
 int n;

};

struct a_struct {
 int n;

 int debug;

};

Solution

Avoid macro-dependent definitions. Otherwise, fix the linking errors. Make sure that the
macro is either defined or undefined on all paths that contain the variable definition.

Possible Cause: Keyword Redefined as Macro
A keyword is redefined as a macro, but not in all files.

In this example, bool is a keyword in file1.cpp, but it is redefined as a macro in
file2.cpp.

file1.cpp file2.cpp
#include "bool.h"

int main()
{
 return 0;
}

#define false 0
#define true (!false)

#include "bool.h"

bool.h:

template <class T>
struct a_struct {
 bool flag;
 T t;
 a_struct() {
 flag = true;
 }
};

Solution

Be consistent with your keyword usage throughout the program. Use the keyword defined
in a standard library header or use your redefined version.

23 Troubleshoot Verification Problems

23-76

Possible Cause: Differences in Structure Packing
A #pragma pack(n) statement changes the structure packing alignment, but not in all
files. See also “#pragma Directives”.

In this example, the default packing alignment is used in file1.cpp, but a #pragma
pack(1) statement enforces a packing alignment of 1 byte in file2.cpp.

file1.cpp file2.cpp
int main()
{
 return 0;
}

#pragma pack(1)

#include "pack.h"

pack.h:

struct a_struct {
 char ch;
 short sh;
};

Solution

Enter the #pragma pack(n) statement in the header file so that it applies to all source
files that include the header.

 Conflicting Declarations in Different Translation Units

23-77

Errors from Conflicts with Polyspace Header Files

Issue
You see compilation errors from header files included by Polyspace.

For instance, the error message refers to one of the subfolders of matlabroot
\polyspace\verifier\cxx\include.

Typically, the error message is related to a standard library function.

Cause
If your compiler defines a standard library function or another construct and you do not
provide the path to your compiler header files, Polyspace uses its own implementation of
the function.

If your compiler definitions differ from the corresponding Polyspace definitions, the
verification stops with an error.

Solution
Specify the folder containing your compiler header files.

• In the user interface, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User Interface”
on page 3-2.

• At the command line, use the flag -I with the polyspace-code-prover-nodesktop
command.

For more information, see -I.

For compilation with GNU C on UNIX-based platforms, use /usr/include. On
embedded compilers, the header files are typically in a subfolder of the compiler
installation folder. Examples of include folders are given for some compilers.

• Wind River Diab: For instance, /apps/WindRiver/Diab/5.9.4/diab/5.9.4.8/
include/.

23 Troubleshoot Verification Problems

23-78

• IAR Embedded Workbench: For instance, C:\Program Files\IAR Systems
\Embedded Workbench 7.5\arm\inc.

• Microsoft Visual Studio: For instance, C:\Program Files\Microsoft Visual
Studio 14.0\VC\include.

Consult your compiler documentation for the path to your compiler header files.
Alternatively, see “Provide Standard Library Headers for Polyspace Analysis” on page 11-
6.

 Errors from Conflicts with Polyspace Header Files

23-79

C++ Standard Template Library Stubbing Errors

Issue
The analysis stops with an error message that refers to class templates such as map and
vector from the Standard Template Library.

Often, the error message states that either an operator cannot be found or more than one
operator matches the given operands.

Cause
Polyspace software provides an efficient implementation of all class templates from the
Standard Template Library (STL). If your source code redeclares the templates, the
analysis can stop with an error message.

Solution
To use your own implementations of templates from the Standard Template Library:

1 Disable the Polyspace implementations using the option No STL stubs (-no-stl-
stubs).

2 Add the folders containing your implementations to the verification.

• In the user interface, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace User
Interface” on page 3-2.

• At the command line, use the flag -I with the polyspace-code-prover-
nodesktop command.

For more information, see -I.

Note Using your own template definitions can cause other compilation and linking
errors.

23 Troubleshoot Verification Problems

23-80

Lib C Stubbing Errors
Extern C Functions
Some functions may be declared inside an extern "C" { } block in some files, but not
in others. In this case, the linkage is different which causes a link error, because it is
forbidden by the ANSI standard.

Original code:

extern "C" {
 void* memcpy(void*, void*, int);
}
class Copy
{
public:
 Copy() {};
 static void* make(char*, char*, int);
};
void* Copy::make(char* dest, char* src, int size)
{
 return memcpy(dest, src, size);
}

Error message:
Pre-linking C++ sources ...

<results_dir>/test.cpp, line 2: error: declaration of function "memcpy"
is incompatible with a declaration in another translation unit
(parameters do not match)
| the other declaration is at line 4096 of "__polyspace__stdstubs.c"
| void* memcpy(void*, void*, int);
| ^
| detected during compilation of secondary translation unit "test.cpp"

The function memcpy is declared as an external "C" function and as a C++ function. It
causes a link problem. Indeed, function management behavior differs whether it relates to
a C or a C++ function.

When such error happens, the solution is to homogenize declarations, i.e. add extern
"C" { } around previous listed C functions.

Another solution consists in using the permissive option -no-extern-C. It removes all
extern "C" declarations.

 Lib C Stubbing Errors

23-81

Functional Limitations on Some Stubbed Standard ANSI
Functions
• signal.h is stubbed with functional limitations: signal and raise functions do not

follow the associated functional model. Even if the function raise is called, the stored
function pointer associated to the signal number is not called.

• No jump is performed even if the setjmp and longjmp functions are called.
• errno.h is partially stubbed. Some math functions do not set errno, but instead,

generate a red error when a range or domain error occurs with ASRT checks.

You can also use the compile option POLYSPACE_STRICT_ANSI_STANDARD_STUBS (-D
flag). This option only deactivates extensions to ANSI C standard libC, including the
functions bzero, bcopy, bcmp, chdir, chown, close, fchown, fork, fsync, getlogin,
getuid, geteuid, getgid, lchown, link, pipe, read, pread, resolvepath, setuid,
setegid, seteuid, setgid, sleep, sync, symlink, ttyname, unlink, vfork, write,
pwrite, open, creat, sigsetjmp, __sigsetjmp, and siglongjmpare.

23 Troubleshoot Verification Problems

23-82

Errors from Assertion or Memory Allocation Functions

Issue
Polyspace uses its own implementation of standard library functions for more efficient
analysis. If you redefine a standard library function and provide the function body to
Polyspace, the analysis uses your definition.

However, for certain standard library functions, Polyspace continues to use its own
implementations, even if you redefine the function and provide the function body. The
functions include assert and memory allocation functions such as malloc, calloc and
alloca.

You see a warning message like the following:

Body of routine "malloc" was discarded.

Cause
These functions have special meaning for the Polyspace analysis, so you are not allowed
to redefine them. For instance:

• The Polyspace implementation of the malloc function allows the software to check if
memory allocated using malloc is freed later.

• The Polyspace implementation of assert is used internally to enhance analysis.

Solution
Unless you particularly want your own redefinitions to be used, ignore the warning. The
analysis results are based on Polyspace implementations of the standard library function,
which follow the original function specifications.

If you want your own redefinitions to be used and you are sure that your redefined
function behaves the same as the original function, rename the functions. You can rename
the function only for the purposes of analysis using the option Preprocessor
definitions (-D). For instance, to rename a function malloc to my_malloc, use
malloc=my_malloc for the option argument.

 Errors from Assertion or Memory Allocation Functions

23-83

Eclipse Java Version Incompatible with Polyspace Plug-in

In this section...
“Issue” on page 23-84
“Cause” on page 23-84
“Solution” on page 23-84

Issue
After installing the Polyspace plug-in for Eclipse, when you open the Eclipse or Eclipse-
based IDE, you see this error message:

Java 7 required, but the current java version is 1.6.
You must install Java 7 before using Polyspace plug in.

You see this message even if you install Java 7 or higher.

Cause
Despite installing Java 7 or higher, the Eclipse or Eclipse-based IDE still uses an older
version.

Solution
Make sure that the Eclipse or Eclipse-based IDE uses the compatible Java version.

1 Open the executable_name.ini file that occurs in the root of your Eclipse
installation folder.

If you are running Eclipse, the file is eclipse.ini.
2 In the file, just before the line -vmargs, enter:

-vm
java_install\bin\javaw.exe

Here, java_install is the Java installation folder.

23 Troubleshoot Verification Problems

23-84

For instance, your product installation comes with the required Java version for
certain platforms. You can force the Eclipse or Eclipse-based IDE to use this version.
In your .ini file, enter the following just before the line -vmargs:

-vm
matlabroot\sys\java\jre\arch\jre\bin\javaw.exe

Here, matlabroot is your product installation folder, for instance, C:\MATLAB
\R2015b\ and arch is win32 or win64 depending on the product platform.

 Eclipse Java Version Incompatible with Polyspace Plug-in

23-85

Reasons for Unchecked Code
Issue
After verification, you see in the Code covered by verification graphs that a significant
portion of your code has not been checked for run-time errors.

For instance, in the following graph, the Dashboard pane shows that as much as 75% of
your functions have not been checked for run-time errors. (In the functions that were
checked, only 7% of operations have not been checked.)

The unchecked code percentage in the Code covered by verification graph covers:

• Functions and operations that are not checked because they are proven to be
unreachable.

They appear gray on the Source pane.

23 Troubleshoot Verification Problems

23-86

• Functions and operations that are not proven unreachable but not checked for some
other reason.

They appear black on the Source pane.

Possible Cause: Compilation Errors
If some files fail to compile, the Polyspace analysis continues with the remaining files.
However, the analysis does not check the uncompiled files for run-time errors.

To see if some files did not compile, check the Output Summary or Dashboard pane. To
make sure that all files compile before analysis, use the option Stop analysis if a
file does not compile (-stop-if-compile-error).

Solution

Fix the compilation errors and rerun the analysis.

For more information on:

• How the Polyspace compilation works, see “Troubleshoot Compilation and Linking
Errors” on page 23-7.

• Specific compilation errors, see the Compilation and Linking section of
“Troubleshooting in Polyspace Code Prover”.

Possible Cause: Early Red or Gray Check
You have a red or gray check towards the beginning of the function call hierarchy. Red or
grey checks can lead to subsequent unchecked code.

 Reasons for Unchecked Code

23-87

• Red check: The verification does not check subsequent operations in the block of code
containing the red check.

• Gray check: Gray checks indicate unreachable code. The verification does not check
operations in unreachable code for run-time errors.

If you call functions from the unchecked block of code, the verification does not check
those functions either. If you have a red or gray check towards the beginning of the call
hierarchy, functions further on in the hierarchy might not be checked. You end up with a
significant amount of unchecked code.

For instance, in the following code, only 1 out of 4 functions are checked and the
Procedure graph shows 25%. The functions func_called_from_unreachable_1,
func_called_from_unreachable_2 and func_called_after_red are not checked.
Only main is checked.

void func_called_from_unreachable_1(void) {
}

void func_called_from_unreachable_2(void) {
}

void func_called_after_red(void) {
}

23 Troubleshoot Verification Problems

23-88

int glob_var;

void main(void) {
 int loc_var;
 double res;

 glob_var=0;
 glob_var++;

 if (glob_var!=1) {
 func_called_from_unreachable_1();
 func_called_from_unreachable_2();
 }

 res=0;
 /* Division by zero occurs in for loop */
 for(loc_var=-10;loc_var<10;loc_var++) {
 res += 1/loc_var;
 }

 func_called_after_red();
}

Solution

See if the main function or another Tasks function has red or gray checks. See if you call
most of your functions from the subsequent unchecked code.

To navigate from the main down the function call hierarchy and identify where the
unchecked code begins, use the navigation features on the Call Hierarchy pane. If you
do not see the pane by default, select Window > Show/Hide View > Call Hierarchy.
For more information, see “Call Hierarchy” on page 17-44.

Alternatively, you can consider an arbitrary unchecked function and investigate why it is
not checked. See if the same reasoning applies for many functions. To detect if a function
is not called at all from an entry point or called from unreachable code, use the option
Detect uncalled functions (-uncalled-function-checks).

Review the red or gray checks and fix them.

 Reasons for Unchecked Code

23-89

Possible Cause: Incorrect Options
You did not specify the necessary analysis options. When incorrectly specified, the
following options can cause unchecked code:

• Multitasking options: If you are verifying multitasking code, through these options,
you specify your entry point functions.

Possible errors in specification include:

• You expected automatic concurrency detection to detect your thread creation, but
you use thread creation primitives that are not yet supported for automatic
detection.

• With manual multitasking setup, you did not specify all your entry points.
• Main generation options: Through these options, you generate a main function if it

does not exist in your code. When verifying modules or libraries, you use these
options.

You did not specify all the functions that the generated main must call.
• Inputs and stubbing options: Through these options, you constrain variable ranges

from outside your code or force stubbing of functions.

Possible errors in specification include:

• You specified variable ranges that are too narrow causing otherwise reachable
code to become unreachable.

• You stubbed some functions unintentionally.
• “Macros”: Through these options, you define or undefine preprocessor macros.

You might have to explicitly define a macro that your compiler considers implicitly as
defined.

Solution

Check your options in the preceding order. If your specifications are incorrect, fix them.

23 Troubleshoot Verification Problems

23-90

Source Files or Functions Not Displayed in Results List
In this section...
“Issue” on page 23-91
“Possible Cause: Files Not Verified” on page 23-91
“Possible Cause: Filters Applied” on page 23-93

Issue

On the Results List pane, when you select File from the (Grouping) list, you do not
see:

• Some of your source files.
• Some functions in your source files.

Possible Cause: Files Not Verified
If a source file or function does not contain a result such as a check or coding rule
violation, the Results List pane does not display the file or function. If none of the
operations in a source file or function contain a check, it indicates that Polyspace did not
verify that source file or function.

To check if all files and functions were verified, see the Code covered by verification
graph on the Dashboard pane. For more information, see “Dashboard” on page 17-21.

Solution

Polyspace does not verify a source file or function when one of the following situations
occur.

 Source Files or Functions Not Displayed in Results List

23-91

Situation Fix
The file or function does not contain an
operation on which a check is required.

For instance, a function contains calls to
other functions only. If none of the called
functions contains an error that lead to a
Non-terminating call error in the calling
function, the calling function does not
contain a check.

No fix required.

All functions in the source file are not
called, are called from unreachable code or
are called following red checks.

Polyspace does not verify the code that
follows a red check and occurs in the same
scope as the check. Therefore, it considers
that the functions are not called and does
not verify the file containing the functions.

If you choose to detect uncalled functions,
the verification places a gray check on
those functions. The functions and the
source file containing the functions then
appear on the Results List pane. For more
information, see Detect uncalled
functions (-uncalled-function-
checks).

Your code is intended for multitasking and
you do not specify all your entry points. If
all functions in a file are called from an
entry point function that you did not
specify, Polyspace does not verify the file.

See if you specified all entry points. For
more information on how to specify entry
points, see Tasks (-entry-points). For
a workflow on verifying multitasking code,
see “Configuring Polyspace Multitasking
Analysis Manually” on page 13-14.

23 Troubleshoot Verification Problems

23-92

Situation Fix
If your source files do not contain a main
function, Polyspace generates a main
function. The generated main calls the
functions that you specify using certain
analysis options.

If your analysis options are such that the
generated main does not call all the
functions in a source file, Polyspace does
not verify the source file.

See if you have to change the main
generation options associated with your
verification.

For more information on the options, see:

• Initialization functions (-
functions-called-before-main)

• Functions to call (-main-
generator-calls)

• Class (-class-analyzer)
• Functions to call within the

specified classes (-class-
analyzer-calls).

Possible Cause: Filters Applied
If you rerun verification on a project module, filters from the last run are applied to the
current run. Because of the persistent filters, some of the files can be hidden from display.

To check if some filters are applied, see the Results List pane header. The header shows
the number of results filtered from the display. If you place your cursor on this number,
you can see the applied filters.

For instance, in the image, you can see that the following filters have been applied:

• The Checks & Rules filter to suppress code metrics and global variables.

 Source Files or Functions Not Displayed in Results List

23-93

•
The filter to suppress results found in a previous verification.

• Filters on the Information and Check columns.

Solution

Clear the filters and see if your file or function reappears on the Results List pane. For
more information, see “Filter and Group Results” on page 20-2.

23 Troubleshoot Verification Problems

23-94

Coding Rule Violations Not Displayed
Issue
You expect a coding rule violation on a line of code but the Polyspace analysis does not
show the violation.

Possible Cause: Rule Checker Not Enabled
You might be looking for a reduced subset of coding rules.

For instance, if you check for MISRA C: 2012 rules, by default, the analysis looks for the
mandatory-required subset only.

Solution

Check the coding rules options that you use. See:

• Check MISRA C:2004 (-misra2)
• Check MISRA C:2012 (-misra3)
• Check MISRA C++ rules (-misra-cpp)
• Check JSF C++ rules (-jsf-coding-rules)

Possible Cause: Rule Violations in Header Files
All coding rule violations in the file might be suppressed.

For instance, by default, coding rule violations are suppressed from header files that are
not in the same location as the source files.

Solution

Check the files where you suppress coding rule violations. See Do not generate
results for (-do-not-generate-results-for).

Possible Cause: Rule Violations in Macros
The rule violation occurs in a macro expansion. To save you from reviewing the same
violation multiple times, the violation is shown on the macro definition instead of the

 Coding Rule Violations Not Displayed

23-95

macro usage. If the definition occurs in a header file, it might be suppressed from the
results.

On the Source pane, you can tell if a line contains a macro expansion. Look for the
icon.

Solution

Find the macro definition and see if it occurs in a header file. Determine if you are
suppressing coding rule violations from header files. See Do not generate results
for (-do-not-generate-results-for).

Possible Cause: Compilation Errors
If any source files in the analysis do not compile, coding rules checking will be
incomplete. The coding rules checker results:

• May not contain full results for files that did not compile
• May not contain full results for the files that did compile as some rules are checked

only after compilation is complete

Check for compilation errors. See “View Error Information When Analysis Stops” on page
23-3.

Note When you enable the Compilation Assistant and coding rules checking, the software
does not report coding rule violations if there are compilation errors.

23 Troubleshoot Verification Problems

23-96

Incorrect Behavior of Standard Library Math Functions

Issue
In your verification results, a standard library math function does not behave as expected.

For instance, the statement assert(isinf(x)) does not constrain the value of x to
positive or negative infinity in subsequent statements.

Cause
If Polyspace cannot find the math function definitions, the verification uses Polyspace
implementations of the standard library math functions.

In some cases, the Polyspace implementation of the function might not match the function
specification. Note that in such cases, the Polyspace implementation overapproximates
the function behavior. For instance, following the statement assert(isinf(x)), the
range of values of x include positive and negative infinity. Therefore, such behavior does
not lead to green checks for operations that can cause run-time errors.

Solution
Explicitly provide the path to your compiler’s native header files so that the verification
uses your compiler’s implementations of the functions. For instance, some compilers
implement functions such as isinf as macros in their header files.

• If you are running verification from the command line, use the option -I.
• If you are running verification from the user interface, see “Add Source Files for

Analysis in Polyspace User Interface” on page 3-2.

If you use a cross compiler and create a Polyspace project from your build system, the
project uses the header files provided by your compiler.

 Incorrect Behavior of Standard Library Math Functions

23-97

Insufficient Memory During Report Generation

Message
....
Exporting views...
Initializing...
Polyspace Report Generator
Generating Report

 Converting report
Opening log file: C:\Users\auser\AppData\Local\Temp\java.log.7512
Document conversion failed
.....
Java exception occurred:
java.lang.OutOfMemoryError: Java heap space

Possible Cause
During generation of very large reports, the software can sometimes indicate that there is
insufficient memory.

Solution
If this error occurs, try increasing the Java heap size. The default heap size in a 64-bit
architecture is 1024 MB.

To increase the size:

1 Navigate to matlabroot\polyspace\bin\architecture. Where:

• matlab is the installation folder.
• architecture is your computer architecture, for instance, win32, win64, etc.

2 Change the default heap size that is specified in the file, java.opts. For example, to
increase the heap size to 2 GB, replace 1024m with 2048m.

3 If you do not have write permission for the file, copy the file to another location. After
you have made your changes, copy the file back to matlabroot\polyspace\bin
\architecture\.

23 Troubleshoot Verification Problems

23-98

Errors with Temporary Files
Polyspace produces some temporary files during analysis. The following issues are related
to storage of temporary files.

No Access Rights
When running verification, you get an error message that Polyspace could not create a
folder for writing temporary files. For instance, the error message can be as follows:

Unable to create folder "C:\Temp\Polyspace\foldername

Cause

Polyspace produces some temporary files during analysis. If you do not have write
permissions for the folder used to store the files, you can encounter the error.

Solution

There are two possible solutions to this error:

• Change the permissions of your temporary folder so you have full read and write
privileges.

To learn how Polyspace determines the temporary folder location, see “Storage of
Temporary Files” on page 3-15.

• Use the option -tmp-dir-in-results-dir. Instead of the standard temporary
folder, Polyspace uses a subfolder of the results folder.

No Space Left on Device
When running verification, you get an error message that there is no space on a device.

Cause

If you do not have sufficient space on for the folder used to store the files, you can
encounter the error.

Solution

There are two possible solutions to this error:

 Errors with Temporary Files

23-99

• Change the temporary folder to a drive that has enough disk space.

To learn how Polyspace determines the temporary folder location, see “Storage of
Temporary Files” on page 3-15.

• Use the option -tmp-dir-in-results-dir. Instead of the standard temporary
folder, Polyspace uses a subfolder of the results folder.

Cannot Open Temporary File
When running verification, you get an error message that Polyspace could not open a
temporary file.

Cause

You defined the path for storing temporary files by using the environment variable
RTE_TMP_DIR. You either used a relative path for the temporary folder, the folder does
not exist or you do not have access rights to the folder.

Solution

There are two possible solutions to this error:

• Instead of defining a temporary folder specific to Polyspace through RTE_TMP_DIR,
use a standard temporary folder.

To learn how Polyspace determines the temporary folder location, see “Storage of
Temporary Files” on page 3-15.

• If you continue to use RTE_TMP_DIR, make sure you specify an absolute path to an
existing folder and you have access rights to the folder.

23 Troubleshoot Verification Problems

23-100

Error from Special Characters

Issue
Your file or folder names contain extended ASCII characters, such as accented letters or
Kanji characters. You face file access errors during analysis. Error messages you might
see include:

• No source files to analyze
• Control character not valid
• Cannot create directory Folder_Name

Cause
Polyspace does not fully support these characters. If you use extended ASCII in your file
or folder names, your Polyspace analysis may fail due to file access errors.

Workaround
Change the unsupported ASCII characters to standard US-ASCII characters.

 Error from Special Characters

23-101

Error from Disk Defragmentation and Antivirus Software

Issue
The analysis stops with an error message like the following:
Some stats on aliases use:
 Number of alias writes: 22968
 Number of must-alias writes: 3090
 Number of alias reads: 0
 Number of invisibles: 949
Stats about alias writes:
 biggest sets of alias writes: foo1:a (733), foo2:x (728), foo1:b (728)
 procedures that write the biggest sets of aliases: foo1 (2679), foo2 (2266),
 foo3 (1288)
**** C to intermediate language translation - 17 (P_PT) took 44real, 44u + 0s (1.4gc)
exception SysErr(OS.SysErr(name="Directory not empty", syserror=notempty)) raised.
unhandled exception: SysErr: No such file or directory [noent]

--
--- ---
--- Verifier has encountered an internal error. ---
--- Please contact your technical support. ---
--- ---

Possible Cause
A disk defragmentation tool or antivirus software is running on your machine.

Solution
Try:

• Stopping the disk defragmentation tool.
• Deactivating the antivirus software. Or, configuring exception rules for the antivirus

software to allow Polyspace to run without a failure.

Note Even if the analysis does not fail, the antivirus software can reduce the speed of
your analysis. This reduction occurs because the software checks the temporary analysis
files. Configure the antivirus software to exclude your temporary folder, for example, C:
\Temp, from the checking process.

23 Troubleshoot Verification Problems

23-102

License Error –4,0

Issue
When you try to run Polyspace, you get this error message:

License Error -4,0

Cause
You can open multiple instances of Polyspace, but you can only run one code analysis at a
time.

If you try to run Polyspace processes from multiple windows, you will get a License
Error –4,0 error.

Solution
Only run one analysis at a time, including any command-line or plugin analyses.

 License Error –4,0

23-103

Glossary

Atomic In computer programming, atomic describes a unitary
action or object that is essentially indivisible,
unchangeable, whole, and irreducible.

Atomicity In a transaction involving two or more discrete pieces of
information, either all of the pieces are committed or no
pieces are committed.

Batch mode Execution of verification from the command line, rather
than via the launcher Graphical User Interface.

Category One of four types of orange check: potential bug,
inconclusive check, data set issue and basic imprecision.

Certain error See ”red check.”

Check A test performed during a verification and subsequently
colored red, orange, green or gray in the viewer.

Code verification The Polyspace process through which code is tested to
reveal definite and potential runtime errors and a set of
results is generated for review.

Dead Code Code which is inaccessible at execution time under all
circumstances due to the logic of the software executed
prior to it.

Development Process The process used within a company to progress through
the software development lifecycle.

Green check Code has been proven to be free of runtime errors.

Gray check Unreachable code; dead code.

Imprecision Approximations are made during a verification, so data
values possible at execution time are represented by
supersets including those values.

mcpu Micro Controller/Processor Unit

Glossary-1

Orange check A warning that represents a possible error which may be
revealed upon further investigation.

Polyspace Approach The manner of using verification to achieve a particular
goal, with reference to a collection of techniques and
guiding principles.

Precision An verification which includes few inconclusive orange
checks is said to be precise

Progress text Output during verification to indicate what proportion of
the verification has been completed. Could be considered
as a “textual progress bar”.

Red check Code has been proven to contain definite runtime errors
(every execution will result in an error).

Review Inspection of the results produced by Polyspace
verification.

Scaling option Option applied when an application submitted for
verification proves to be bigger or more complex than is
practical.

Selectivity The ratio (green checks + gray checks + red checks) /
(total amount of checks)

Unreachable code Dead code.

Verification The Polyspace process through which code is tested to
reveal definite and potential runtime errors and a set of
results is generated for review.

Glossary

Glossary-2

